
MPEG-2 Decoding in a Stream Programming Language

Matthew Drake, Hank Hoffmann, Rodric Rabbah, and Saman Amarasinghe
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
{madrake, hank, rabbah, saman}@mit.edu

Abstract

Image and video codecs are prevalent in multime-
dia devices, ranging from embedded systems, to desktop
computers, to high-end servers such as HDTV editing
consoles. It is not uncommon however that develop-
ers create and customize separate coder and decoder
implementations for each of the architectures they tar-
get. This practice is time consuming and error prone,
leading to code that is neither malleable nor portable.
This paper describes an implementation of the MPEG-
2 decoder using the StreamIt programming language.
StreamIt is an architecture-independent stream lan-
guage that aims to improve programmer productivity,
while concomitantly exposing the inherent parallelism
and communication topology of the application. The
paper shows that MPEG is a good match for the stream-
ing programming model and illustrates the malleability
of the implementation using a simple modification to
the decoder to support alternate color compression for-
mats. StreamIt allows for modular application devel-
opment, which increases code reuse, and reduces the
complexity of the debugging process since stream com-
ponents can be verified independently. This in turn
leads to greater programmer productivity.

1. Introduction

Image compression of still and motion pictures plays
an important role in Internet and multimedia appli-
cations, digital appliances such as HDTV, and hand-
held devices. The compression process decreases data
storage requirements (important for embedded devices)
and provides higher effective transmission rates (impor-
tant for Internet enabled devices).

Current programming practices often require devel-
opers to implement compression algorithms in low level
languages and arduously tune their code for perfor-
mance. This methodology is not cost effective because

architecture-specific code is not portable and multiple
implementations of the same codec are necessary. The
process is made more challenging by the continuous
evolution of standards, which are driven by new inno-
vations in a rapidly growing digital multimedia market.

A typical compression algorithm involves three types
of operations: data representation, lossy compression,
and lossless compression. These operations are semi-
autonomous, exhibit data and pipeline parallelism, and
easily fit into a sequence of distinct processing stages.
As such, image and video compression is a good match
for the streaming model of computation where data are
transformed by a series of filters, usually organized in
well structured topologies. Stream programming mod-
els afford certain advantages in terms of programma-
bility, robustness, and achieving high performance.

This paper describes an implementation of the
widely used MPEG-2 compression standard in
StreamIt [40], a high-level architecture-independent
language for streaming computations. Our goal is to
deliver a unified development environment that cap-
tures all aspects of stream application development
without sacrificing either performance or programma-
bility. This paper details the salient processing steps of
the MPEG-2 decoder in StreamIt and compares some
of the important implementation details to a reference
C implementation of the decoder.

The StreamIt programming model allows the pro-
grammer to build an application by connecting com-
ponents together into a stream graph, where the nodes
represent filters that transform the data communicated
along the edges. In StreamIt, the programmer is re-
lieved of the burden of explicit buffer management and
complex index expressions for multi-dimensional data.
StreamIt also exposes the inherent parallelism and
communication topology of the application, thereby
empowering the compiler to perform many stream-
aware optimizations [1, 17, 25, 37] that elude other lan-
guages. The end result is a clean, malleable, portable,
and efficient code.

1-4244-0054-6/06/$20.00 ©2006 IEEE

Our StreamIt development environment, optimiz-
ing compiler, and MPEG-2 codec implementations are
available for download from our project webpage at
http://cag.csail.mit.edu/streamit.

2. Overview of MPEG-2

MPEG-2 [19] is a popular encoding and decoding
standard for digital video. The encoding process relies
on lossy and lossless compression. Lossy compression
permanently eliminates information from a video based
on a human perception model. Humans are much bet-
ter at discerning changes in color intensity (luminance
information) than changes in hue (chrominance infor-
mation). Humans are also more sensitive to low fre-
quency image components, such as a blue sky, than to
high frequency image components, such as a plaid shirt.
Details which humans are likely to miss can be thrown
away without affecting the perceived video quality.

The encoder operates on a sequence of pictures.
Each picture is made from 16x16 groups of pixels
known as macroblocks. A macroblock is composed
from a series of blocks, which are 8x8 arrays of sub-
pixels (individual color components of a pixel). The
luminance information for a macroblock is a 2x2 array
of blocks, whereas the chrominance channels are down-
sampled because of human insensitivity to hue. The
type of downsampling in an MPEG-2 stream is known
as its chroma format. The most common chroma for-
mat is 4:2:0. It uses one block for each chrominance
channel, downsampling a macroblock from 16x16 to
8x8 subpixels. An alternate format is 4:2:2. It uses
two blocks for each chrominance channel, downsam-
pling each macroblock from 16x16 to 8x16 subpixels.

The compression in MPEG is achieved largely via
motion estimation, which detects and eliminates simi-
larities between macroblocks across pictures. For each
macroblock, the motion estimator calculates a motion
vector that represents the horizontal and vertical dis-
placement of that macroblock from a similar match-
ing macroblock-sized area in a reference picture. The
matching macroblock is removed (subtracted) from the
current picture on a pixel by pixel basis, and a mo-
tion vector is associated with the macroblock describ-
ing its displacement relative to the reference picture.
The result is a residual predictive-coded (P) picture.
It represents the difference between the current picture
and the reference picture. Reference pictures encoded
without the use of motion prediction are intra-coded
(I) pictures. In addition to forward motion prediction,
it is possible to encode new pictures using motion es-
timation from both previous and subsequent pictures.
Such pictures are bidirectionally predictive-coded (B)

pictures, and they exploit a greater amount of temporal
locality.

