
Real-Time Task Mapping and Scheduling for Collaborative In-Network Processing
in DVS-Enabled Wireless Sensor Networks

Yuan Tian, Jarupan Boangoat, Eylem Ekici, and Füsun Özgüner
Department of Electrical and Computer Engineering, The Ohio State University

Email: {tiany,bea,ekici,ozguner}@ece.osu.edu

Abstract

With the increasing importance of energy consump-
tion considerations and new requirements of emerging
applications, in-network processing of information gains
recognition as a viable solution for Wireless Sensor Net-
works (WSNs). The required processing capability can be
achieved through locally collaborative information pro-
cessing among sensors. Task mapping and scheduling
plays an important role in efficient collaborative informa-
tion processing. Although task mapping and scheduling
in wired networks of processors has been well studied
in the past, its counterpart for WSNs remains largely
unexplored. In this paper, a task mapping and scheduling
solution for real-time applications in WSNs, Real-time
Task Mapping and Scheduling (RT-MapS), is presented.
RT-MapS incorporates wireless channel modeling, Hyper-
DAG extension, concurrent task mapping, communication
and computation scheduling, and Dynamic Voltage Scaling
(DVS) methods. Simulation results show significant perfor-
mance improvements compared with existing mechanisms
in terms of providing deadline guarantee with minimum
energy consumption.

I. Introduction

In-network processing has been recognized as a viable
approach to significantly decrease network energy con-
sumption [1] [2]. In-network processing is also required
by many emerging applications with considerable com-
putation demands in resource-constrained WSNs, such as
video sensor networks [3] composed of wireless sensors
equipped with cameras. Since multimedia processing gen-
erally involves computationally intensive operations with
real-time requirements, the resulting need for computation
power creates new challenges for WSN design. To provide
the demanded computation power for applications, which

is generally more than the capacity of a single sensor,
a promising solution is to have sensors collaboratively
process information. Task mapping and scheduling plays
an essential role in parallel processing by solving the
following problems subject to application requirements:

• Assignment of tasks to sensors;
• Execution sequence of tasks on sensors;
• Communication schedule between sensors.

Existing task mapping and scheduling solutions for wired
networks cannot be implemented directly in WSNs as the
generally assumed point-to-point connections between all
nodes do not exist in WSNs. Furthermore, many solutions
do not explicitly consider energy consumption during com-
munication and task execution, which is one of the major
constraints in WSNs. Thus, task mapping and scheduling
remains largely unexplored for WSNs.

Depending on applications and network scale, task map-
ping and scheduling can be achieved either network-wide
or in a localized manner in WSNs. In large-scale WSNs,
global optimization of task mapping and scheduling is
a costly task. Furthermore, events of interest in such
networks generally occur in remote regions that only local
sensors can detect. Thus, local information processing,
and consequently, localized task mapping and scheduling,
is more suitable for large-scale WSNs. In localized task
mapping and scheduling, solutions focus on performance
optimization applied to clusters alone.

In [4], an online task scheduling mechanism (CoRAl) is
proposed to allocate network resources between the tasks
of periodic applications in WSN clusters iteratively: The
frequencies of the tasks on each sensor are optimized
subject to the previously evaluated upper-bound execution
frequencies. However, CoRAl does not address mapping
tasks to sensor nodes. Distributed Computing Architecture
(DCA) is proposed in [1], which executes low level tasks
on sensing sensors and offload all other high level process-
ing tasks to cluster heads. However, processing high level
tasks can still exceed the capacity of cluster heads’ com-

1-4244-0054-6/06/$20.00 ©2006 IEEE

putation power. Furthermore, application-specific design
of these solutions limit their implementation for generic
applications.

Task mapping and task scheduling have been jointly
considered for mobile computing [5] and for WSNs
[6] [7] recently. Task mapping and scheduling heuristics
are presented in [5] for heterogeneous mobile ad hoc
grid environments. However, the communication model
adopted in [5] is not well-suited for WSNs, which assumes
individual channels for each node, and concurrent data
transmission and reception capacity of every node. The
EcoMapS algorithm in [6] aims to minimize the schedule
length subject to the energy consumption constraint in
single-hop clustered WSNs. However, EcoMapS does not
provide execution deadline guarantees for applications.
In [7], Energy-balanced Task Allocation (EbTA) is intro-
duced to minimize balanced energy consumption subject
to application deadline constraints. In [7], communications
over multiple wireless channels are modeled as additional
linear constraints of an Integer Linear Programming (ILP)
problem, and a heuristic algorithm with Dynamic Voltage
Scaling (DVS) mechanism is presented. However, the
communication scheduling model in [7] does not exploit
the broadcast nature of wireless communication, which can
conserve energy and time expenditure.

