
Exploiting Unbalanced Thread Scheduling for Energy and Performance on a
CMP of SMT Processors

Matthew DeVuyst, Rakesh Kumar, and Dean M. Tullsen

University of California, San Diego
Department of Computer Science and Engineering

La Jolla, CA 92093-0404
{mdevuyst, rakumar, tullsen}@cs.ucsd.edu

Abstract

This paper explores thread scheduling on an increas-
ingly popular architecture: chip multiprocessors with si-
multaneous multithreading cores. Conventional multipro-
cessor scheduling, applied to this architecture, will attempt
to balance the thread load across cores. This research
demonstrates that such an approach eliminates one of the
big advantages of this architecture – the ability to use un-
balanced schedules to allocate the right amount of exe-
cution resources to each thread. However, accommodat-
ing unbalanced schedules creates several difficulties, the
biggest being the fact that the search space of all schedules
(both balanced and unbalanced) is much greater than that
of the balanced schedules alone. This work proposes and
evaluates scheduling policies that allow the system to iden-
tify and migrate toward good thread schedules, whether the
best schedules are balanced or unbalanced.

1 Introduction
Prior work [15] has shown that system performance

is sensitive to thread scheduling policies for simultane-
ous multithreaded (SMT) [21, 20] architectures. This will
be even more true as the industry moves toward aggres-
sive chip multithreaded architectures—containing multiple
cores, each featuring multiple-thread execution. These ar-
chitectures present both new opportunities and new chal-
lenges in achieving maximum performance out of the pro-
cessor via effective thread scheduling.
The challenges arise from the fact that given a set of ap-

plications and a set of multithreaded cores, the space of
possible schedules of threads to cores can be enormous—
making it difficult to either predict or discover the best
schedules. However, there are also tremendous opportuni-
ties. In this environment, we have much more control over
which threads, and how many, are co-scheduled on cores.
Even if we assume relatively balanced schedules (the same
number of threads assigned to each core), we can select the
groupings of threads assigned to each core so as to minimize
negative interference between threads. But we show in this

paper that we need not assume balanced schedules; and, in
fact, the ability to create unbalanced schedules provides an
important degree of freedom. This is an important result
because conventional multiprocessor schedulers, applied to
this architecture, will always seek to balance the number of
threads on each core—we show that this is often the wrong
decision.
Previous work [14] has shown that resource demands

vary significantly between applications, and even between
phases of the same application. Recently, heterogeneous (or
asymmetric) multiple-core architectures have been shown
to be effective at exploiting this phenomenon by mapping
each job to the core that most closely matches the resource
demands of the application [6, 7]. We can exploit the same
principles in a CMP of SMT processors without the burden
of hardware heterogeneity. In this case, the heterogeneity
comes from the fraction of core resources made available to
each thread. For example, consider a CMP where one core
is already running two threads and another core is idle. In
this case, a new thread could either be scheduled on the first
core, providing low marginal performance but possibly ex-
pending even less marginal power, or it could be scheduled
on the idle core, providing high marginal performance but
resulting in high marginal power. Scheduling on the already
loaded core may be best if the execution resource demands
of the thread are low.
This paper examines system-level thread scheduling

policies for a chip multithreaded architecture. Particular
attention is paid to enabling performance and energy effi-
ciency through unbalanced schedules. These schedules give
the system the ability to cluster threads that have low execu-
tion demands and amortize the power cost of using a core.
Because the search space of possible schedules for such

architectures is large, we rely on schedulers that learn from
experience and migrate to the best schedules. They do so
either through directed sampling or by making small ad-
justments to the current schedule (which is assumed to be
good). Our studies cover many different degrees of thread-
level parallelism. We consider schedules that leave cores
idle, even when there are more threads than cores. This

1-4244-0054-6/06/$20.00 ©2006 IEEE

is particularly useful when energy and power are primary
concerns. When both performance and power are first-class
concerns for the scheduler, the nature of the best schedules
become difficult to predict; thus, it becomes critical to have
scheduling policies that dynamically adapt to the particular
workload’s execution behavior, and discover the right strat-
egy.
This paper makes the following contributions. It stud-

ies, for the first time, a spectrum of scheduling policies for
a chip-multithreaded architecture where both performance
and energy are prime considerations. It shows that un-
balanced schedules (uneven distribution of threads among
the cores) often outperform balanced schedules—the best
scheduling policies are those that consider both balanced
and unbalanced schedules. We show that one can often get
higher performance by clumping badly behaving threads to-
gether on the same core than by spreading them around.
This is because such threads can interfere destructively with
the otherwise high-performing threads. Running them with
other low-performing threads is less likely to significantly
impede those other threads. The benefits of unbalanced
scheduling increase as the objective functions puts more
emphasis on power efficiency.
Additionally, we demonstrate that intelligent non-

sampling based scheduling policies can often outperform
the policies that require sampling of the search space; this is
significant because, given a moderate number of cores and
a moderate number of threads, the search space for possible
schedules can become large.
This paper also extends symbiotic scheduling [15] to

a CMP of SMTs. Symbiosis-based random scheduling
heuristics that performed well for a SMT core also perform
well for a CMP of SMT cores but with smaller marginal
gains. However, due to the much larger search space, we
show that in this case there is even more gain to be had with
more intelligent policies. Finally, we show that there are
significant benefits to doing energy-aware scheduling. For
12 threads, it can result in up to 7.4% savings in energy,
10.3% savings in energy-delay product, and 35% savings in
power. Savings are even greater with fewer threads.
The rest of the paper is organized as follows. Section 2

describes previous work related to thread scheduling and
multithreading chip multiprocessors. Section 3 discusses
the architecture that we are evaluating—a CMP of SMT
cores. In section 4 we present our scheduling mechanisms
and policies. We discuss our experimental methodology in
section 5 and present and analyze the results in section 6. In
section 7 we summarize our findings.