Each of the I, P, and B pictures then undergoes a
2-dimensional discrete cosine transform (DCT) which
separates the picture into parts with varying visual im-
portance. The input to the DCT is one block. The
output of the DCT is an 8x8 matrix of frequency coef-
ficients. The upper left corner of the matrix represents
low frequencies, whereas the lower right corner repre-
sents higher frequencies. The latter are often small and
can be neglected without sacrificing visual perception.
The DCT block coefficients are quantized to reduce the
number of bits needed to represent them.

Following quantization, many coefficients are effec-
tively reduced to zero. The DCT matrix is stored in a
run-length encoded format by emitting each non-zero
coefficient, the number of bits needed to represent that
coefficient, and the number of zero coefficients since the
last non-zero coefficient. The run-length encoder scans
the DCT matrix in a zig-zag order to consolidate the
zeros in the matrix.

The output of the run-length encoder, motion vec-
tors, picture type, and other picture and macroblock
metadata are Huffman coded to further reduce the av-
erage number of bits per data item. The compressed
stream is sent to the output device.

The decoder input stream is organized as a Group
of Pictures (GOP) which contains all the informa-
tion needed to reconstruct a video. The GOP con-
tains the three kinds of pictures produced by the en-
coder, namely I, P, and B pictures. I pictures as-
sist in scene cuts, random access, fast forwarding, or
fast reverse playback [19]. A typical I:P:B picture
ratio in a GOP is 1:3:8, and a typical picture pat-
tern is a repetition of the following logical sequence:
I1 B2 B3 P4 B5 B6 P7 B8 B9 P10 B11 B12 I13 where
the subscripts denote positions in the original video.
However, to simplify the decoder, the encoder re-
orders the pictures to produce the following pattern:
I1 P4 B2 B3 P7 B5 B6 P10 B8 B9 I13 B11 B12. Under
this configuration, if the decoder encounters a P pic-
ture, its motion prediction is with respect to the previ-
ously decoded I or P picture; if the decoder encounters
a B picture, its motion prediction is with respect to the
previously two decoded I or P pictures.

The decoding process is conceptually the reverse of
the encoding process. The input stream is Huffman and
run-length decoded, resulting in quantized DCT matri-
ces. The DCT coefficients are scaled in magnitude and
an inverse DCT (IDCT) is performed. Finally, the mo-
tion vectors parsed from the data stream are passed to
a motion compensator, which reconstructs the original
pictures.

int->int filter ZigZag(int N, int[N] Order) {
work pop N push N {

for (int i = 0; i < N; i++) {
int pixel = peek(Order[i]);
push(pixel);

}
for (int i = 0; i < N; i++) {

pop();
}

}
}

int[64] Order =
{00, 01, 05, 06, 14, 15, 27, 28,
02, 04, 07, 13, 16, 26, 29, 42,
03, 08, 12, 17, 25, 30, 41, 43,
09, 11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34, 37, 47, 50, 56, 59, 61,
35, 36, 48, 49, 57, 58, 62, 63};

Figure 1. Zig-zag descrambling filter.

3. StreamIt Programming Language

StreamIt [40] is an architecture independent lan-
guage that is designed for stream programming. In
StreamIt, programs are represented as graphs where
nodes represent computation and edges represent
FIFO-ordered communication of data over tapes. The
language features several novelties that are essential
for large scale program development. The language is
modular, parameterizable, malleable and architecture
independent. In addition, the language exposes the
inherent parallelism and communication patterns that
are prevalent in streaming programs.

3.1. Filters as Programmable Units

In StreamIt, the basic programmable unit is a filter.
Each filter has an independent address space. Thus,
all communication with other filters is via the input
and output channels, and occasionally via control mes-
sages (see Section 3.3). The main filter method is the
work function which represents a steady-state execu-
tion step. The work function pops (i.e., reads) items
from the filter input tape and pushes (i.e., writes) items
to the filter output tape. A filter may also peek at a
given index on its input tape without consuming the
item; this makes it simple to represent computation
over a sliding window or to perform permutations on
the input stream. The push, pop, and peek rates are
declared as part of the work function, thereby enabling
the compiler to apply various optimizations and con-
struct efficient execution schedules.

A filter is parameterizable, and this allows for
greater malleability and code reuse. An example fil-
ter is shown in Figure 1. This filter consumes a stream
whose elements are of type int and produces a stream

stream

stream

stream

stream

splitter

stream stream

joiner

joiner

stream

splitter

stream

(a) pipeline (b) splitjoin (c) feedback loop

Figure 2. Hierarchical streams in StreamIt.

of the same type. It implements the zig-zag descram-
bling necessary to reorder the input stream generated
by the run-length encoding of quantized DCT coeffi-
cients. Typically, the zig-zag scan operates on an 8x8
matrix. Each instantiation of a filter specifies the ma-
trix dimensions, as well as the desired ordering. In
MPEG, there are two possible scan orders. The Order
parameter defines the specific scan pattern that is de-
sired, as shown in Figure 1.

In this example, the input matrix is represented as
a unidimensional stream of elements. The filter peeks
the elements and copies them to the output stream
in the specified order. Once all the DCT coefficients
are copied, the input stream is deallocated from the
tape with a series of pops. It has been shown that
vector permutation instructions can be automatically
generated from this representation [31].

3.2. Hierarchical Streams

In StreamIt, the application developer focuses on
the hierarchical assembly of the stream graph and its
communication topology, rather than the explicit man-
agement of the data buffers between filters. StreamIt
provides three hierarchical structures for composing fil-
ters into larger stream graphs (see Figure 2).

Pipeline. A pipeline is a single input to single out-
put parameterized stream. It composes streams in se-
quence, with the output of one connected to the input
of the next. An example of a pipeline appears in Fig-
ure 3.

