
Evaluation of UDDI as a Provider of Resource Discovery

Services for OGSA-based Grids

Edward Benson, Glenn Wasson, Marty Humphrey
{ mah2h@virginia.edu | wasson@virginia.edu | humphrey@cs.virginia.edu }

Computer Science Department, University of Virginia, Charlottesville, VA 22904

Abstract
Grid computing involves networks of heterogeneous
resources working in collaboration to solve problems that
cannot be addressed by the resources of any one
organization. A pervasive problem for Grid users is how
best to discover the resources they need given dynamic
Grid environments. UDDI, the Universal Description,
Discovery and Integration framework, is an OASIS
standard for publishing and querying discovery
information for Web services, which to date, has received
surprisingly little analysis as a discovery mechanism for
Web service-based Grids, e.g. those based on the Open
Grid Services Architecture (OGSA). This work identifies
issues that must be addressed in order to make UDDI
meet the requirements of OGSA discovery. We examine
the performance implications of these issues using a
freely available implementation of UDDI version 2.
Based on our experimental results, we conclude that
UDDI can be used for OGSA discovery, but the cost may
be prohibitive for large Grids.

1. Introduction

While Grid computing technology offers the ability to
connect large, diverse groups of widely distributed
resources to address complex problems, these same issues
of scale and geographic distribution require a
sophisticated mechanism by which Grid users can find
available resources that meet their requirements. Often,
users will not know the exact names of the resources they
wish to use, but will instead know only the abstract
properties that those resources must possess. The
discovery problem then, is the problem of how to map a
user’s requirements to a set of resources that meet those
requirements.
This material is based upon work supported by the National Science

Foundation under Grant No. 0203960, Grant No. 0426972, and Grant
No. 0438263. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the National Science
Foundation.

While several solutions for this discovery problem have
been used, e.g. LDAP [12] or MDS [4], as Grid
computing moves toward a Web services-based substrate,
such as Grids based on the Open Grid Services
Architecture (OGSA [5]), it make sense to evaluate the
Web service world’s standard mechanism for discovery,
UDDI [3][10]. UDDI, the Universal Description,
Discovery and Integration framework provides a means
of publishing and organizing information about resources
and subsequently querying that information to “discover”
resources based on client-specified information.

Simply, the widely-accepted approach of next-
generation Grids is to utilize tooling and run-time systems
provided by commercial vendors (e.g., Microsoft, Sun,
IBM) and open-source projects (e.g., Apache) for
service/client development and inter-service
communication; the potential value of UDDI is, by
utilizing UDDI, next-generation Grids could similarly
leverage this existing/emerging broader support for
discovery. For example, just as Visual Studio.NET
(VS.NET) has an "Add Web Reference" that easily
generates proxies to existing Web services via WSDL
retrieval and processing, VS.NET also has integrated
processing of UDDI registries. However, to date, Web
service-based Grids, such as those based on the emerging
Open Grid Services Architecture (OGSA), have not
utilized UDDI as a discovery mechanism and it remains
an open question whether UDDI is appropriate for this
task, as there have been surprisingly few published
studies on the utility of UDDI for Grids.

The questions identified and addressed by this paper
are:

• What are the issues involved in using UDDI as a
resource discovery mechanism for OGSA-based
Grids?

• If UDDI does not “natively” meet the
requirements of OGSA, what modifications are
necessary/sufficient to overcome these
limitations?

• What are the performance implications of these
modifications?

1-4244-0054-6/06/$20.00 ©2006 IEEE

We examine these issues by using a freely available
implementation ("jUDDI" [9]) of the most-widely-
utilized version of the UDDI standard, which is version 2
(v2). We focus on Version 2 of the UDDI OASIS
standard because it is the dominant implementation
available today and for the foreseeable future, both
commercially and in open-source projects. Based on our
experimental results, we conclude that UDDI can be used
for OGSA discovery, but the cost may be prohibitive for
large Grids.

The remainder of this paper is organized as follows.
Section 2 describes the discovery requirements of OGSA-
based Grids and section 3 describes the UDDI protocol
and information infrastructure. Section 4 discusses the
issues in using UDDI for Grids and proposes solutions for
these issues. Section 5 evaluates the performance of those
solutions and therefore quantifies the “cost” of UDDI.
Section 6 discusses related work in resource discovery
and Section 7 provides our analysis and recommendations
about using UDDI based on our experience. We also
discuss how changes made to the latest version of the
UDDI specification may make it more suitable for
discovery in Grids, although not without limitations.