2 Related Work
While chip multithreaded processors are already on

the market [2, 17], little research has been published on
scheduling for such processors. Fedorova, et al. [3] exam-
ine scheduling for L2 cache miss rate on a CMP of SMT
cores. They introduce an L2-conscious scheduling algo-
rithm based on balance-set scheduling. They assume high
thread level parallelism, and do not consider unbalanced
scheduling. In this research, we focus on direct measures

(i.e., performance, power, energy) rather than indirect—
thus, if L2 miss rate is the dominant factor, we will migrate
to schedules that minimize it (but perhaps more slowly). If
there are other important factors, we will find better sched-
ules. We also assume more aggressive cores.
Powell, et al.[5] seek to alleviate the power density prob-

lem, a condition found in many modern processors and po-
tentially aggravated by a CMP/SMT architecture. Their
work leverages the ability to schedule on two levels: inter-
core and intra-core. Because their goal is very different, the
proposed scheduling solution, Heat-and-Run, is not effec-
tive for reaching our goals. Heat-and-Run moves jobs off of
a core (to a cooler one) before the core can exceed thermal
thresholds. In a sense, they employ unbalanced schedules
to favor cool cores, and let hot cores cool down.
Also, while Sasanka, et al. [9] do not discuss scheduling

policies, they show analytically as well as through quanti-
tative evaluations that a CMP of SMT cores is more energy
efficient than a CMP or an SMT processor. In Section 6
we confirm their observation and use that as a basis for our
energy-aware scheduling policies.
Significantly more work has been done on scheduling for

SMT or CMP processors. Snavely, et al. [15] propose a job-
scheduler for SMT architectures. They introduce the con-
cepts of symbiosis (discovering jobs that run together with
minimal interference) and sampling-based scheduling that
are used in this research. While the kind of co-scheduling
in their work is temporal, the co-scheduling in our research
is spatial—co-scheduling symbiotic jobs on different cores.
Also, they do not consider power or energy. Other notable
work on SMT scheduling includes [12, 8, 16].
Scheduling for homogeneous CMPs (of single-thread

cores) is trivial if all cores are identical and interference
is only at the L2 level and beyond—though interesting is-
sues [13] can arise with communication, data locality, etc.
Heterogeneous CMPs, on the other hand, require a careful
mapping of applications to cores. Recent work [6, 4] ad-
dresses some of the scheduling issues with such processors.
Kumar, et al. [7] consider the scheduling problem for a het-
erogeneous multi-core architecture where a few cores are
multithreaded. Again, their objectives are power-oblivious.
In this paper, we consider scheduling for a CMP of SMT

cores for objectives that are a composition of both power
and performance.

3 Architecture
We focus on a single hardware architecture but eval-

uate it under different constraints and different levels of
thread parallelism (different loads). This architecture is
large enough to make scheduling a complex problem; and
we believe the principles exposed by our results will scale
to larger configurations.
The architecture is a chip multiprocessor consisting of

four homogeneous simultaneous multithreaded [21] cores
implemented in the 0.1µm process with shared L2 and L3
caches. Each core has its own L1 data cache and L1 instruc-
tion cache. Because threads can migrate between cores,
they will exercise the cache coherence policy to correctly

Cores 4 TLB miss penalty 790 cycles
Contexts per core 4 I cache size 32k
Reorder Buffer entries 256 I cache miss penalty 8 cycles
Active List entries 512 I cache associativity 4
Total fetch width 4 D cache size 32k
Integer registers per core 100 D cache miss penalty 8 cycles
FP registers per core 100 D cache associativity 4
shared L2 cache size 2 MB shared L3 cache size 4 MB
L2 miss penalty 40 cycles L3 miss penalty 315 cycles
L2 access time 12 cycles L3 cache access time 35 cycles

Table 1. Architecture Detail
handle dirty data in the L1 data caches. When a thread mi-
grates to another core and requests data that was dirty in
the L1 data cache of the core it was previously running on,
the dirty data will be written to both the L1 cache of the
core on which the thread is now running and the shared L2
cache. The implementation is assumed to be at 2.1 GHz and
latencies are determined accordingly.
There are four contexts per SMT core, for a total of

16 contexts in the system. Each SMT core is out-of-
order. There exist two dimensions of thread level paral-
lelism (TLP) in our architecture as there are multiple cores,
each with multiple contexts. In the first dimension of TLP,
threads co-scheduled in different contexts on the same core
share many core resources including a register file, hard-
ware queues, and a set of functional units. In the second
degree of TLP, threads scheduled on different cores share
fewer resource (such as the more distant levels of the mem-
ory hierarchy).
In this work, we assume that unused cores are completely

powered down, rather than left idle. Thus, unused cores
suffer no static leakage or dynamic switching power. This
does, however, introduce a latency for powering a core on or
off. In [6], it is estimated that a given processor core can be
powered on in approximately one thousand cycles of the 2.1
GHz clock. They assume that when a processor core is pow-
ered down, the phase-lock loop that generates the clock for
the core is not powered down. Rather, the same phase-lock
loop generates the clock for all cores. Consequently, the
power-up time of a core is determined by the time required
for the power buses to charge and stabilize. However, in this
work we did not want to assume constraints on power sup-
ply or PLL design, so we perform all experiments assuming
that it takes 30µs to turn on or off a core. We estimate this
time based on reported data on PLL stabilization times and
system overheads. Note that this is over 60 times more con-
servative than was assumed before (in [6]), and it allows
plenty of time for dirty data to be flushed from the caches,
as well. We also assume, conservatively, that a core keeps
dissipating idle power at a steady rate until it is completely
powered off and also during the entire power-on procedure.
We do not consider dynamic voltage scaling (DVS) in this
work.
Table 1 contains more details of the architecture.