The add keyword in StreamIt constructs the speci-
fied stream using the input arguments. The add state-
ment may only appear in non-filter streams. In essence,
filters are the leaves in the hierarchical construction,
and composite nodes in the stream graph define the en-
capsulating containers. This allows for modular design
and development of large applications, thereby promot-
ing collaboration, increasing code reuse, and simplify-
ing debugging.

float->float pipeline IDCT_2D(int N) {
// perform N 1D-IDCTs in parallel in the X direction
add splitjoin {

split roundrobin(N);
for (int i = 0; i < N; i++)

add IDCT_1D(N);
join roundrobin(N);

}
// perform N 1D-IDCTs in parallel in the Y direction
add splitjoin {

split roundrobin(1);
for (int i = 0; i < N; i++)

add IDCT_1D(N);
join roundrobin(1);

}
}

float->float filter IDCT_1D(int N) {
float[N][N] coeff = { ... };

work pop N push N {
for (int x = 0; x < N; x++) {

float product = 0;
for (int u = 0; u < N; u++)

product += coeff[x][u] * peek(u);
push(product);

}
for (int x = 0; x < N; x++) pop();

}
}

Figure 3. Example pipeline and splitjoin.

Split-Join. The splitjoin construct distributes data
to a set of parallel streams, which are then joined to-
gether in a roundrobin fashion. In a splitjoin, the
splitter performs the data scattering, and the joiner
performs the gathering. A splitter is a specialized fil-
ter with a single input and multiple output channels.
On every execution step, it can distribute its output
to any one of its children in either a duplicate or a
roundrobin manner. A duplicate splitter (indicated
by split duplicate) replicates incoming data to each
stream connected to the splitter. A roundrobin split-
ter (indicated by split roundrobin(w1, . . . , wn)) dis-
tributes the first w1 items to the first child, the next
w2 items to the second child, and so on. The splitter
counterpart is the joiner. It gathers data from its pre-
decessors in a roundrobin manner to produce a single
output stream.

The splitjoin and pipeline constructs provide a con-
venient and natural way to represent parallel compu-
tation. An example is shown in Figure 3, which il-
lustrates a parallel implementation of the 2D inverse
DCT using 1D inverse DCTs. This implementation
is both data parallel (within the rows and columns)
and pipeline parallel (between the rows and columns).
A straightforward C implementation of a computation-
ally equivalent inverse DCT is shown in Figure 4. Note
that the code structure is similar to the StreamIt ver-
sion, although it does not explicitly expose the paral-
lelism. The C code also requires explicit array index

// global variable
float coeff[64] = { ... };

void IDCT_2D(float* block) {
int i, j, u;
float product;
float tmp[64];

// 1D DCT in X direction
for (i = 0; i < 8; i++)
for (j = 0; j < 8; j++) {

product = 0;

for (u = 0; u < 8; u++)
product += coeff[u][j] * block[8*i + u];

tmp[8*i + j] = product;
}

// 1D DCT in Y direction
for (j = 0; j < 8; j++)
for (i = 0; i < 8; i++) {

product = 0;

for (u = 0; u < 8; u++)
product += coeff[u][i] * tmp[8*u + j];

block[8*i + j] = product;
}

}

Figure 4. Example C code for 2D inverse DCT
calculation using two 1D transforms.

management, such as the expressions block[8*i+u]
and tmp[8*i+j] which are notably absent in the
StreamIt code. The splitter and joiner in StreamIt
free the programmer from tedious indexing operations,
which also enables the compiler to understand and op-
timize the buffer management [37]. The StreamIt im-
plementation is also parameterized such that it is triv-
ial to adjust the size of the inverse DCT.

Feedback Loop. StreamIt also provides a feedback
loop construct for introducing cycles in the graph. This
stream construct is not used in the decoder, but is use-
ful in other applications.

3.3. Teleport Messaging

A notoriously difficult aspect of stream program-
ming, from both a performance and programmability
standpoint, is reconciling regular streaming dataflow
with irregular control messages. While the high-
bandwidth flow of data is very predictable, realis-
tic applications such as MPEG also include unpre-
dictable, low-bandwidth control messages for adjusting
system parameters (e.g., desired precision in quantiza-
tion, type of picture, resolution, etc.).

For example, the inverse quantization step in the
decoder uses a lookup table that provides the inverse
quantization scaling factors. However, the particu-
lar scaling factor is determined by the stream parser.

Since the parsing and inverse quantization tasks are
logically decoupled, any pertinent information that the
parser discovers must be forwarded to the appropriate
streams. In StreamIt, such communication is conve-
niently accomplished using teleport messaging [41].

The idea behind teleport messaging is for the Parser
to change the quantization precision via an asyn-
chronous method call, where method invocations in
the target are timed relative to the flow of data in the
stream (i.e., macroblocks). As shown in Figure 5, the
InverseDCQuantizer declares a message handler that
adjusts its precision (lines 27-29). The Parser calls
this handler through a portal (line 16), which provides
a clean interface for messaging. The handler invoca-
tion includes a range of latencies [min:max] specifying
when the message should be delivered with respect to
the data produced by the sender.

Intuitively, the message semantics can be under-
stood as tags attached to data items. If the Parser
sends a message to a filter downstream (i.e., in the
same direction as dataflow) with a latency k, then, con-
ceptually, the filter tags the items that it outputs in k
iterations of its work function. If k = 0, the data pro-
duced in the current execution of the work function is
tagged. The tags propagate through the stream graph;
whenever a filter inputs an item that is tagged, all of
its subsequent outputs are also tagged. The message
flows through the graph until the first tagged data item
reaches the intended receiver, at which time the mes-
sage handler is invoked immediately before the execu-
tion of the work function in the receiver. In this sense,
the message has the semantics of traveling “with the
data” through the stream graph, even though it is not
necessarily implemented this way.