In this paper, we propose localized cross-layer Real-
time Task Mapping and Scheduling solutions (RT-MapS)
for DVS-enabled WSNs. We consider deadline-constrained
applications executed in a single-hop cluster of a ho-
mogeneous WSN. The design objective of RT-MapS is
to minimize energy consumption subject to application
deadline constraints. In RT-MapS, communication and
computation are jointly scheduled in two phases: Task
Mapping and Scheduling Phase and DVS Phase. In the
Task Mapping and Scheduling Phase, two low-complexity
task mapping and scheduling algorithms, CNPT [8] and
Min-Min algorithm [9] [5], are extended and implemented.
The extended CNPT and Min-Min algorithms incorporate
our proposed communication scheduling algorithm with
the objective of minimizing energy consumption subject
to deadline constraints, and broadcasting capability is
exploited to conserve energy consumption. The Dynamic
Voltage Scaling (DVS) technique is implemented in the
DVS phase to further reduce energy consumptions.

II. Preliminaries

A. Network Assumptions

Our proposed task mapping and scheduling mechanism
is designed for applications executed within a single-
hop cluster of wireless sensor networks. The following
assumptions are made for the wireless sensor networks:

• Each cluster executes an application which is either

(a) DAG Example (b) Hyper-DAG Extension

Fig. 1. DAG and Hyper-DAG Examples

assigned during the network setup time or remotely
distributed during the network operation.

• Once assigned, applications are independently exe-
cuted within each cluster as many times according
to the application requirements. With applications
arrivals, cluster heads create the schedules for applica-
tion communication and computation within clusters.

• Intra-cluster communication is isolated from other
clusters through time division or channel hopping.

• Sensors are equipped with DVS processors with finite
number of CPU speeds and supply voltage levels. The
overhead of speed and voltage adjustment is assumed
to be negligible.

It should be noted that while the intra-cluster commu-
nication is isolated from each other, the communication
across clusters is assumed to be handled over common
time slots or channels orthogonal to those used inside a
cluster. As such, information flow across the network is
not hindered by intra-cluster communication isolation.

B. Application and Energy Consumption
Model

To have an application-independent solution, we rep-
resent applications executed in clusters with Directed
Acyclic Graphs (DAG). A DAG T = (V,E) consists of a set
of vertices V representing the tasks to be executed and a
set of directed edges E representing dependencies among
tasks. The edge set E contains directed edges eij for each
task vi ∈ V that task vj ∈ V depends on. For an edge
eij , vi is called the immediate predecessor of vj , and vj

is called the immediate successor of vi. A task without
immediate predecessors is called an entry-task and a task
without immediate successors is called an exit-task. Fig.
1(a) shows an example of a DAG.

If a task vj scheduled on one node depends on a task
vi scheduled on another node, a communication between
these nodes is required. In such a case, vj cannot start its
execution until the communication is completed and the
result of vi is received. However, if both tasks are assigned
on same node, the result delivery latency is considered to
be zero and vj can start to execute after vi is finished.

This execution dependency between tasks is referred to as
Dependency Constraint throughout the paper.

The energy consumption of transmitting and receiving
l-bit data over a distance d that is less than a threshold do

are defined as Etx(l, d) and Erx(l), respectively:

Etx(l, d) = Eelec · l + εamp · l · d2, (II-B.1)

Erx(l) = Eelec · l, (II-B.2)

where Eelec and εamp are hardware parameters [1] [10].
The energy consumption of executing N clock cycles

at CPU frequency f and supply voltage Vdd is given as:

Ecomp(Vdd, f) = NCV 2
dd + Vdd(Ioe

Vdd
nVT)(

N

f
), (II-B.3)

f � K(Vdd − c), (II-B.4)

where VT is the thermal voltage and C, Io, n, K and c
are processor dependent parameters [11] [1].