4 Scheduling Policies
We assume an operating system level thread scheduler

that makes global (CMP-wide) scheduling decisions. Thus,
scheduling decisions must be made at a very coarse gran-
ularity, and the cost of moving a thread is very small rel-

ative to the typical interval between moves. The proces-
sor typically makes scheduling decisions based on sampled
data of processor power and performance. Processor power
and performance can be estimated by reading counter reg-
isters that are already found in most modern processors.
New samples are collected and new scheduling decisions
can be made as often as every operating system timer in-
terrupt (although, in general, we strive to change schedules
much less often than the timer interrupt) or when the mix of
jobs changes.
We assume all jobs have equal priority. Differing pri-

orities could significantly increase the utility of unbalanced
schedules, thus increasing the importance of scheduling al-
gorithms that consider such schedules. However, the correct
metrics to evaluate the goodness of our schedules are less
clear in the presence of priorities, so we do not demonstrate
that advantage in this work.
The scheduling policies we evaluate are described be-

low. They come in two broad categories: sampling-based
policies and electron policies. The electron polices are so
called because the state of a core may cause it to either try
to push a job away or to attract new jobs.

4.1 Sampling-based Policies
The sampling-based policies work in a series of alternat-

ing temporal phases: a sampling phase and a steady phase.
During the sampling phase, a number of different schedules
are tried; at the end of the sampling phase the sample sched-
ule with the bestmetric value is chosen as the schedule to be
in effect throughout the steady phase. The metric value de-
pends on what we wish to optimize for, whether it be power,
energy, energy delay product, performance, or something
else. In addition to the sample schedules, the schedule in
place during the last steady phase is also a candidate for
selection—this ensures that in the ideal (but somewhat rare)
case with no noise or phase behavior, we will always move
toward better schedules. In all cases, we create 10 sam-
ple schedules, which we found to create a good balance
between the desire to maximize our chances of finding a
good schedule and to minimize the ratio of the duration of
the sample phase to the duration of the steady phase. Each
sample runs for two time slices, and the measurement takes
place on the second, to eliminate cold start effects. The
steady phase then runs 10 times as long as the sample phase.
While the creation of schedules is geared towards intelli-

gently navigating through the permutation space, selecting
the best schedule involves using the right metric to charac-
terize the goodness of a schedule. The sampling policies,
then, are generic and can be specialized to different objec-
tive functions by changing the evaluation metric. The eval-
uation metrics used to choose the best sampled schedule are
described in Section 4.3.
We consider the following sampling-based scheduling

policies:

Balanced Symbiosis It has been shown previously that
some groups of applications run well together, while oth-
ers result in destructive interference [19], causing individual

applications to slow down. This property can be used to en-
hance system performance by scheduling “friendly” threads
together on one core. Threads are randomly assigned to
contexts for each sample schedule. The only constraint, in
this case, is that the number of threads scheduled on each
core is the same, or within one if the threads don’t divide
evenly onto cores. At the end of the sampling phase, what-
ever decision metric has been chosen will be used as the
criterion for selecting a schedule for the steady phase. This
policy is closest to the symbiotic job schedulers described
by Snavely, et al [15] for a single SMT core (those sched-
ules were “balanced” in the sense that they always used all
thread contexts). Because this scheme only considers bal-
anced schedules, most schedules considered are reasonable
ones—but potentially better schedules that are not balanced
will never be considered.

Symbiosis This policy is similar to the prior one, except
that it does not constrain the threads to be assigned evenly
among the cores. As a result, it has the potential to find
better schedules than the first policy can find; but it also
has the potential to sample a larger number of clearly bad
schedules.

Balanced Random This policy chooses a random, but
balanced, schedule with no sampling. This is the closest
approximation to what a conventional load-balancing mul-
tiprocessor scheduler would do, and is the baseline in many
of our graphed results.

Prefer Last This is a class of policies that assume that
the configuration we are running now has merit, and the
next configuration will be similar. In this case, sampling
is biased towards a similar configuration with only a frac-
tion (30%) of the schedules deviating from that. The dif-
ferent forms of prefer last are described below—they differ
in how we define “similar” schedules. With these policies,
we can apply an intelligent bias to the sampling (e.g., use
all cores, use few cores)—but the bias is not hard-coded in
the scheduler; the bias is derived from recent history. Pre-
fer last policies are introduced in [7]; however, we look at
many more flavors and apply them in a different context.

Prefer Last – Numbers A new schedule is similar to the
original schedule if it runs the same number of threads on
each core as the original did. However, the particular as-
signment of threads is done randomly. This policy seeks to
retain the same level of schedule imbalance, but does not
strive to favor or co-schedule the same threads.

Prefer Last – Swap A similar schedule is created by
choosing two threads (on different cores) from the original
schedule to swap places. This policy evolves slowly both in
the number of threads assigned to cores and the composition
of threads co-scheduled.