2. Resource Discovery in OGSA-based

Grids

The Open Grid Services Architecture (OGSA)
represents a new vision of computing that merges the
worlds of Grid computing and Web services. The OGSA
working group [11] of the Global Grid Forum [6] has
defined a standard set of roles that a set of services must
fill in order to perform canonical Grid tasks. This paper
focuses on two of those roles related to resource
discovery, the Candidate Set Generator (CSG) and the
Information Service (IS).

The Information Service component of OGSA
maintains a catalogue of dynamically varying information
about resources in the Grid. It can be queried by various
components of the architecture to discover resources
appropriate to a given task. One of the primary users of
the Information Service is the Candidate Set Generator.
The CSG uses data stored in IS to generate candidate lists
of resources with the functional properties required for a
given operation. For example, the CSG may be used to
discover machines with the correct architecture to execute
a binary or storage resources that support GridFTP
transfers. However, the IS also maintains information
useful for selection of resources based on non-functional
properties, such as load or available memory. It can be
used (by a scheduler) in conjunction with the CSG’s
output to select the “best” candidate.

3. UDDI: Design and Use

UDDI is an OASIS standard protocol that defines a

“standard method of publishing and discovering network-

based software components in a Service Oriented

Architecture (SOA)” [10].

UDDI provides its functionality through four principle
entities: the businessEntity, businessService, tModel, and
the bindingTemplate. The businessEntity is the largest
container within UDDI. It contains information about any
organizational unit which publishes services for
consumption. The designers of UDDI envisioned
businessEntities as being UDDI representations of actual
businesses that choose to offer services over the Internet
[capitalize?]. In the Grid context, businessEntities can be
used to hierarchically separate and form relationships
between different organizational groups within a Grid or
multiple Grids.

Each service that a businessEntity offers is described
by a businessService object. These objects provide
information about the service name, categorization, and
any other useful details added in a variety of attribute
lists. The information is purely descriptive and does not
include any instructions for accessing or using the
service.

The bindingTemplate object represents the link
between abstract businessService descriptions and actual
endpoints at which these services may be accessed. Like
all objects in UDDI, bindingTemplates are given
universally unique identifiers, known as UUIDs, which
are used as a key of reference. Each businessService
object stores the UUID keys of bindingTemplates within
the same businessEntity that provide instances of that
service.

BindingTemplates may provide specialized
information about a particular businessService endpoint
through use of tModels. The tModel is the standard way
to describe specific details about a particular
businessService or bindingTemplate in UDDI. tModels
contain lists of key-value pairs used for description and
may be associated with multiple objects in the UDDI
database. They may also contain placeholders for URIs
which point to descriptive information external to the
UDDI registry.

4. Issues in Using UDDI for OGSA

Discovery

UDDI was designed as a business directory system and

has some limitations that complicate resource discovery

in Grid computing. Namely, these are 1) a lack of explicit

data typing for information in the UDDI directory, 2)

difficulties in handling dynamic information (such as

CPU load) that requires frequent updating and 3) the

limits of the UDDI query model. This section addresses

each of these limitations in turn and proposes work-

around solutions.

4.1 Lack of Explicit Data Typing

The ability to associate data types with resource
metadata is fundamental for resource discovery in Grid
environments. Data typing allows not only more strict
matching of resource information with resource
requirements, but allows a more diverse variety of
comparison operations, e.g. greater or less than, than
simple equivalence for untyped values.

While UDDI contains many complex data types, such
as the businessEntity and the tModel, it maintains little
notion of type for the data contained within these objects.
The tModel structure, for instance, is the fundamental
container of metadata that can be attached to an object
within UDDI. tModels contain two collections into which
metadata can be placed – the identifierBag and the
categoryBag – each containing zero or more
keyedReference objects. Each keyedReference object is
essentially a key-value pair in which both the key and the
value must be strings. An example keyedReference is
shown in Figure 1.

Figure 1. Example UDDI keyedReference Object

String values are appropriate in the business world for
which UDDI was designed. In that context, categorization
of products and services (through discrete string values)
is the common use case. However, Grid environments
and the scientific community require classifiers based on
continuous variables, and so the string-only
keyedReference pairs hinder UDDI’s ability to provide a
search model capable of fulfilling the basic queries of
Grid users, such as performance-based resource selection.