C. Problem Statement

The task mapping and scheduling problem is to find a
set of task assignments and their execution sequences on
a network that minimizes an objective function. Let Hx =
{hx

1 , hx
2 , ..., hx

n} denote a task mapping and scheduling
solution of the application DAG T on a network G, where
x is the index of the task mapping and scheduling solution
space. Each element hx

i ∈ Hx is a tuple of the form
(vi, mk, si,mk

, ti,mk
, fi,mk

, ci,mk
), where mk represents

the node to which task vi is assigned, si,mk
and fi,mk

represent the start time and finish time of vi, and ti,mk
and

ci,mk
represent the execution length and energy consump-

tion of vi on node mk, respectively. The design objective of
this paper is to find an Ho ∈ {Hx} that has the minimum
energy consumption under the deadline constraint, which
can be formulated as follows:

min energy(Ho) =
∑

i,k

ci,mk
; (II-C.5)

subject to length(Ho) = max
i,k

fi,mk
≤ DL, (II-C.6)

where length(H) and energy(H) are the schedule length
and energy consumption of H , respectively, and DL is
the deadline of the application. DAG scheduling problem
is shown to be an NP-complete problem in general [12].
Therefore, heuristic algorithms are needed to solve this
problem in polynomial time.

Some notations are listed here for convenience:
• pred(vi) and succ(vi) denote the immediate prede-

cessors and immediate successors of task vi respec-
tively

• m(vi) denotes the node on which vi is assigned
• T (mk) denotes the tasks assigned on node mk

• T ft
st (mk) denotes the tasks assigned on node mk

during the time interval [st, ft]

Fig. 2. Flowchart of RT-MapS

III. The Proposed RT-MapS Solution

The proposed RT-MapS sloution is demonstrated with
the flowchart in Fig. 2. RT-MapS has two phases: Task
Mapping and Scheduling Phase and DVS Phase. In the
Task Mapping and Scheduling Phase, communication and
computation tasks are scheduled. Two low-complexity
task mapping and scheduling algorithms, CNPT [8] and
Min-Min [9] [5] are extended and implemented with the
objective of minimizing the energy consumption subject
to the deadline constraint. A communication scheduling
algorithm is developed based on our wireless channel
model and Hyper-DAG representation of applications. The
proposed communication scheduling algorithm is then em-
bedded in the execution of the extended CNPT and Min-
Min algorithms to satisfy the Dependency Constraint. The
energy consumption is then further reduced in the DVS
Phase. In the following sections, the main components of
the RT-MapS solution, namely, wireless channel model-
ing and Hyper-DAG extension, communication scheduling
algorithm, Hyper-DAG based CNPT and Min-Min algo-
rithms (referred to as H-CNPT and H-MinMin), and DVS
algorithm, are presented.

A. Wireless Channel Modeling and Hyper-
DAG Extension

In a single-hop cluster, there can be only one transmis-
sion on the wireless channel at a given time. Therefore,
the wireless channel can be modeled as a virtual node
C that executes one communication task at any time
instance. Similar to [4], a cluster can be modeled as a star-
network where all sensors only have connections with the
virtual node C. The communication latency between sensor
nodes and C can be considered zero since all wireless
communications are accounted for by the tasks executed

on C. Assuming that the cluster has p sensors denoted as
M = {mk} (0 ≤ k < p), a cluster can be represented by
a connected, undirected graph G = (M ′,N), where the set
M ′ = M ∪ {C}, and the set N denotes the links between
the nodes of M ′. With the virtual node representation of
C, communication contention can be effectively avoided
by serially scheduling communications on C.

To implement this channel model, communication
events between computation tasks should be explicitly
represented in task graphs. To accomplish this, the DAG
representation of applications is extended as follows: For
a task vi in a DAG, we replace the edges between vi and
its immediate successors with a net Ri. The weight of Ri

equals to the resulting data volume of vi. Ri represents
the communication task to send the result of vi to its
immediate successors in the DAG. This extended DAG is a
hypergraph and is referred to as Hpyer-DAG. The example
of converting the DAG in Fig. 1(a) to a Hyper-DAG is
shown in Fig. 1(b). A Hyper-DAG is represented as T ′ =
(V ′, E′), where V ′ = {γi} = V ∪R denotes the new set of
tasks to be scheduled and E′ represents the dependencies
between tasks. Here, V = {vi} = {Computation Tasks},
and R = {Ri} = {Communication Tasks}.