Prefer Last – Move In this variant, a similar schedule is
created by randomly choosing one thread and moving it to a
randomly-selected empty context on another core and leav-
ing all other threads in place. This policy tends to preserve
the sets of threads co-scheduled, but allows the distribution
of the load (in number of threads) to evolve more quickly.
Note that this policy does not work in this exact form for
very high system loads – i.e., when all the contexts are sat-
urated.
All these policies are evaluated assuming that any unused

cores are power gated. When a sampling phase begins, all
the samples to be tried out in that sampling phase are created
and then ordered by the number of cores they utilize. The
schedules that use the same number of cores as were used
in the last steady phase are tried first. All the schedules that
use a different number of cores are grouped together by the
number of cores they use and are ordered such that all the
sample schedules using the same number of cores are tried
consecutively. This minimizes the number of power gating
changes that are made.

4.2 Electron Policies
The policies in the previous section rely on sampling for

intelligent scheduling. However, such policies become less
effective as the search space expands.
Rather than sampling, the electron policies rely on more

explicit evidence that a particular core is over-scheduled,
under-scheduled, or just poorly scheduled. Cores will at-
tract threads that fill a void and repel threads when con-
tention is high. Threads will move around each interval to
create a better fit. The schedule naturally adapts as threads
enter new phases of execution.
Following is the description of electron policies cus-

tomized for each metric that we study.

Electron – Performance This policy assumes that uti-
lization of a core’s resources has a correlation with perfor-
mance. The IPC of each core in the previous period is cal-
culated. The core with the highest aggregate IPC repels one
thread, and the core with the lowest IPC attracts a thread. If
the latter has a free context, the thread is transferred. If the
condition is not met, we do not change the schedule. Ninety
percent of the time the selection of the thread to repel away
from the high IPC core is the highest IPC thread on that
core, and ten percent of the time a random thread from that
core is selected. The thread selection policy is based on the
assumption that the highest IPC thread has the most aggres-
sive resource requirements and hence needs to find a core
with the least current utilization. Occasional random selec-
tion guards against the same thread infinitely hopping from
core to core.

Electron – Energy The objective here is to minimize the
overall energy consumption of the processor. The energy
of each core in the previous period is calculated. The (non-
idle) core with the lowest energy repels one (randomly cho-
sen) thread, and the core with the highest energy attracts a

thread. If the former was not idle and if the latter has a free
context, then the thread is transferred; otherwise the sched-
ule does not change. Over time, this policy tends to cluster
threads so that more cores are left idle, then distributes the
jobs efficiently among those cores.

Electron – EDP This policy tries to minimize overall
energy-delay product of execution by identifying cores
under-performing on this metric. The energy delay product
of each core in the previous period is calculated. The core
with the highest EDP attracts a thread, which is supplied
from the core with the lowest EDP—the thread to move is
chosen randomly. If the latter was not idle and if the former
has a free context, the thread is transferred; otherwise the
schedule does not change. If a core was idle (meaning it
consumed no power but completed no instructions) its EDP
is considered to be infinite. This assumption discourages
idling of cores—we found that leaving a core idle (when
EDP is the targeted metric) is usually inefficient.
Note that making locally good decisions for a metric

like EDP does not guarantee making globally good deci-
sions [10].
For the electron policies, the duration of a period is mod-

erately long (i.e., a schedule change can occur at most once
every 4 O/S time-slices in our experiments). If a new sched-
ule results in a core being left idle, that core is powered
down immediately. For all the policies, at every scheduling
change, if the new schedule calls for cores to be powered on,
the required cores are powered on before the new schedule
takes effect. Also, if the new schedule calls for cores to be
either powered on or powered off, the scheduler does not
sample any performance or power counters during the tran-
sition, so as not to skew the statistics associated with the
new schedule.
Note that electron schedulers run into the risk of contin-

uing to alternate among two schedules. To help avoid such
situations, history information has been incorporated into
the scheduling policy decisions. A history is maintained
of the last 10 schedules run (duplicate schedules included)
and the associated performance and power. If the sched-
ule that the electron policy proposed is found in the history,
then the scheduler knows about how well it will perform.
In such cases, it will select the “best” schedule among all
the schedules in the history, where the “best” schedule is
the one found to be most efficient with regard to the desired
decision metric. If the proposed schedule is not found in
the history, its performance is unknown, so it will be run.
Because the history length is finite and contains previously
used schedules regardless of their uniqueness among the
other history entries, the electron scheduling policies will
be able to adapt to workload phase changes. Stale perfor-
mance data is evicted from the history and previously ap-
plied schedules are eventually applied again.

4.3 Decision Metrics
This section describes the metrics used to select from

among the sampled schedules discussed in Section 4.1. The

objective function during scheduling may be static for a
given environment and a given market segment. In other
cases, it may change dynamically as the processor changes
power conditions (e.g., plugged vs. unplugged, full bat-
tery vs. low battery, thermal emergencies), as applications
switch (e.g., low priority vs. high priority jobs), or even
within an application (e.g., a real-time application is behind
or ahead of schedule).
We consider four system-level objective functions in

this paper—performance, power, energy, and energy-delay
product—and tune the evaluation metric for those objective
functions in the following ways.

Performance The metric for performance is calculated
weighted speedup (CWS). This is derived from the
weighted speedup metric proposed in [15], and used in this
paper to evaluate simulated performance (described in Sec-
tion 5). However, it cannot be applied in the same way at
runtime without oracle information—this is because it de-
pends on knowing how the program would run on a base-
line configuration (e.g., single-threaded). Thus, we define
each application’s “average performance”, for the purpose
of calculating CWS, as the average of its performance over
a number of sampled configurations. Thus, for the runtime
scheduler, one thread’s contribution to the total calculated
weighted speedup is its IPC for that sample, divided by its
average IPC for all samples. We found this to provide bet-
ter performance than using IPC as the choice metric. With
IPC, causing one thread’s throughput to drop from 4 to 2
is twice as bad as causing another thread to drop from 2 to
1. With CWS, they are considered equally bad—this repre-
sents a more system-level view of performance which says
that a 2X slowdown in any application is considered bad,
regardless of the raw IPC.