To include the types of continuous variables, such as
system load and memory size, as meaningfully searchable
items within a UDDI registry, these variables must be
flattened into enumerated sets of predefined buckets into
which the data will be placed. System load, for example,
might be described with a classification scheme in which
machines are associated with an element of the set { [0-
0.5], [0.5-1.0], … ,[9.5-10.0], [10+] }.

This unavoidable approach has several drawbacks. First
is the reduced specificity with which users will be able to
search for services on the Grid. In many cases Grid
administrators will want to define their enumerated sets
with unevenly spaced buckets to give a higher resolution

to the possible ranges that are more important for
performance. Such non-standard enumerations also
complicate searching because all clients must know the
range breakdowns in order to formulate their queries.

Finally, range-based searches are complicated by this
method. A user query specifying a system load less than
2, for example, would have to be translated into a query
with a series of “OR” statements encompassing all
buckets between [0-0.5] and [1.5-2.0]. Support for range
queries adds the requirement that the process which
translates from continuous variables to “OR” clauses
understand the ordering of buckets in the range
enumeration.

UDDI provides support for wildcard-based searching
similar to that offered in SQL queries. Users have the
option of single-character wildcards with the ‘_’ character
and multiple character wildcards with the ‘%’ character.
Using these two operators and the method of using
ordered sets to replace continuous variables, we can
potentially generate simpler queries by mapping the
names of the range sets to appropriate strings. For
example, suppose machine memory size is represented by
one of the following ranges, { [0-255], [256-512], [513-
1024], [1025-2048], [2048+] }. We can perform queries
of the form “find me a machine with X amount of
memory or more” by storing not the textual
representation of the range in which the machine’s
memory falls, e.g. [513-1024], but rather a string
representation of the index of the range within the range
set. So, if a machine’s memory fell in the [513-1024]
range, we would store a string like “AAABB”, where the
number of A’s indicates the index of the desired range (in
this case, it is the third in the range set). B’s are then used
to fill out the string until it has as many characters as
there are possible ranges (in this case 5). Such a
formulation allows wildcard queries like “AAA%” to find
any machine that has a memory size of 513 MB or more.

This enumeration-based scheme with wildcard
extensions does not make up for UDDI’s inability to
handle typed data, but it does allow UDDI to provide an
approximation of the metric-based searching that the Grid
community expects from a resource discovery service.

4.2 Dynamic Service Data

UDDI is targeted at not just Web services discovery
but also a broad array of uses including everything from
industry directories to product information databases. One
attribute in common with all of the intended uses of
UDDI is relatively static data. Perhaps because of this
assumption, UDDI has no built-in notion of dynamic
service information or any other mechanisms in which the
context of stored data changes over time.

The implications of this inability to the Grid
community are quite large. This makes it difficult for

<keyedReference

tModelKey="uddi:cs.virginia.edu:sampleKRef"
 keyName="SOME_ATTRIBUTE"

keyValue="364.3"
/>

UDDI to make available such important time varying
information as CPU load. However, potentially more
serious is the inability to represent transient resources.
While some Grids could consist of dedicated machines
running in a tightly-managed environment, many Grids
leverage the ability to draw resources from home, work,
and other “dual-use” computers which are not full-time
available to the Grid. In this type of environment it must
be assumed that the availability of resources is not only
unpredictable, but also that this unpredictability will put
the burden of maintaining up-to-date availability
information in the resource discovery service. In other
words, resource providers can not be expected to remove
appropriate serviceBinding records from a UDDI registry
when the associated resources become unavailable.

This “dangling bindings” problem can hinder the
performance of a Grid environment as it stands to clutter
an accurate registry of resource information with false
records. As the number of resources in a Grid grows, the
likelihood that service discovery attempts will return
dangling bindings increases.

As a work around to this problem, resource providers
may send a periodic “heartbeat” update message to the
UDDI server at defined intervals. This update message
will refresh a lastUpdateTime field inside a tModel that is
associated with all bindingTemplates in UDDI owned by
that resource provider. Because of UDDI’s lack of
support for data typing (and hence queries such as
“updates more recent than X”), the last update time must
be represented as an interval rather than a string
representation of a literal timestamp. While fortunately
this approach does not require that all clocks in the Grid
be synchronized (a daunting task), it does require that the
background heartbeat process be able to apply a
transformation that converts the sender’s local time into
one that matches the global time intervals used by the
UDDI registry (and hence recognized across the Grid).