With Hyper-DAGs, the Dependency Constraint in Sec-
tion II-B is rephrased as follows: If a computation task vj

scheduled on node mk depends on a communication task
vi scheduled on another node, a copy of the communica-
tion task vi needs to be scheduled to mk, and vj cannot
start to execute until all of its immediate predecessors are
received on the same node.

With the joint assistance of the channel model and the
Hyper-DAG representation, exclusive channel access con-
straints and broadcast delivery of results are incorporated
into task dependency in a compact way. The broadcast
nature of the wireless channel can also be leveraged to
relay information generated by a task to all its immediate
successors in a single transmission rather than multiple,
sequential transmissions. This approach both reduces the
execution time as well as the energy consumption.

B. Communication Scheduling Algorithm

To meet the Dependency Constraint in Hyper-DAG
scheduling, communication between nodes is required if
a computation task depends on a communication task
assigned on another node. Our communication scheduling
algorithm is presented in this section. As we shall see
in Section III-C, the communication scheduling algorithm
is integrated into the execution of our Hyper-DAG task
mapping and scheduling algorithms, H-CNPT and H-
MinMin.

Based on the Hyper-DAG and the channel model
presented in Section III-A, scheduling communication
between single-hop neighbors is equivalent to first
duplicating a communication task from the sender to

C, and then from C to the receiver. If the requested
communication task has been scheduled from the sender
to another node before, the receiver will directly duplicate
the communication task from C. This process is equivalent
to receiving broadcast data, which can lead to significant
energy saving compared with multiple unicast. The
detailed description of the communication scheduling
algorithm is presented below.

Input: Communication task vi, sender ms, and receiver mr

Output: Schedule of duplicating vi from ms to mr

CommTaskSchedule(vi ,ms,mr):

1. Find a copy of vi: vc
i ∈ T (C)

2. IF vc
i does not exist

3. Find vi ∈ T (ms), and time interval [st,ft]:

4. T ft
st (C) = ∅, ft − st ≥ tvi,C

5. st ≥ fvi,ms , st = min

6. Schedule a copy of vi to C:/*data transmission*/

7. vc
i ∈ T (C), svc

i
,C ← st

8. Update the energy consumption of ms

9. Schedule a copy of vc
i to mr : /*data reception*/

10. vk
i ∈ T (mk), svk

i
,mk

← fvc
i
,C

11. Update the energy consumption of mr

12.ELSE

13. Schedule a copy of vc
i to mr :/*data reception*/

14. vk
i ∈ T (mk), svk

i
,mk

← fvc
i
,C

15. Update the energy consumption of mr

In the algorithm above, Steps 2-11 stands for originating
a new communication from ms to mr, and Steps 12-15
represents reception of a broadcast data. Compared with
originating a new communication, the broadcast reception
method leads to energy saving of one data transmission
for each additional data reception. Note that copying a
communication task from C to a node incurs energy con-
sumption associated with reception, but does not introduce
additional time consumption.

C. Task Mapping and Scheduling with H-
CNPT and H-MinMin Algorithm

In the Task Mapping and Scheduling Phase of RT-
MapS, the tasks of Hyper-DAGs are mapped and sched-
uled on sensors. During task mapping, several constraints
have to be satisfied. These constraints together with the
Dependency Constraint are represented as follows.

• Computation tasks can be assigned only on sensor
nodes, ie., ∀γi ∈ V : ti,C = ∞, ci,C = ∞

• Communication tasks can be assigned both on sensors
and C

• If vi ∈ V and pred(vi) �= ∅, then pred(vi) ⊂
T (m(vi)) and svi,m(vi) ≥ max fpred(vi),m(vi)

To meet the Dependency Constraint during task map-
ping and scheduling, if a computation task depends on a

communication task assigned on another sensor node, the
communication scheduling algorithm will be executed to
duplicate the absent communication task. With the Com-
munication Scheduling Algorithm and the task mapping
constraints presented above, task mapping and scheduling
in single-hop wireless networks can be tackled as a generic
task mapping and scheduling problem with additional con-
straints. This problem is NP-complete in general [12] and
heuristic algorithms are needed. In this section, two task
mapping and scheduling algorithms, H-CNPT algorithm
and H-MinMin algorithm are presented with the objective
of minimizing energy consumption subject to deadline
constraints. To guarantee deadlines, sensors are scheduled
with the maximum CPU speed fmax