Energy Delay Product The energy delay product (EDP)
of the processor, which is PowerPerCycle/IPC2, is
computed for each of the sampled schedules. The sched-
ule with the lowest EDP is considered the best.

Energy The energy of the processor, which is
PowerPerCycle/IPC, is computed for each of the
sampled schedules. The sample with the lowest energy is
considered the best. Performance (IPC) is still a factor in
the energy equation, because faster execution consumes
power over a shorter time-span.

Power The total power is computed at each sampling
schedule. The total power is the sum of the power of all
the cores plus the power of the shared structures (L2 and L3
caches). The schedule with the lowest power is considered
the best.

5 Experimental Methodology
In this section, we discuss the various methodological

details of our evaluation framework and scheduling mecha-
nisms.

5.1 Scheduling Parameters
Our thread scheduler is assumed to be a part of the

operating system; it makes scheduling decisions based on
sampled data of processor power and performance. New
samples are collected and new scheduling decisions can be
made at every operating system time-slice interval. We have
assumed an operating system time-slice of a quarter million
cycles. This time-slice is artificially short to keep our simu-
lations from taking too long. It allows us to model a larger
number of sample/steady intervals per simulation, and is
still long enough to capture interesting application phases
for most of our benchmarks. This enables our scheduling
policies to be evaluated and compared based on how quickly
and accurately they can adjust to the changing workload be-
havior. We also performed a few experiments with larger
intervals and found no significant difference in results or
trends. The time-slice interval durations we used are also
significantly longer than any lingering cold-start artifacts of
the simulation methodology.

5.2 Workload Construction
Twelve benchmarks from the SPEC 2000 benchmark

suite were chosen to construct workloads for our evaluation.
Sub-setting was done such that the fraction of compute and
memory bound benchmarks is the same as that in the en-
tire SPEC suite—so the subset is representative of the entire
suite. Each benchmark was fast-forwarded for 2 billion in-
structions before detailed simulation. Table 2 contains a list
of the twelve benchmarks. All simulations use the reference
data sets.
We performed all our evaluations for various values

of available thread-level parallelism for multiprogramming
workloads. For each level of thread-level parallelism, we
construct and use eight workloads by randomly selecting
eight different subsets of the 12 benchmarks. These groups
are formed such that the contribution of a benchmark to the
result remains the same across different TLPs, similar to
the sliding window methodology typically used in SMT re-
search [21]. For the 12-thread experiments and higher, at
most only one group could be constructed if we didn’t allow
duplicate threads. Thus, multiple instances of randomly-
selected application(s) are run in a single group. Table 3
lists the workloads used for our study. In all the results re-
ported in this paper, the results were obtained by averaging
the statistics across the 8 groups.

5.3 Simulation Methodology
All our simulations are done using a chip-multi-threaded

multiprocessor derivative of SMTSIM [18]. The simula-
tor supports MESI coherence protocol and executes stat-
ically linked Alpha binaries. Appropriate modifications
were done to simulate the effect of OS-level scheduling
as well as the availability of hardware counters. To gather
power statistics we integrated a modified version of Wattch
[1] into our simulator. Wattch was modified to collect, cal-
culate, and report power statistics on a multi-core archi-
tecture with a shared L2 cache. We made use of Wattch’s

Benchmark Code Description
gap 0 Interpreter
fma3d 1 Crash simulator
mesa 2 3D graphics
equake 3 Wave simulator
crafty 4 Chess game
wupwise 5 Quantum Chromodynamics
mgrid 6 Multi-grid solver
gzip 7 Compression
gcc 8 Compiler
apsi 9 Meteorology
swim A Shallow water modeling
ammp B Chemistry

Table 2. Benchmarks: Each benchmark is la-
beled with a code (used in Table 3) and a brief
description

4a 8165 6a 8165B0 8a 8165B072
4b 6359 6b 635924 8b 6359240B
4c A960 6c A96048 8c A9604851
4d 5879 6d 5879B1 8d 5879B143
4e A23B 6e A23B79 8e A23B7968
4f 4230 6f 423076 8f 423076A9
4g 47A8 6g 47A8A1 8g 47A8A10B
4h 1B20 6h 1B2035 8h 1B20354A
12a 8165B07284A3 16a 8165B07284A36359
12b 6359240B38A1 16b 6359240B38A1A960
12c A96048516723 16c A960485167235879
12d 5879B1435062 16d 5879B1435062A23B
12e A23B79689514 16e A23B796895144230
12f 423076A97B51 16f 423076A97B5147A8
12g 47A8A10B0962 16g 47A8A10B09621B20
12h 1B20354AB879 16h 1B20354AB8798165

Table 3. Workloads: The first part of each pair
is the workload label. The second part of
each pair encodes the benchmarks that form
the workload—each digit in this number is
the code of a particular benchmark. There
are workloads consisting of 4, 6, 8, 12, and
16 threads.

conditional clocking power model (labeled cc3 in Wattch
source code). We also introduced core-level power gating
into the model. The modeling details for power gating are
discussed in Section 3.

6 Analysis and Results
This section presents the effectiveness of the scheduling

policies that adapt to varied program behavior and consider
both balanced and unbalanced schedules. We pay particular
attention to the case where both performance and energy are
important and provide more detailed results for that case.
We also examine the various policies for objective functions
specific to energy, power, and performance.