Assuming this approach, Grid users can avoid
receiving candidate sets of resources that contain stale or
unavailable resources by including a filter in the query
requiring only machines that have a lastUpdateTime
equal to the current (and possibly previous) time interval.
Including the previous time interval trades the possibility
of erroneously receiving recently disconnected machines
for the assurance that one is searching the whole pool of
providers, not just those that have chosen to update
during the portion of the current time interval prior to the
search.

Following this practice, the probability of a stale result
within a candidate set is measurable. At any query time s
local to the beginning of an update interval of length t, the
probability of picking a machine that is no longer

available is t − s

t
p , where p is the probability that a

given machine will abruptly disconnect from the Grid,

with all machines on the Grid choosing to send updates at
an even distribution across the entire update interval. This
equation makes the simplifying assumption that machines
disconnect only during update intervals in which they did
not and will not send an update.

The specification for UDDI version 3 does not
incorporate any way to provide the updating framework
needed to replace the practice suggested here, but this
paper demonstrates a method of achieving the same
capability with a measurable amount of error. After
deploying and observing a Grid using UDDI,
administrators can take advantage of the measurability of
this type of error to optimize the update interval length.

4.3 Search Model

For UDDI to be successful as a resource discovery
service in Grid environments, it must be able to respond
to requests such as “find a resource that can perform task
X on a machine with properties W, Y, and Z with
guarantees A and B.” To date, the only available
implementations of UDDI conform to version 2 of the
specification and so this section discusses that version
(subtle, but important differences exist in the discovery
models of version 2 and version 3 and these are discussed
in section 6).

Ideally, a host offering resources to a Grid should be
able to publish a series of bindingTemplates to UDDI,
each of which represent the endpoint of a particular Web
service being offered at that host. Each bindingTemplate
would then contain the UUID key of a tModel maintained
by that host which contains both dynamic and static
performance information of that host as well as the time
of the last update of this information. At regular intervals,
the host would update the information stored in this
tModel, thus changing the metadata associated with all of
the bindingTemplates that reference it.

Figure 2. Desired UDDI Organization

Grid users wishing to locate bindingTemplates for a
particular service would specify which system
performance characteristics are required for the job at
hand, and UDDI would do a “deep search” of both

bindingTemplates and their associated system
performance tModels. Figure 2 illustrates this
organization.

UDDI version 2 does not contain the functionality to
create such a desired discovery scenario. The
find_binding API call in UDDI version 2 only allows
clients to specify the UUID keys of desired tModels, not
place query criteria upon the key-value pairs within these
tModels. Two separate approaches for querying against
tModel can be taken, but both have side effects that
degrade performance.

The first method is to map tModel identifying keys to
labels that represent various enumerated intervals for the
selected performance metric. In other words, the key is
the value. Free disk space, for example, would be
described by a set of tModels that represent each of the
possible range intervals that have been established for this
metric. The keys for these tModels would be, for
example, “100-200MB free” or “1+GB free”. These keys,
or possibly some well-known formula for constructing
them, must be known by all machines on the Grid. At
each update interval, resource providers associate each of
their bindingTemplates with the proper tModel for each
metric that the resource provider wishes to report. Under
this scheme, there is no central place where an
administrator could go to view a machine’s current status
– the administrator could only view this information by
examining the associations created between the global
metric tModels and a bindingTemplate owned by the
machine. Figure 3 illustrates this design.

Figure 3. Association of Performance Data with
bindingTemplates in UDDI v2

This technique accomplishes the task of allowing
machine metrics to be integrated into bindingTemplate
queries, but at a performance cost due to the difficulty of
updating. Instead of each machine updating a single
performance tModel during update intervals, each
machine must update each of its bindingTemplate
records. For Grids with many general-purpose resource
providers each offering the use of many Web services, the
extra updates required (equal to the average number of

bindingTemplates per host) per update interval can
noticeably impact the performance of the UDDI server.