cpu .
Before presenting the H-CNPT and H-MinMin algo-

rithms, we first introduce a concept of computing sensor:
A computing sensor is a sensor that can execute non-entry
tasks as well as entry-tasks. The concept of computing
sensor is an intuitive extension of DCA in [1], where only
one sensor, ie. the cluster head, in a cluster can execute
high level tasks. In RT-MapS, there can be more than
one computing sensors to speed up execution. However,
this approach generally consumes more energy because of
the increased volume of communication between sensors.
Thus, the number of computing sensors shall only be in-
creased to the extend of satisfying deadline constraints. In
RT-MapS, H-CNPT and H-MinMin will iteratively search
the optimal schedule with different number of computing
sensors subject to deadline constraints.

1) H-CNPT Algorithm: The strategy of H-CNPT is to
assign the tasks along the most critical path first to the
nodes with earliest execution start times. By adjusting the
number of computing sensors in each scheduling iteration
and choosing the schedule with the minimum energy
consumption under the deadline constraint, the design ob-
jective of H-CNPT is achieved. Similar to CNPT, H-CNPT
also has two stages: listing stage and sensor assignment
stage. In the listing stage, tasks are sequentialized into a
queue L such that the most critical path comes the first and
a task is always enqueued after its immediate predecessors.
In the sensor assignment stage, the tasks will be dequeued
from L and assigned to the sensors with the minimum
execution start time. Several scheduling iterations will be
run in the sensor assignment stage with different number
of computing sensors, and only the optimal schedule is
chosen. The listing stage and sensor assignment stage of
H-CNPT are introduced individually as follows.

Listing Stage: The Listing Stage of H-CNPT is similar
to that of CNPT [8] except that there are two types of
tasks in H-CNPT: Computation task and communication
task. Thus, the formulas to calculate the Earliest Start Time
EST (vi) and the Latest Start Time LST (vi) of task vi are
different from those of CNPT, and are presented as follows:

EST (vi) = max
vm∈pred(vi)

{EST (vm) + tm}, (III-C.7)

LST (vi) = min
vm∈succ(vi)

{LST (vm)} − ti, (III-C.8)

where ti equals to the execution length on sensor nodes if
vi ∈ V or to the execution length on C if vi ∈ R. After
the Listing Phase, the task graph is sequentialized into L
and is ready for the Sensor Assignment Phase. The details
of the Listing Stage can be found in [8].

Sensor Assignment Stage: In the Sensor Assignment
Stage, H-CNPT will iteratively search the schedule space
with different number of computing sensors. Among these
schedules, the one with the minimum energy consumption
under the deadline constraint is chosen as the solution. If
no schedule meets the deadline constraint, the schedule
with the minimum schedule length is chosen. The detailed
description of the H-CNPT algorithm is given below.

Input: Task queue L; number of available sensors in the cluster

p; deadline DL

Output: Schedule Ho of tasks in L with minimum schedule length

under energy budget constraint

H-CNPT Algorithm:

1. Lmin ← ∞ /*minimum schedule length*/

2. Eo ← ∞ /*optimal energy consumption*/

3. FOR q = 1 to p

4. H = SingleCNPT(L,q)

6. IF length(H) < Lmin

7. Lmin ← length(H); Hmin ← H

8. IF length(H) ≤ DL and energy(H) < Eo

9. Eo ← energy(H); Ho ← H

10. IF Lmin ≤ DL

11. Return Ho

12. ELSE

13. Return Hmin

In the H-CNPT algorithm above, SingleCNPT(L,q)
is a single round of task scheduling that schedules the
tasks in L with q computing sensors, where q is the
total number of available computing sensors. The actual
number of computing sensors in use can be smaller
than q depending on the application and the scheduling
algorithm. The core of SingleCNPT(L,q) is the extended
CNPT processor assignment algorithm. The basic strategy
of the algorithm is to assign tasks to the sensor with
the minimum Earliest Execution Start Time (EEST).
During task scheduling, Dependency Constraint must be
satisfied via communication scheduling. SingleCNPT(L,q)
is described as follows.