Teleport messaging avoids the muddling of data
streams with control-relevant information. Teleport
messaging thus separates the concerns of the program-
mer from the system implementation, thereby allowing
the compiler to deliver the message in the most ef-
ficient way for a given architecture. In addition, by
exposing the exact data dependences to the compiler,
filter executions can be reordered so long as they re-
spect the message timing. Such reordering is generally
impossible if control information is passed via global
variables. Teleport messaging also offers other pow-
erful control over timing and latency beyond what is
used in this example (in particular, the ability to send
messages opposite the direction of dataflow [41]).

4. MPEG Decoder in StreamIt

The MPEG decoder pipeline is shown in Figure 6.
The stream graph is shown on the left. The StreamIt

01 void->void MPEGDecoder {
02 ...
03 portal<InverseDCQuantizer> p;
04 ...
05 add Parser(p);
06 ...
07 add InverseDCQuantizer() to p;
08 ...
09 }

10 int->int filter Parser(portal<InverseDCQuantizer> p) {
11 work push * {
12 int precision;
13 ...
14 if (...) {
15 precision = pop();
16 p.setPrecision(precision) [0:0];
17 }
18 ...
19 }
20 }

21 int->int filter InverseDCQuantizer() {
22 int[4] scalingFactor = {8, 4, 2, 1};
23 int precision = 0;

24 work pop 1 push 1 {
25 push(scalingFactor[precision] * pop());
26 }

27 handler setPrecision(int new_precision) {
28 precision = new_precision;
29 }
30 }

Figure 5. Messaging example.

code is shown on the right, and it is correlated with
the stream block level diagram.

The computation is encapsulated in three main com-
ponents: the parser (line 8), the block and motion
vector decoder (lines 9-22), and the motion compen-
sator (lines 23-32). The parser is responsible for pars-
ing the MPEG-2 bit stream and performing Huffman
and variable run-length decoding (VLD). The output
of the VLD is an interleaved stream of quantized mac-
roblocks encoded in the frequency-domain, and offset-
encoded motion vectors. The VLD outputs N× B data
elements for each macroblock, followed by V data ele-
ments that encode its motion vector. The actual value
of N depends on the chroma format. In a 4:2:0 chroma
format, N = 6 since each macroblock consists of four
8x8 subpixel blocks for the luminance channel, and two
8x8 subpixel blocks for the two chrominance channels.
Therefore, the VLD outputs a total of six 8x8 blocks,
or 384 subpixels per macroblock. The I/O rate of the
parser varies with the compression ratio of the input
stream. The VLD filter is the only variable rate filter
in the decoder pipeline.

The VLD output is segregated into two homoge-
neous streams by a roundrobin splitter (line 10). The
first stream undergoes inverse transformations (lines
11-16), while the second is decoded to produce abso-
lute motion vectors (lines 17-20). As is evident from
the computation graph, the two streams are decoded in

parallel, and then merged (line 21) prior to the motion
compensation stage of the pipeline.

The inverse transformations map each 8x8 block
from the frequency domain back to the spatial domain.
Each block is reordered (line 12), and then inversely
quantized (line 13). This is followed by an inverse
DCT and a bounded saturation filter (lines 14-15). The
set of transformations is grouped into a pipeline whose
input and output types are automatically inferred by
the compiler. Each of the filters in this pipeline op-
erates on 8x8 blocks. The code that is shown does
not take advantage of data level parallelism between
blocks. It is rather straightforward however to expose
this parallelism if it is desirable. For example, in this
case a splitjoin can replicate the inverse transformation
pipeline N times:

add splitjoin {
split roundrobin(B);
for (int i = 0; i < N; i++)

// add pipeline
join roundrobin(B);

}

A stream-aware compiler can also automatically adjust
the execution granularity as necessary [17], since data-
parallel streams can be easily identified as those that
are stateless (i.e., do not carry mutable state from one
iteration to the next).

The third stage of the decoding pipeline performs
the motion compensation (lines 23-32) to recover pre-
dictively coded macroblocks. The motion compensa-
tion filter uses the motion vectors to find a correspond-
ing macroblock in a previously decoded reference pic-
ture. The reference macroblock is added to the current
macroblock to recover the original picture data. If the
current macroblock is part of an I or P picture, then the
decoder stores it for use as a future reference picture.

In the compensation stage, there are three parallel
streams. The first handles the luminance color channel
(Y), and the other two handle the chrominance chan-
nels (Cb and Cr). The roundrobin splitter (line 24) dis-
tributes the macroblocks according to the chroma for-
mat. Since the luminance channel is not downsampled
during the encoding process, the splitter dispatches
four 8x8 blocks at a time to the Y motion compensator.
The chrominance channels are typically downsampled
by a factor of 4, and hence one 8x8 block is streamed to
each of the Cb and Cr pipelines, which upsample (line
29) the results of the motion compensator to generate
16x16 macroblocks. The upsampling is a linear inter-
polation of the surrounding pixels. The joiner (line
31) assembles the pictures from each of the color chan-
nels, one pixel at a time. The output is then readied
for display (lines 33 and 34) by organizing the pictures
in accord with their temporal order, and performing
color space conversion to the RGB (red, green, blue)

color model. Note that these two filters each consume
3× W× H subpixels per picture. This is three times the
resolution of the decoded image since there is one pixel
generated from each of the three channel decoders. The
final output of the decoder is W×H pixels. In contrast to
the filters for motion compensation and inverse trans-
formation, whose I/O rates are statically resolved at
compile time, the picture reordering and color space
conversion have I/O rates that are parameterized on
initialization time constants, namely the resolution of
the pictures.