6.1 Scheduling for Both Energy and Perfor-
mance

Scheduling for both power and performance at the same
time presents an interesting challenge for a CMP of SMT
cores. The marginal performance achieved by using an ad-
ditional core in a CMP of SMTs is typically higher than
the marginal performance improvement from using an ad-
ditional SMT context on the same core. Also, the marginal
performance improvement from an SMT context continues

Figure 1. Average marginal utility and cost of
using each SMT context on a single core.

to decrease as the number of threads increases [20]. So,
it is often better to schedule as few applications on each
SMT core as possible if scheduling only for performance—
threads spread out across cores. On the other hand, the con-
verse is true for energy. That is, energy efficiency increases
with the number of contexts in operation [11], so we tend
to aggregate threads when scheduling for energy. Figure 1
shows how power and performance vary with the number of
contexts for our processor model. We see that, on average,
marginal performance drops off as we add threads, and is
typically much less than the performance of using a second
core. Conversely, energy efficiency is maximized as we add
threads to a single core. Scheduling for a CMP of SMTs
such that both power and performance are optimized, then,
requires a careful balance between these two competing ob-
jectives.
We perform all our evaluations in this section using the

energy-delay product (EDP) metric. EDP recognizes the
importance of both power and performance and is used
widely as an important objective function for desktop as
well as server processors.

Unbalanced Scheduling Schedulers for traditionalmulti-
processors seek to evenly distribute the system load over the
available processing contexts. Such schedulers constrain
the schedules to be balanced, limiting their flexibility to op-
timize for multiple competing objectives at the same time.
If our scheduler allows unbalanced scheduling, we have

the opportunity to meet both of these objectives—we can
aggregate jobs that have low execution resource demands
for energy efficiency, while still givingmore resources (e.g.,
on other cores) to those jobs that demand them for perfor-
mance.
Figure 2 compares an optimal static scheduling policy

(Static Ideal) that allows unbalanced scheduling against the
best static scheduling policies that are constrained to be bal-
anced. Static Balanced ensures that each core runs the same
number of threads (or within one if the number of threads is
not evenly divisible by the number of cores), and, hence, is
similar to the traditional load-balancing schedulers. Static
Cluster Balanced ensures that only as many cores as nec-

Figure 2. The effectiveness of unbalanced
and balanced static scheduling policies in
reducing energy-delay product. Results are
presented as fraction of EDP savings relative
to Balanced Random.

Figure 3. Extent of imbalance for the best
schedules found by static policies targeting
EDP

essary to run a given number of threads are kept on and
the rest are power gated; among the active cores, each core
runs the same number of threads. This policy minimizes the
system power consumption at the expense of performance.
The results are shown for different levels of thread-level
parallelism. Thus, if we have six threads, Static Balanced
will only consider schedules of threads to the four cores
like 2,2,1,1; and Static Cluster Balanced will only consider
schedules like 3,3,0,0.
Figure 2 shows that there is a significant advantage to do-

ing unbalanced scheduling—Static Ideal results in consis-
tently higher EDP savings than the best balanced schedul-
ing policy (Static Balanced). Savings are 12% higher for 4
threads and 6.6% higher for eight. As cores become more
heavily saturated with threads, the flexibility for doing in-
telligent unbalanced scheduling decreases and the relative
benefits decrease.
While these results are averaged over eight workloads,

we observed that Static Ideal often resulted in unbalanced
schedules (see Figure 3, black bar—the other bars are
discussed later). For example, for 4 threads, five out of

Figure 4. Energy-Delay product for sampling-
based scheduling policies

eight workloads were scheduled in an unbalanced manner
in the ideal case. For 6 threads, this number was six out of
eight. All the best static schedules for 8 and 12-threaded
workloads were unbalanced. We also observe that most
of the schedules are unbalanced even for the best dynamic
scheduling policies discussed in the following sections.
The advantages due to unbalanced scheduling depend on

the characteristics of the workload. Benchmarks gcc and
gzip are averse to running with other applications due to
high ICache working set sizes and high core utilization, re-
spectively. Balanced scheduling policies force these appli-
cations to be co-scheduled with some other thread on the
same core resulting in a significant performance hit. How-
ever, Static Ideal allows these applications to be on a core
by themselves resulting in high overall efficiency. On the
other hand, we find that ammp, swim, and apsi are often co-
scheduled, as they have lower inherent ILP and see minimal
destructive cache interference. Workload 8e (refer to Ta-
ble 3) contains both gcc and gzip, and the best unbalanced
schedule has 14% lower EDP than the best balanced sched-
ule.
The graph also makes a case for energy-aware schedul-

ing. Static Ideal results in more than 12.1% EDP savings
for 4 threads and 18.5% savings for 8 threads. In fact, we
observed that the policy can result in savings of 8.7% even
for 16 threads (not shown in the graph) over a naive sched-
ule that only seeks to balance the load.
The static results are ideal, identified by exhaustive

search. The next section presents realistic dynamic schedul-
ing policies.