Input: Task queue L; number of computing sensors q

Output: Schedule H of tasks in L

SingleCNPT:

while L is not empty

1. Dequeue vi from L

2. IF vi ∈ R /* communication task */

3. Assign vi to node m(pred(vi))

4. ELSE IF pred(vi) = ∅ /*entry-tasks*/

5. Assign vi to node mo
i with min EAT (mo

i)

6. ELSE /* non-entry computation tasks*/

7. FOR computing sensors {mk}
8. Calculate EEST(vi, mk) with a copy of current schedule:

9. IF pred(vi) ⊆ T (mk)

10. EEST(vi, mk) ← max(EAT (mk), fpred(vi),mk
)

11. ELSE /*communication between sensors is needed*/

12. FOR vn ∈ pred(vi) − T (mk)

13. CommTaskSchedule(vn ,m(vn),mk)

14. EEST(vi, mk) ← max(EAT (mk), fpred(vi),mk
)

15. Keep the schedule with minimum EEST(vi, mo)

16. Schedule vi on mo: svi,mo ← EEST (vi, mo)

In the algorithm above, EAT (mk) is the Earliest Avail-
able Time of node mk, and EEST(vi, mk) is the Earliest
Execution Start Time of vi on sensor mk. Different from
EST, EEST represents the actual execution start time of a
task if assigned on a sensor node.

2) H-MinMin Algorithm: Similar to H-CNPT, H-
MinMin also searches for a schedule with optimal num-
ber of computing sensors that has the smallest energy
consumption subject to the deadline constraint. The H-
MinMin’s optimal number of computing sensors searching
algorithm is the same as the H-CNPT Algorithm in Section
III-C.1 except that the input of the H-MinMin algorithm is
the Hyper-DAG instead of the task queue L, and the core of
the searching algorithm is the SingleMinMin instead of the
SingleCNPT. In the following, we introduce the procedure
SingleMinMin(Hyper-DAG,q) that schedules the tasks of
the Hyper-DAG with q computing sensors.

The core of the SingleMinMin algorithm is the fitness
function. For each task-node combination (v,m), the fitness
function fit(m, k, α) indicates the combined cost in time
and energy domain of assigning task v to node m, where
α is the weight parameter trading off the time cost for the
energy consumption cost. At each step of the SingleMin-
Min algorithm, the task-node combination that gives the
minimum fitness value among all combinations is always
assigned first. To extend and describe the fitness function
of the Min-Min Algorithm in [5], the following notations
are introduced first:

• fv,m is the scheduled finish time of v on m
• PEA(v, m) is the amount of application energy con-

sumption before assigning v
• PE(v, m) is the energy consumption after assigning

v on m, which includes the computation energy
consumption and communication energy consumption

• NPT (v, m) is the normalized partial execution time
of assigning v on m: NPT (v, m) = fv,m/DL

• NPE(v, m) is the normalized energy consump-
tion of assigning v on m: NPE(v, m) =
PEA(v, m)/PE(v, m)

Thus, the fitness of assigning v on m with α is defined as:

fit(v, m, α) = α · NPT (v, m) + (1 − α) · NPE(v, m).
(III-C.9)

The SingleMinMin Algorithm is presented below.
In the description of SingleMinMin, a “mappable” task
is either an entry-task or a task that has all immediate
predecessors already been assigned, and the “mappable
task list” is the list that contains currently mappable tasks
of the Hyper-DAG.

Input:Hpyer-DAG; number of computing sensors: q

Output: Schedule H of tasks in Hyper-DAG

SingleMinMin Algorithm:

1. FOR α = 0; α ≤ 1.0; α+ = 0.1

2. FOR entry-tasks vi

3. Assign vi on node mo
i with min EAT (mo

i)

4. Assign succ(vi) on mo
i

5. Initialize the mappable task list L

6. WHILE L is not empty, with a copy of current schedule:

7. FOR task vi ∈ L

8. FOR all computing sensor mk

9. IF pred(vi) �⊆ T (mk)

10. FOR vn ∈ pred(vi) − T (mk)

11. CommTaskSchedule(vn ,m(vn),mk)

12. Assign vi to mk , calculate fit(vi, mk , α)

13. Find mo
i : fit(vi, m

o
i , α) = min

14. Keep the schedule with (v,m): fit(v, m, α) = min

15. Assign v to m, remove v from L

16. Assign succ(v) on m

17. Update L with any new unassigned mappable tasks

18. Among all schedules with different values of α

19. IF ∃H : length(H) ≤ DL with min energy(H)

20. Return H

21. ELSE

22. Return H : length(H) = min

D. The DVS Algorithm

Due to the discrete nature of task mapping and schedul-
ing, a schedule that meets a deadline may do so with
some more slack time until the deadline. The unbalanced
load of sensors and the communication scheduling also
result in CPU idle time. In the DVS Phase, the CPU idle
time is exploited by decreasing the CPU speed to reduce
computation energy consumption.