A second method of associating machine attributes
with bindingTemplates involves a two-step searching
process. Each resource provider maintains all
performance data within one tModel and associates its
bindingTemplates with this tModel. Each update interval,
the provider need only update this one record, but Grid
users must perform two queries to find an acceptable set
of binding endpoints. The first query searches the
contents of all tModels in the UDDI registry and returns a
list of those matching the machine requirements for a
particular task. The second query searches all
bindingTemplates in the registry using the tModel keys
returned as the results of the first search as filtering
criteria.

As the size of the Grid and the number of stored
tModels grows, the set returned by the first search may
grow large enough to cause noticeable delays from the
perspective of the Grid user. One potential solution to
reduce the size of the tModel list returned by the first
query is to put back-references within each machine’s
performance tModel which contain the keys of the
businessServices that the machine offers. These back-
references can be used as filters in the first search so that
only the tModels of machines which host the desired
service are returned.

Consideration is due before using back-references to
limit the search results, however, because this practice
seems to violate the intended separation of information
within UDDI. tModels provide descriptive data about
bindingTemplates, but are arguably not supposed to
contain any knowledge of the entities that reference them.

5. Performance

Section 4 outlined the three main hurdles in applying

UDDI version 2 as a resource discovery service to OGSA

Grids and how these hurdles may be overcome or at least

reduced. This section outlines the measured performance

of a publicly-available UDDI implementation ("jUDDI"

[9], which is compliant with UDDI version 2), in a

simulated Grid environment that was set up at the

University of Virginia. In our experiments below, we are

careful to distinguish properties/assertions that we believe

can be attributed to the UDDI specification (and thus all

implementations, from our judgment) vs. those that

should be attributed to the specific implementation of the

UDDI specification that we studied (jUDDI).

Figure 4 illustrates the experimental setup. The

experiments were conducted in a 100 Mbps LAN

environment. The bottom of the figure shows a jUDDI

server running in an Apache/Linux environment on a 1.4

GHz AMD Opteron machine with 2 GB of memory. The

top of the figure shows the remaining machines utilized

(up to 14), each running client software implemented in

C# on Microsoft Windows XP Professional. The client

software was divided into two layers. The lower layer

("UDDI client") wrapped the UDDI API and translated it

into a Grid-centric API for resource providers and Grid

users. The intention of this layer was to take the initial

steps to create a standard resource discovery service API

that would function with any off-the-shelf UDDI

implementation running behind it. In OGSA terms, this

software layer uses UDDI to implement the behaviors

which characterize the Candidate Set Generator and the

Information Service.

Figure 4. Architecture used for UDDI Evaluation

On top of this layer, we designed a system that simulates

resource providers and Grid users. This simulator was

used to construct a number of different Grid

environments and measure the performance of UDDI

under different levels of sustained activity. We use

shading in Figure 4 to denote the simulated pieces, to

reinforce that we did not simulate the UDDI server, only

the clients/services interacting with the actual UDDI

server.

 We used three metrics to measure the performance of

UDDI (specifically, the jUDDI implementation of UDDI)

as a provider of resource discovery services: system load

on the UDDI hosting machine, mean update time for

service provider information, and mean query time

experienced by Grid users. The first metric gives a rough

indication of how much activity the UDDI server is

experiencing under the simulated Grid conditions, while

the second two metrics gauge how this duress will be felt

by providers and users of the Grid.
System load was measured as a function of both

resource provider update frequency and search frequency.
Figure 5 shows the results of the average system load of
the UDDI server when subjected to resource provider
update frequencies between five and twenty-five updates
per second. Each “update” consisted of one simulated
resource provider updating information about a random
three out of a possible ten resources (meaning that we
were simulating a Grid environment in which only an

arbitrarily small number of the total possible services
were actually instantiated on any particular grid node).

System Load

0

1

2

3

4

5

6

5 7.5 10 15 20 25

Updates per Second

S
y
s
te

m
 L

o
a
d

Figure 5. UDDI System Load as a Function of
Update Rate

The results of this test show that server load increased
roughly linearly with update frequency. A test of 35
updates per second was performed but was not included
in Figure 5 because jUDDI performance slowed to such
an extent that only a portion of the attempted updates
were able to successfully complete within their target
update intervals. During this unsuccessful test, the load
average rose to an average value of 8.9. Note that our
UDDI server is a dedicated, "average-spec" desktop
machine circa 2003.