Exploring the Search Space through Directed Sampling
Sampling-based scheduling policies try to adapt to the
changing workload behavior by sub-setting the search space
and then making the best choice of schedule from among
the reduced space. The effectiveness of a scheduling policy
is hence primarily determined by how effectively it does the
sub-setting. Figure 4 compares the various sampling-based
scheduling policies. Results are shown for both symbiosis-
based policies as well as Prefer Last policies. The results
are shown for various levels of thread-level parallelism and
with Balanced Random policy as the baseline.
The graph leads to several interesting observations. First,

there are again significant benefits to doing energy-aware
dynamic scheduling. The best sampling-based policy (Pre-
fer Last – Move) results in 2.3% EDP savings for 4 threads,
7.8% savings for 8 threads, and 8.3% savings for 16 threads
(16 thread case not shown in graph). These benefits are
achieved through unbalanced scheduling of threads to cores.
For example, 91% of the schedules chosen by the Prefer
Last – Move were unbalanced for 4 threads. The percentage
of unbalanced schedules was 59%, 89%, and 90% respec-
tively for 6, 8, and 12 threads. Figure 3 shows the fraction
of unbalanced schedules for other policies as well.
The results show that symbiosis-based scheduling poli-

cies that performed well for an SMT core [15] also perform
well for a CMP of SMT cores. The best symbiosis-based
policy (Balanced Symbiosis) results in 1.9% EDP savings
for 4 threads and 5.9% savings for 8 threads. The continued
benefits due to symbiosis-based policies can be explained
by the need to co-schedule “friendly” threads together even
on a chip multi-threaded processor. A more surprising re-
sult is Balanced Symbiosis outperforming Symbiosis. Al-
though Symbiosis has the freedom to try out both balanced
as well as unbalanced schedules, it also has a greater likeli-
hood of sampling bad schedules for a given number of sam-
ples. Balanced Symbiosis, on the other hand, is conservative
and only samples reasonably good (balanced) schedules and
converges on better schedules more quickly. This is particu-
larly true with 6 threads where even the balanced scheduler
is allowed (forced) to sample moderately unbalanced sched-
ules.
Another significant observation is that the policies that

learn from the makeup of the current configuration (Pre-
fer Last) can result in high overall system efficiency. In
fact, the best Prefer Last scheduling policy (Prefer Last –
Move) outperformed the best symbiosis-based policy (31%
higher savings for workloads of 8 threads). This is due to a
more targeted sub-setting of the search space by the Prefer
Last policies. Prefer Last – Numbers emerges as the weak-
est sampling-based policy because it does not preserve co-
schedule relationships and changes the number of threads
per core slowly. Prefer Last – Swap preserves co-schedule
relationships, but also changes the distribution (in number
of threads) slowly. Prefer Last – Move outperforms both the
above policies as it not only preserves the sets of threads
co-scheduled, but also allows the distribution of the load to
evolve more quickly.

Non-sampling Strategies The previous policies rely on
sampling for intelligent scheduling. However, such policies
get increasingly less effective as the assignment space gets
larger; for a given machine, the size of the assignment space
increases with the number of threads that need to be sched-
uled. The sampling strategies also experience an overhead,
as the sampling intervals will have lower performance than
the steady intervals.
Figure 5 shows the results for the Electron EDP schedul-

ing policy. The electron policies rely on more explicit
evidence that a particular core is over-scheduled, under-

Figure 5. Effectiveness of the non-sampling
electron policy, compared to two sampling
policies.

Figure 6. The impact on performance, energy,
and power of various thread scheduling poli-
cies.

scheduled, or just poorly scheduled. This is especially use-
ful when the assignment space is too large to sample ef-
fectively. In fact, as we can see, the electron policy out-
performs all the sampling-based policies when thread-level
parallelism is high. EDP savings are twice that of Pre-
fer Last – Move and 2.4 times Balanced Symbiosis for 12
threads. While the sampling strategies struggle with the size
of the search space, the fact that the electron policies incur
no sampling overhead allows those policies to adapt much
more often and navigate the large schedule space more ef-
fectively.
We also observed that the best schedules for Electron

EDP are unbalanced. For 12 threads, for example, 100% of
the schedules are unbalanced. 83% and 99% of the sched-
ules are unbalanced for 4 and 8 threads respectively. This
again confirms the usefulness of providing more flexibility
to the scheduler.

6.2 Scheduling for Other Metrics
This section discusses scheduling for other scenarios

where it is less critical to have both low energy and high per-
formance at the same time. These scenarios differ from the
previous section in that at least the shape of good schedules
is more predictable. However, we find that even in these
cases, directed scheduling policies still enable us to find
specific schedules that better use the available resources and
group threads in ways that minimize negative interference.

Figure 7. Extent of imbalance in the dynamic
schedules targeting the various metrics.

Figure 6 compares various scheduling policies directed
towards performance (measured as weighted speedup), en-
ergy, and power (using 8-thread workloads). What we find
when targeting only performance is that there is still some-
thing to be gained from considering unbalanced schedules
(see Figure 7), but in general there is less to be gained from
these schemes. Simply balancing the system load evenly
over compute nodes is often a sufficient mechanism for ex-
tracting good performance. What gain there is comes pri-
marily from finding symbiotic schedules that are better than
the random groupings.
For the power-related metrics (energy and power), we

see that significant benefits can be had with directed
scheduling policies. Note that no power bar is shown for the
electron policy because no electron policy was optimized
for power (since such a policy would be trivial). Electron
Energy emerges as the best scheduling policy for energy. It
results in over 15% energy savings—high gains can be at-
tributed to the push/pull behavior trying to cluster threads
intelligently on as few cores as possible. Other schedul-
ing policies that allow unbalanced scheduling also result in
over 10% savings. Balanced Symbiosis fails to achieve sig-
nificant savings because it is constrained to utilize all the
cores all the time. Scheduling for power exposes the value
of unbalanced scheduling even more. Balanced Symbiosis
results in less than 2% power savings. Policies that allow
unbalanced scheduling can lead to more than 35% power
savings.
To test the effect that core power gating has on our

power-aware scheduling policies (including EDP), we did
some experiments with power gating turned off. We ob-
served two key differences. First, the power savings are
markedly less when power gating is not used as ungated
idle cores continue to consume power. Second, scheduling
policies that consider both power and performance find less
incentive to save power by leaving cores idle and thus pro-
duce more balanced schedules.