The decoder implementation was carried out by one
student programmer with no prior understanding of
MPEG. The development spanned eight weeks from
specification [19] to the first fully functional MPEG
decoder. The StreamIt code is nearly 3,165 lines of
code with 48 static streams. The stream parser is the
largest single filter, consisting of 775 lines of code. The
48 static streams compile to 2,150 instantiated filters1

at a picture resolution of 352x240. By way of com-
parison, the reference C implementation [43] is 6,835
lines of code2. A line count comparison is not an accu-
rate measure of programmability, since our StreamIt
decoder implements only a subset of several stream
types supported by MPEG. Our decoder does provide
full support for the range of different compression tech-
niques used within MPEG, but supports only a subset
of the possible display modes (i.e., interlaced versus
progressive output). However, these alternate display
formats represent minor conceptual changes and should
therefore affect small portions of the StreamIt code.
This is demonstrated in Section 5 with an example
that illustrates how to support multiple chrominance
formats.

The reference C implementation intermingles pars-
ing, decoding, and motion compensation, making it dif-
ficult to clearly follow the code, and hindering a bet-
ter comparison. The C code also relies on global vari-
ables to communicate values, such as quantization co-
efficients, from the parser to the relevant code regions.
In StreamIt, such communication is relegated to tele-
port messaging (lines 13, 25, 28, and 33, and illustrated
with dotted lines in Figure 6). For instance, the parser
(VLD) generates a message whenever the picture or
macroblock type changes. The motion compensation
filters receive this information via their dedicated por-
tal (line 28), determine how to process the current pic-
ture, and decide whether they need to store the picture
for future reference. Note however that while there are

1A static stream is a unique code block, which may have mul-
tiple instantiations. For instance, MotionCompensation() is a
single filter with three instantiations.

2Line counts were generated using the SLOCcount tool. It
strips whitespace and comments.

multiple motion compensators subscribed to the same
portal, they each receive messages with respect to their
local execution. The picture reordering filter receives
a similar message (via portal on line 33), and uses the
information to determine the correct temporal order
of pictures. The inverse transformation pipeline lis-
tens to its portal (line 13) to determine the algebraic
manipulation required to perform the inverse quanti-
zation of the input macroblock. Teleport messaging
exposes the flow of messages to the compiler, and al-
lows for large scale reordering or parallelization of the
application without a heroic dependence analysis. It
also provides a mechanism to easily introduce dynamic
behavior into an otherwise static processing pipeline.

In StreamIt, all of the processing is encapsulated
hierarchically into single-input, single-output streams
with well-defined modular interfaces. This facilitates
development and boosts programmer productivity, as
components can be debugged and verified as stan-
dalone components. The modularity also promotes
reuse. For example, the zig-zag descrambler and in-
verse DCT can be used as-is in a JPEG decoder.

Picture Reorder

joiner

joiner

IDCT

IQuantization

splitter

splitter

VLD

macroblocks, motion vectors

frequency encoded
macroblocks

differentially coded
motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

output to player

MPEG bit stream

Zig Zag

Saturation

Channel Upsample Channel Upsample

Color Space Conversion

Motion Vector Decode

Y Cb Cr

quantization coefficients

picture type

<PT1, PT2>

<QC>

<QC>

reference

picture

Motion Compensation

<PT1> reference

picture

Motion Compensation

<PT1>reference

picture

Motion Compensation

<PT1>

<PT2>

Repeat

1 bit->int pipeline MPEG Decoder(int W, int H) {
// W, H represent picture resolution in pixels

2 int B = 8 8; // block size in pixels
3 int V = 8; // motion vector size
4 int N = 6; // blocks per macroblock

// (4:2:0 format)

5 portal<IQuantization> QC;
6 portal<MotionCompensation> PT1;
7 portal<PictureReorder> PT2;

8 add VLD(QC, PT1, PT2);

9 add splitjoin {

10 split roundrobin(N B, V);

11 add pipeline {
12 add ZigZag(B);
13 add IQuantization(B) to QC;
14 add IDCT(B);
15 add Saturation(B);
16 }
17 add pipeline {
18 add MotionVectorDecode();
19 add Repeat(V, N);
20 }

21 join roundrobin(B, V);
22 }

23 add splitjoin {
24 split roundrobin(4 (B+V), B+V, B+V);

25 add MotionCompensation(4 (B+V)) to PT1;
26 for (int i = 0; i < 2; i++) {
27 add pipeline {
28 add MotionCompensation(B+V) to PT1;
29 add ChannelUpsample(B);
30 }
31 }

31 join roundrobin(1, 1, 1);

32 }

33 add PictureReorder(3 W H) to PT2;

34 add ColorSpaceConversion(3 W H);

35 }

Figure 6. Block diagram of MPEG-2 decoder and corresponding StreamIt code.

5. Code Malleability: A Case Study

A noteworthy aspect of the StreamIt implementa-
tion is its malleability. We illustrate this by outlining
how the decoder implementation is modified to support
both 4:2:0 and 4:2:2 chroma formats. MPEG-2 streams
are typically encoded using the former, which achieves
a 50% reduction in the number of blocks required to
represent a video. A higher sampling rate retains more
color information from the original picture, and results
in better overall quality.