The time required to perform an update was also
measured to gauge how increased load on the UDDI
system would be experienced by providers submitting
new resource information. An update was defined as one
resource provider refreshing the tModels and tModel-
bindingTemplate associations that represent its current
performance characteristics. The time required to perform
system updates was measured using ten machines each
simulating up to thirty-five resources. Each resource
provider offered a random three out of a possible ten
services and updated its system performance metrics once
every ten seconds.

The results of this experiment show that update time
remains relatively constant as long as the number of
updates per second remains below twenty. After twenty, a
steep rise occurs. Figure 6 shows a summary of the data
recorded during these tests. Each data point represents the
ten-minute average of all measured update times at that
level of activity.

jUDDI Server

UDDI client

Simulated Grid

Resource Providers

and Consumers

UDDI client

Simulated Grid

Resource Providers

and Consumers

Figure 6. UDDI Update Time as a Function of
Update Rate

A final test performed with a target of thirty-five
updates per second was not incorporated into this graph
because only a fraction of the updates were able to take
place during each update interval due to slowed
performance.

While it is important to keep in mind that these results
apply only to jUDDI, we believe the shape of these
curves will apply to any implementation of UDDI v2 (and
jUDDI is a popular, open-source implementation worthy
of study in its own right). Our tests show that for
moderate to large Grids, maintaining accurate resource
information may push UDDI beyond its limits, and so a
closer look at how the number of updates per second can
be reduced is needed, which we consider in the remainder
of this section.

This project evaluated the first of the two methods for
associating machine performance data with
bindingTemplates, depicted in Figure 3. This required
that each resource provider update three
bindingTemplates each update interval instead of one
performance tModel. Had the second of the two proposed
methods been chosen, only a single tModel update would
have been required, reducing the number of update
messages by a factor of three for our particular test
environment. However, this would have required the
UDDI client to perform two queries to discover
appropriate resources -- one to find applicable resources
and one to find which of those currently has appropriate
performance characteristics.

As a test of the UDDI client experience, we measured

the time required to perform a search upon the resource

information stored in UDDI as the number of

simultaneous searches increased. The average time

required to perform bindingTemplate searches on the

UDDI registry was measured using twelve machines, two

of which simulated resource providers and ten of which

simulated Grid users. The two machines acting as

resource providers simulated a total of twenty-five

providers each offering three randomly chosen services

out of a possible ten services. Each simulated resource

provider updated its system metrics every ten seconds.

The ten machines simulating Grid users performed

between five and fifty-five queries on the UDDI data per

second. Each query requested a randomly chosen service

out of the ten available and limited the query with a

desired system load average. Each level of search

frequency was sustained for ten minutes. The data points

in Figure 6 represent the 10-minute average of the

number of seconds required to complete queries as

experienced by the ten machines simulating Grid users.

Figure 7 shows the results of these tests.

Figure 7. UDDI Query Time as a Function of
Simultaneous Searches

Because the user only performs a UDDI query once, at

the beginning of each job request say, these average

search-times would seem to be acceptable. This

information can be of further use in helping Grid

administrators anticipate the expected performance of a

business or campus Grid as the number of users grows

(especially important, perhaps, if multiple universities

with campus Grids make the decision to merge their

Grids).

6. Related Work

This paper assesses the utility of using UDDI for
resource discovery in grids in order to see if existing,
widely deployed, commercial and open source UDDI
implementations can be utilized for this task. However,
there are several other resource discovery methods
currently employed in the Grid community. The
Lightweight Directory Access Protocol (LDAP) is a
simplified version of the X.500 Directory Access
Protocol (DAP) which specifies a means of organizing
and accessing information directories over the Internet.
LDAP is often used in organizations as a means of storing
personnel, service, and network topology information.
Users of LDAP access information organized in a
hierarchical directory tree. Each level of the tree contains

Query Time

0

0.05

0.1

0.15

0.2

0.25

0.3

5 15 20 25 35 45 55

Searches per Second

S
e

a
rc

h
 T

im
e

 (
s

)

Update Time

0

0.05

0.1

0.15

0.2

0.25

0.3

5 7.5 10 15 20 25

Updates per Second

U
p

d
a
te

 T
im

e
 (

s
)

attribute-value pairs of information as well as links to
lower levels. While LDAP by itself is not a candidate for
the role of resource discovery solutions in OGSA Grids
(at heart it is a means of storage and organization, not of
description and discovery), LDAP’s flexibility has made
it the choice for a number of resource discovery solutions,
including MDS, the Monitoring and Discovery System
[4] used by the Globus toolkit [7].