7 Conclusions
A chip multi-threading architecture, with multiple SMT

cores on chip, has a unique ability to partition distributed
execution resources to each application according to its in-
dividual needs. But this requires appropriately assigning

threads to cores, as the execution resources available to a
thread depend on how many threads are assigned to the
same core and exactly which threads it shares the core with.
A traditional multiprocessor scheduler, applied to this ar-

chitecture, will not identify the best schedules. To do this,
a good scheduler must be able to explore both balanced and
unbalanced schedules. Additionally, it must be able to dis-
tinguish between good co-schedules and poor co-schedules
and to navigate the huge space of potential schedules to con-
tinuously evolve toward better schedules.
This paper proposes several operating system level

thread scheduling policies for such an architecture. These
adaptive policies are particularly critical when both per-
formance and energy are first-class concerns. In that sce-
nario, neither distributing threads across cores nor aggre-
gating threads on few cores is clearly the best policy, but
the right schedules are workload-dependent and can only
be identified by policies that adapt dynamically to the cur-
rent program behavior. We show gains, versus a random
scheduler that always uses balanced schedules, of 6-11% in
energy-delay product. We also observe gains when schedul-
ing for pure energy, pure performance, or power.

Acknowledgments
The authors would like to thank the reviewers for their

feedback and Jeff Brown for his assistance with the simula-
tor. This research was funded by NSF grant CNS-0311683,
Semiconductor Research Corporation grant 2005-HJ-1313,
grants from Intel, and an IBM Fellowship.

References

[1] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions. In International Symposium on Computer Architec-
ture, June 2000.

[2] J. Clabes, J. Friedrich, M. Sweet, J. DiLullo, S. Chu,
D. Plass, J. Dawson, P. Muench, L. Powell, M. Floyd,
B. Sinharoy, M. Lee, M. Goulet, J. Wagoner, N. Schwartz,
S. Runyon, G. Gorman, P. Restle, R. Kalla, J. McGill, and
S. Dodson. Design and implementation of the POWER5mi-
croprocessor. In DAC ’04: Proceedings of the 41st annual
conference on Design automation, pages 670–672, 2004.

[3] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Per-
formance of multithreaded chip multiprocessors and impli-
cations for operating system design. In USENIX 2005 An-
nual Technical Conference, Apr. 2005.

[4] S. Ghiasi and D. Grunwald. Aide de camp: Asymmetric
dual core design for power and energy reduction. Technical
report, University of Colorado, Boulder, 2003.

[5] M. Gomaa, M. D. Powell, and T. N. Vijaykumar. Heat-and-
run: leveraging SMT and CMP to manage power density
through the operating system. SIGPLAN Not., 39(11):260–
270, 2004.

[6] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen. Single-ISA heterogeneous multi-core archi-
tectures: The potential for processor power reduction. In
MICRO 36: Proceedings of the 36th annual IEEE/ACM In-
ternational Symposium on Microarchitecture, 2003.

[7] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K. I. Farkas. Single-ISA Heterogeneous Multi-core Archi-
tectures for Multithreaded Workload Performance. In Inter-
national Symposium on Computer Architecture, June 2004.

[8] S. Parekh, S. Eggers, and H. Levy. Thread-sensitive schedul-
ing for SMT processors. Technical report, University of
Washington, Apr. 2000.

[9] R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The en-
ergy efficiency of CMP vs. SMT for multimedia workloads.
In ICS ’04: Proceedings of the 18th annual International
Conference on Supercomputing, pages 196–206, 2004.

[10] Y. Sazeides, R. Kumar, D. M. Tullsen, and T. Constanti-
nou. The danger of interval-based power efficiency metrics:
When worst is best. In Computer Architecture Letters, Vol
4, Jan. 2005.

[11] J. S. Seng, D. M. Tullsen, and G. Z. Cai. Power-sensitive
multithreaded architecture. In Proceedings of International
Conference on Computer Design, 2000.

[12] A. Settle, J. L. Kihm, A. Janiszewski, and D. A. Connors.
Architectural support for enhanced SMT job scheduling. In
Proceedings of the International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), pages 63–
73, 2004.

[13] K. A. Shaw and W. J. Dally. Migration in single chip mul-
tiprocessors. In Computer Architecture Letters, Vol 1, Jan.
2002.

[14] T. Sherwood, E. Perelman, G. Hammerley, and B. Calder.
Automatically characterizing large-scale program behav-
ior. In International Conference on Architectural Support
for Programming Languages and Operating Systems, Oct.
2002.

[15] A. Snavely and D. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreading architecture. In Eighth Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems, Nov. 2000.

[16] A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic job-
scheduling with priorities for a simultaneous multithreading
processor. In SIGMETRICS ’02: Proceedings of the 2002
ACM SIGMETRICS international conference on Measure-
ment and modeling of computer systems, pages 66–76, 2002.

[17] Sun Microsystems. Throughput computing
faq:http://www.sun.com/processors/throughput/faqs.html,
2005.

[18] D. Tullsen. Simulation and modeling of a simultaneous mul-
tithreading processor. In 22nd Annual Computer Measure-
ment Group Conference, Dec. 1996.

[19] D. Tullsen and J. Brown. Handling long-latency loads in
a simultaneous multithreading processor. In 34th Interna-
tional Symposium on Microarchitecture, Dec. 2001.

[20] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and
R. Stamm. Exploiting choice: Instruction fetch and issue
on an implementable simultaneous multithreading proces-
sor. In 23rd Annual International Symposium on Computer
Architecture, May 1996.

[21] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. In 22nd Annual
International Symposium on Computer Architecture, June
1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