The conceptual difference between chroma formats
is merely a change in downsampling ratio. The change
affects the data I/O rates, and the ratios of data
between color channels. In the C reference code,
the change requires adjustments to buffer sizes, array
lengths, array indices, loop bounds, and various pointer
offsets. The reference implementation uses a chroma

01 /* Y */
02 form_component_prediction(src[0]+(sfield?lx2>>1:0),dst[0]+(dfield?lx2>>1:0),
03 lx,lx2,w,h,x,y,dx,dy,average_flag);
04 if (chroma_format!=CHROMA444) {
05 lx>>=1; lx2>>=1; w>>=1; x>>=1; dx/=2;
06 }
07 if (chroma_format==CHROMA420) {
08 h>>=1; y>>=1; dy/=2;
09 }
10 /* Cb */
11 form_component_prediction(src[1]+(sfield?lx2>>1:0),dst[1]+(dfield?lx2>>1:0),
12 lx,lx2,w,h,x,y,dx,dy,average_flag);
13 /* Cr */
14 form_component_prediction(src[2]+(sfield?lx2>>1:0),dst[2]+(dfield?lx2>>1:0),
15 lx,lx2,w,h,x,y,dx,dy,average_flag);

// C = blocks per chroma channel per macroblock
// C = 1 for 4:2:0, C = 2 for 4:2:2
add splitjoin {

split roundrobin(4*(B+V), 2*C*(B+V));
add MotionCompensation() to PT1;
add splitjoin {

split roundrobin(B+V, B+V);
for (int i = 0; i < 2; i++) {

add MotionCompensation(B+V) to PT1;
add ChannelUpsample(C*B);

}
join roundrobin(1, 1);

}
join roundrobin(1, 1, 1);

}

Figure 7. C (left) and StreamIt (right) code excerpts for handling 4:2:0 and 4:2:2 chroma formats.

flag to dictate control flow and alternate index/offset
calculations in 43 locations in the code. As an ex-
ample, Figure 7 shows a code fragment from the
form prediction routine in recon.c [43]. The func-
tion calls a subroutine to perform the motion compen-
sation on each of the three color channels, passing in
array offsets to a global array holding the data. Lines
4-6 adjust values used for address calculations to han-
dle the 4:2:2 and 4:2:0 chroma formats, and lines 7-
9 provide additional adjustments for the 4:2:0 format.
While these offset adjustments are necessary in C, they
are difficult for programmers and make the code hard
to understand.

In StreamIt, we modified 31 lines and added 20 new
lines to support the 4:2:2 format. Of the 31 modified
lines, 23 were trivial changes to introduce the chroma
format as a stream parameter. The greatest substan-
tial change was to the color channel splitter, previously
illustrated on line 24 of Figure 6. In the case of a 4:2:2
sampling rate, the chrominance data, as they appear
on the input tape, alternate between each of the two
chrominance channels. That is, the pattern of blocks is
Y1Y2Y3Y4Cb5Cr6Cb7Cr8 (the pattern for the 4:2:0 case
omits the last two blocks). Thus, a nested splitjoin
is used to properly recover the chrominance channels.
The new splitjoin is shown in the right half of Figure 7.
In the StreamIt code, the chroma format explicitly dic-
tates control flow in only 9 locations. Of course, the
scheduling and buffer management changes dramati-
cally between chroma formats, but this is transparent
to the programmer.

6. Related Work

Video codecs have been a longtime focus of the em-
bedded and high-performance computing communities.
We consider related work in modeling environments,
stream languages and parallel computing.

There have been many efforts to develop expres-
sive and efficient models of computation for use in
rapid prototyping environments such as Ptolemy [28],

GRAPE-II [26], and COSSAP [24]. The Synchronous
Dataflow model (SDF) represents computation as an
independent set of actors that communicate at fixed
rates [27]. StreamIt leverages the SDF model of com-
putation, though also supports dynamic communica-
tion rates and out-of-band control messages. There
are other extensions to SDF that provide similar dy-
namic constructs. Synchronous Piggybacked Dataflow
(SPDF) supports control messages in the form of a
global state table with well-timed reads and writes [33,
34]. SPDF is evaluated using MP3 decoding, and
would also be effective for MPEG-2 decoding. How-
ever, control messages in StreamIt are more expressive
than SPDF, as they allow messages to travel upstream
(opposite the direction of dataflow), with adjustable la-
tency, and with more fine-grained delivery (i.e., allow-
ing multiple execution phases per actor and multiple
messages per phase). Moreover, our focus is on provid-
ing a high-level programming abstraction rather than
an underlying model of computation.

Ko and Bhattacharyya also extend SDF with the
dynamism needed for MPEG-2 encoding; they use
“blocked dataflow” to reconfigure sub-graphs based
on parameters embedded in the data stream [23]
and a “dynamic graph topology” to extend compile-
time scheduling optimizations to each runtime possibil-
ity [22]. Neuendorffer and Lee also extend SDF to sup-
port hierarchical parameter reconfiguration, subject to
semantic constraints [32]. Unlike our description of
control messages, these models allow reconfiguration
of filter I/O rates and thus require alternate or param-
eterized schedules. MPEG-2 encoding has also been
expressed in formalisms such as Petri nets [42] and pro-
cess algebras [36].

There are a number of stream-oriented languages
besides StreamIt, drawing from functional, dataflow,
CSP and synchronous programming styles [39]. Syn-
chronous languages which target embedded applica-
tions include Esterel [7], Lustre [18], Signal [16], Lu-
cid [5], and Lucid Synchrone [9]. Additional lan-
guages of recent interest are Cg [30], Brook [8], Spi-

dle [10], StreamC/KernelC [21], Occam[11], Parallel
Haskell [4] and Sisal [15]. The primary differences be-
tween StreamIt and these languages are (i) StreamIt
supports (but is no longer limited to) the Synchronous
Dataflow [27] model of computation, (ii) StreamIt of-
fers a “peek” construct that inspects an item without
consuming it from the channel, (iii) the single-input,
single-output hierarchical structure that StreamIt im-
poses on the stream graph, and (iv) the teleport mes-
saging feature for out-of-band communication.