The Globus Toolkit’s Monitoring and Discovery
System (MDS) uses LDAP to publish information about
the current state of resources in a Grid environment. An
Index Service provides the capabilities of the OGSA
Information Service and includes data refreshing
mechanisms that prevent stale data from being returned in
query results. MDS’s Trigger Service monitors MDS’s
data catalog for certain preset conditions, providing a
means for asynchronous alarms and warnings to be sent
to interested parties.

Carnivore [8] is a registry service from the
International Virtual Observatory Alliance. Carnivore
allows clients to query XML records of resources using
the XQuery language. While this gives Carnivore clients
powerful query abilities, it does not allow the use of
existing UDDI clients.

A new standard, WS-Discovery [2], is a recent addition
to the Web services stack that offers a decentralized
approach to service discovery. Devices following the
WS-Discovery protocol multicast discovery requests to a
multicast group and receive responses from resource
providers within that group. To prevent unnecessary
multicast traffic, “discovery proxies” can join groups to
act as central, unicast-based points of reference for
discovery queries. In Grid environments, WS-Discovery
will most likely be useful as a complimentary technology
to MDS and/or UDDI-based discovery. Large scale
multicasting can generate a large amount of traffic and
can be unreliable across different domains and
organizations. However, WS-Discovery services could be
used for local discovery and then provide their
information to a Grid-wide catalog such as MDS or
UDDI.

While this paper has outlined deficiencies with UDDI
version 2 and solutions involving a wrapper around a
UDDI version 2 service, these same issues are being
addressed at the standards level by the UDDIe project at
Cardiff University [1]. UDDIe is currently exploring
ways in which UDDI version 2 can be extended to
provide support for data typing and dynamic service data
in a way that does not break compatibility with non-
UDDIe client software. The capabilities of UDDI are
often conceptualized as the Yellow, White, and Green
pages of service discovery. UDDIe adds what it calls the
“Blue Pages” to store quality of service and dynamic
metadata about businessService records within a UDDI
registry.

While the UDDIe project has met with success at
extending the UDDI framework, a drawback to this
approach is that any solution which requires the
modification of UDDI server code and APIs removes a
key reason why UDDI is a good candidate for resource
discovery in Grid environments. That is, a large part of
the attractiveness of UDDI stems from the fact that it is a
well known, supported industry standard. A Grid-centric
resource discovery solution utilizing UDDI “as-is”
automatically benefits from the rich development
community and resources already surrounding this
technology.

Lastly, the Blue Pages of UDDIe are implemented as a
series of attributes that may be appended to
businessService records in the UDDI registry; this new
capability does not extend to tModels, which remain
unchanged from UDDI version 2. Since users of UDDIe
only benefit from the addition of typed data in
businessService records, the query model still does not
permit the users to make use of typed data to differentiate
between different providers of a service. Users can,
however, use the benefits of typed data when comparing
the service-level characteristics of several Grid services
which might accomplish equivalent tasks [1].

Finally, the UDDI committee of OASIS has recently
released a new version of the UDDI specification (version
3) [3], which was ratified by OASIS on February 3, 2005.
UDDI version 3 adds to the bindingTemplate discovery

API through the addition of the find_tModel
argument in the find_binding API call. Once
implemented, this change will allow each provider’s
performance information to be stored in a single tModel
(depicted in Figure 2) and will allow this information to
be used as criteria for bindingTemplate searches through
a single API call and no back-references. UDDI version 3
also supports enhanced security features, such as support
for digital signatures, on all objects. Richer replication
capabilities have also been added, allowing multiple
UDDI servers, across several organizations, to each
replicate portion of the other’s data. Still lacking in UDDI
version 3, however, is data typing. The structure of
keyedReference object remains the same in version 2, and
so numerical, range-based queries are still not supported.

While work is being done to begin implementing this
new specification, all current open-source and
commercial implementations of UDDI are based on the
version 2 standard. Version 3 implementations will more
closely match Grid requirements, but may still not be
sufficient.

7. Conclusions / Discussion

UDDI is an important component of the Web services
stack that was designed to be used in a wide variety of
discovery scenarios. As Grid computing moves toward a

Web services-based infrastructure, it makes sense to
evaluate UDDI as a part of the OGSA architecture,
specifically UDDI’s utility as a Candidate Set Generator
and an Information Service.