Many researchers have developed both hardware
and software schemes for parallel video compression;
see Ahmad et al. [3] and Shen et al. [38] for re-
views. We focus on programming models used to
implement MPEG on general-purpose hardware. As-
sayad et al. present a syntax of parallel tasks, forall
loops, and dependence annotations for exposing fine-
grained parallelism in an MPEG-4 encoder [6]. A se-
ries of loop transformations (currently done by hand)
lowers the representation to an MPI program for an
SMP target. The system allows parallel components
to communicate some values through shared mem-
ory, with execution constraints specified by the pro-
grammer. In comparison, StreamIt adopts a pure
dataflow model with a focus on making the program-
ming model as simple as possible. Another program-
ming model is the Y-Chart Applications Programmers
Interface (YAPI) [13], which is a C++ runtime library
extending Kahn process networks with flexible chan-
nel selection. Researchers have used YAPI to lever-
age programmer-extracted parallelism in JPEG [12]
and MPEG-2 [14]. Other high-performance program-
ming models for MPEG-2 include manual conversion of
C/C++ to SystemC [35], manual conversion to POSIX
threads [29], and custom mappings to multiproces-
sors [2, 20]. Our focus again lies on the programma-
bility: StreamIt provides an architecture-independent
representation that is natural for the programmer while
exposing pipeline and data parallelism to the compiler.

7. Concluding Remarks

In this paper we described our MPEG-2 codec im-
plementation as it was developed using the StreamIt
programming language. Our MPEG-2 decoder was de-
veloped in eight weeks by a single student program-
mer with no prior MPEG knowledge. We showed how
the implementation is malleable by describing how the
decoder is modified to support two different chromi-
nance sampling rates. In addition, we showed that the
StreamIt language is a good match for representing the
MPEG stream flow because there is a direct correla-
tion between the block level diagram describing the
flow of data between computation elements and the

application syntax. Furthermore, we illustrated that
teleport messaging, which allows for out-of-band com-
munication of control parameters, allows the decoder
to decouple the regular flow of data from the irreg-
ular communication of parameters (e.g., quantization
coefficients). This in turns leads to a cleaner imple-
mentation that is easier to maintain and evolve with
changing software specifications.

As computer architectures change from the tradi-
tional monolithic processors, to scalable wire-exposed
and multi-core processors, there will be a greater need
for portable codec implementations that expose paral-
lelism and communication to enable efficient and high
performance executions—while also boosting program-
mer productivity. StreamIt represents a step toward
this end by providing a language that features hierar-
chical, modular, malleable, and portable streams.

Acknowledgements

We are very grateful to the entire StreamIt team for
their hard work and insightful comments. Allyn Di-
mock, Michael Gordon, Janis Sermulins, and especially
William Thies, contributed immensely to the StreamIt
infrastructure to enable this paper. We also thank the
anonymous reviewers for their helpful suggestions. The
StreamIt project is supported by DARPA grants PCA-
F29601-03-2-0065 and HPCA/PERCS-W0133890, and
NSF awards CNS-0305453 and EIA-0071841.

References

[1] S. Agrawal, W. Thies, and S. Amarasinghe. Optimiz-
ing stream programs using linear state space analysis.
In CASES, 2005.

[2] I. Ahmad, S. M. Akramullah, M. L. Liou, and
M. Kafeel. A Scalable Off-line MPEG-2 Video Encod-
ing Scheme using a Multiprocessor System. Parallel
Computing, 27, 2001.

[3] I. Ahmad, Y. He, and M. L. Liou. Video compression
with parallel processing. Parallel Computing, 28, 2002.

[4] S. Aidtya, Arvind, L. Augustsson, J. Maessen, and
R. S. Nikhil. Semantics of pH: A parallel dialect of
Haskell. In Haskell Workshop, 1995.

[5] E. Ashcroft and W. Wadge. Lucid, a non procedural
language with iteration. C. ACM, 20(7), 1977.

[6] I. Assayad, P. Gerner, S. Yovine, and V. Bertin. Mod-
elling, Analysis and Parallel Implementation of an On-
line Video Encoder. In 1st Int. Conf. on Distributed
Frameworks for Multimedia Applications, 2005.

[7] G. Berry and G. Gonthier. The Esterel Synchronous
Programming Language: Design, Semantics, Imple-
mentation. Sci. of Comp. Programming, 19(2), 1992.

[8] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fata-
halian, M. Houston, and P. Hanrahan. Brook for
GPUs: Stream Computing on Graphics Hardware. In
SIGGRAPH, 2004.

[9] P. Caspi and M. Pouzet. Lucid Synchrone distribution.
http://www-spi.lip6.fr/lucid-synchrone/.

[10] C. Consel, H. Hamdi, L. Rveillre, L. Singaravelu,
H. Yu, and C. Pu. Spidle: A DSL Approach to Spec-
ifying Streaming Application. In 2nd Int. Conf. on
Generative Prog. and Component Engineering, 2003.

[11] I. Corporation. Occam 2 Reference Manual. Prentice
Hall, 1988.

[12] E. de Kock. Multiprocessor Mapping of Process Net-
works: A JPEG Decoding Case Study. In 15th Int.
Symp. on System Synthesis, 2002.

[13] E. de Kock, G. Essink, W. Smits, P. van der Wolf,
J. Brunel, W. Kruijtzer, P. Lieverse, and K. Vis-
sers. YAPI: Application Modeling for Signal Process-
ing Systems. In Conf. on Design Automation, 2000.