We have found that UDDI suffers from two primary
limitations in this context that stem from the issues
discussed in Section 4. First, it lacks a rich query model
due to its lack of explicit data typing and its inability to
easily perform bindingTemplate queries based on the
values contained within associated tModels. This makes
the inclusion of both functional requirements and
performance requirements within the same query
cumbersome, and therefore complicates Candidate Set
Generation. Second, UDDI is not well equipped to handle
environments that contain resource providers with
unpredictable availability because of its limited support
for the expiration of stale data. This makes UDDI non-
ideal as an Information Service which must catalog the
current state of dynamic Grid systems, but can be easily
circumvented by building this functionality into the
provider and user software that accesses UDDI.

While we believe that UDDI version 2 is not an ideal
solution for Grid computing discovery services, we have
suggested a number of methods that address its chief
limitations and bring it closer to what is needed to fulfill
the roles of Candidate Set Generator and Information
Service. These methods have been implemented at the
user-level, and thus can be used with any standards-
compliant version of UDDI version 2 or beyond.

The costs of using UDDI and the methods developed in
Section 4 as an OGSA resource discovery service have
been quantified and explained in Section 5. It is important
to note that even if Grid administrators/users were
tolerant of the update and query times presented in
Figures 5 and 6, the jUDDI implementation begins
slowing dramatically for update/query rates greater than
those shown in the graphs. In other words, even if UDDI
was acceptable to the user community, it does not scale
well to handle large numbers of Grid resources. While
other UDDI implementations might have better
performance/scaling characteristics, they would still
suffer from UDDI’s model.

Though implementations of UDDI version 3 should
become available relatively soon and will contain
structural changes that permit increased updating and
querying performance, they will still lack the support for
typed and time-sensitive data required for level of service
desired for OGSA-based Grids. We therefore conclude
that UDDI, and in particular UDDI version 2 as
implemented by jUDDI, is only appropriate for small
Grids in which scalability and precise performance
reporting is secondary to the industry support and ease of
installation that accompany this technology.

8. REFERENCES

[1] A. Ali, “About UDDIe”. Cardiff University School of
Computer Science.
http://www.wesc.ac.uk/projects/uddie/uddie/about/index.ht
m. Accessed June 2005.

[2] J. Beatty, G. Kakivaya, D. Kemp, T. Kuehnel, B. Lovering,
B. Roe, C. St. John, J. Schlimmer, G. Simonnet, D. Walter,
J. Weast, Y. Yarmosh, P. Yendluri. Web services Dynamic
Discovery (WS-Discovery). October 2004. available at:
http://msdn.microsoft.com/library/en-us/dnglobspec/
html/ws-discovery1004.pdf

[3] T. Bellwood, L. Clément, C. von Riegen, et al. UDDI
Version 3.0.1: UDDI Spec Technical Committee
Specification, Dated 2003-11-14. Organization for the
Advancement of Structured Information Standards, 2003.

[4] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman. Grid
Information Services for Distributed Resource Sharing.
Proceedings of the Tenth IEEE International Symposium
on High-Performance Distributed Computing (HPDC-10),
IEEE Press, August 2001.

[5] I. Foster, C. Kesselman, J. Nick, S. Tuecke. Grid Services
for Distributed System Integration. Computer, 35(6), 2002.
Computer, 35(6), 2002.

[6] Global Grid Forum. http://www.ggf.org. Accessed June
2005.

[7] Globus Project. http://www.globus.org. Accessed June
2005.

[8] M. Graham. CARNIVORE: Open Source Registry.
http://nvo.caltech.edu:8080/carnivore/doc/Carnivore.pdf.
Accessed October 2006.

[9] jUDDI: Java Implementation of the UDDI specification.
http://ws.apache.org/juddi/. Accessed June 2005.

[10] OASIS. UDDI Executive White Paper.
http://uddi.org/pubs/uddi-exec-wp.pdf, accessed June 2005.

[11] Open Grid Services Architecture Working Group (OGSA-
WG). https://forge.Gridforum.org/projects/ogsa-wg.
accessed June 2005.

[12] W. Yeong, T. Howes, S. Kille, Lightweight Directory Access
Protocol. Request for Comments: 1777. ISODE Consortium,
March 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