[14] B. K. Dwivedi, J. Hoogerbrugge, P. Stravers, and
M. Balakrishnan. Exploring design space of parallel
realizations: MPEG-2 decoder case study. In 9th Int.
Symp. on Hardware/Software Codesign, 2001.

[15] J. Gaudiot, W. Bohm, T. DeBoni, J. Feo, and P. Mille.
The Sisal Model of Functional Programming and its
Implementation. In 2nd Aizu Int. Symposium on Par-
allel Algorithms/Architecture Synthesis, 1997.

[16] T. Gautier, P. L. Guernic, and L. Besnard. Signal: A
declarative language for synchronous programming of
real-time systems. Springer Verlag LNCS, 274, 1987.

[17] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S.
Meli, C. Leger, A. A. Lamb, J. Wong, H. Hoffman,
D. Z. Maze, and S. Amarasinghe. A Stream Compiler
for Communication-Exposed Architectures. In ASP-
LOS, 2002.

[18] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data flow language LUSTRE. Proc.
of the IEEE, 79(1), 1991.

[19] ISO/IEC 11172: Information technology — Coding of
moving pictures and associated audio for digital stor-
age media at up to about 1.5 Mbit/s. International
Organization for Standardization, 1999.

[20] E. Iwata and K. Olukotun. Exploiting coarse-grain
parallelism in the MPEG-2 algorithm. Technical Re-
port CSL-TR-98-771, Stanford University, 1998.

[21] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H.
Ahn, P. Mattson, and J. D. Owens. Programmable
stream processors. IEEE Computer, 2003.

[22] D.-I. Ko and S. S. Bhattacharyya. Dynamic Config-
uration of Dataflow Graph Topology for DSP System
Design. In ICASSP, 2005.

[23] D.-I. Ko and S. S. Bhattacharyya. Modeling of Block-
Based DSP Systems. Journal of VLSI Signal Process-
ing, 40(3), 2005.

[24] J. Kunkel. COSSAP: A stream driven simulator.
In Int. Workshop on Microelectronics in Communi-
cations, 1991.

[25] A. A. Lamb, W. Thies, and S. Amarasinghe. Linear
Analysis and Optimization of Stream Programs. In
PLDI, 2003.

[26] R. Lauwereins, M. Engels, M. Adé, and J. Peper-
straete. Grape-II: A System-Level Prototyping En-
vironment for DSP Applications. IEEE Computer,
28(2), 1995.

[27] E. Lee and D. Messershmitt. Static Scheduling of Syn-
chronous Data Flow Programs for Digital Signal Pro-
cessing. IEEE Trans. on Computers, C-36(1), 1987.

[28] E. A. Lee. Overview of the Ptolemy Project. Technical
report, UCB/ERL M03/25, UC Berkeley, 2003.

[29] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and
E. Debes. The ALPBench Benchmark Suite for Com-
plex Multimedia Applications. In IEEE Int. Symp. on
Workload Characterization, 2005.

[30] W. R. Mark, R. S. Glanville, K. Akeley, and M. J.
Kilgard. Cg: A System for Programming Graphics
Hardware in a C-like Language. In SIGGRAPH, 2003.

[31] M. Narayanan and K. A. Yelick. Generating permu-
tation instructions from a high-level description. In
Workshop on Media and Streaming Processors, 2004.

[32] S. Neuendorffer and E. Lee. Hierarchical Reconfigu-
ration of Dataflow Models. In Conference on Formal
Methods and Models for Codesign, 2004.

[33] C. Park, J. Chung, and S. Ha. Efficient Dataflow
Representation of MPEG-1 Audio (Layer III) Decoder
Algorithm with Controlled Global States. In IEEE
Workshop on Signal Processing Systems, 1999.

[34] C. Park, J. Jung, and S. Ha. Extended Synchronous
Dataflow for Efficient DSP System Prototyping. De-
sign Automation for Embedded Systems, 6(3), 2002.

[35] N. Pazos, P. Ienne, Y. Leblebici, and A. Maxiaguine.
Parallel Modelling Paradigm in Multimedia Applica-
tions: Mapping and Scheduling onto a Multi-Processor
System-on-Chip Platform. In Int. Global Signal Pro-
cessing Conference, 2004.

[36] F. L. Pelayo, F. Cuartero, V. Valero, D. Cazorla, and
T. Olivares. Specification and Performance of the
MPEG-2 Video Encoder by Using the Stochastic Pro-
cess Algebra: ROSA. In 17th UK Performance Eval-
uation Workshop, 2001.

[37] J. Sermulins, W. Thies, R. Rabbah, and S. Amaras-
inghe. Cache Aware Optimization of Stream Pro-
grams. In LCTES, 2005.

[38] K. Shen, G. Cook, L. Jamieson, and E. Delp. Overview
of parallel processing approaches to image and video
compression. In SPIE Conference on Image and Video
Compression, 1994.

[39] R. Stephens. A Survey of Stream Processing. Acta
Informatica, 34(7), 1997.

[40] W. Thies, M. Karczmarek, and S. Amarasinghe.
StreamIt: A Language for Streaming Applications. In
Int. Conf. on Compiler Construction, 2002.

[41] W. Thies, M. Karczmarek, J. Sermulins, R. Rab-
bah, and S. Amarasinghe. Teleport messaging for dis-
tributed stream programs. In PPoPP, 2005.

[42] V. Valero, F. L. Pelayo, F. Cuartero, and D. Cazorla.
Specification and Analysis of the MPEG-2 Video En-
coder with Timed-Arc Petri Nets. Electronic Notes in
Theoretical Computer Science, 66(2), 2002.

[43] VMPEG (Reference C Code). ftp://ftp.mpegtv.
com/pub/mpeg/mssg/mpeg2vidcodec v12.tar.gz.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