Before introducing the DVS Algorithm, we first present
the procedure to adjust the CPU speed of a single sensor
in a given time interval. A concept of CPU time utility η
during a time interval [st, ft] is first defined as:

η = eft
st/(ft − st), (III-D.10)

where eft
st is the CPU execution time during [st, ft].

To exploit the CPU slack time, the strategy of the
CPU adjustment algorithm is to slow down the CPU

in proportion to the CPU time utility. After adjustment,
the CPU time utility will approach 1 (but smaller than
or equal to 1). The CPU speed adjustment algorithm is
described in detail as follows:

Input: CPU speed fcpu of sensor mk in time interval [st, ft];

Output: Adjusted CPU speed fo
cpu and schedule in [st, ft]

SpeedAdjust(mk ,st,ft,fcpu):

1. eft
st ← 0, tt ← st

2. FOR vi ∈ T ft
st (mk) and vi ∈ V

3. eft
st ← eft

st + tvi,mk

4. η ← eft
st /(ft − st)

5. fo
cpu ←
fcpu · η�

6. FOR vi ∈ T ft
st (mk) and vi ∈ V

7. svi,mk ← tt

8. tvi,mk ← tvi,mk · fcpu

fo
cpu

9. fvi,mk ← svi,mk + tvi,mk

10. tt ← fvi,mk

11. FOR vi ∈ T ft
st (mk) and vi ∈ R

12. IF pred(vi) ∈ T (mk)

13. svi,mk ← fpred(vi),mk
, fvi,mk ← fpred(vi),mk

14. Update the energy consumption of mk

In the algorithm above, the function �f� is a ceiling
function that returns the minimum available CPU speed
larger than or equal to f .

In the DVS algorithm, the communication tasks on
C are kept unchanged, and their start time and finish
time are taken as the upper and lower bound to adjust
the corresponding sensors’ speed with the SpeedAdjust
procedure. The DVS algorithm is described in details as
follows:

Input: schedule H from the Mapping and Scheduling Phase,

sensor set SS, application deadline DL

Output: Adjusted schedule Ho

DVS Algorithm:

1. FOR sensor mk ∈ SS

2. st ← 0, ft ← ∞
3. FOR tasks vi ∈ T∞

st (mk)

4. IF There is a copy of vi: vc
i ∈ T (C)

5. Find the computation task vj following vi

6. IF mk is the sender of vc
i

7. ft ← min(svc
i
,C , svj ,mk)

8. SpeedAdjust(mk ,st,ft,fmax
cpu)

9. st ← ft

10. ELSE /*mk is the receiver of vc
i */

11. st ← max(fvc
i

,mk
, svj ,mk)

12. ELSE IF vi is exit-task and fvi < DL

13. SpeedAdjust(mk ,st,DL,fmax
cpu)

IV. Simulation Results

The performances of the RT-MapS with the H-CNPT
algorithm and the RT-MapS with the H-MinMin algorithm
are evaluated through simulations, and denoted as H-
CNPT and H-MinMin in this section, respectively. The
performance of DCA is also evaluated as a benchmark.
DCA is extended such that several sensors perform entry-
tasks and send the intermediate results to the cluster head
for further processing. DCA algorithm is also implemented
with DVS for fair comparison. We run simulations to
investigate the following aspects:

• Effect of the application deadline constraints
• Effect of the number of tasks in applications
• Effect of the inter-task dependency
• Evaluation of the energy consumption balance
• Comparison with EbTA [7]

In these simulations, we observe energy consumption,
schedule length, and deadline missing ratio (DMR) met-
rics. The energy consumption includes computation and
communication energy expenditure of all sensors. The
schedule length is defined as the finish time of the exit-
task of an application. The DMR is defined as the ratio of
the number of the simulation runs whose schedule length
is larger than the imposed deadline over the number of the
overall simulation runs.

A. Simulation Parameters

In our simulation study, the bandwidth of the channel
is set to 1Mb/s and the transmission range to 10 meters.
We assume that there are 10 sensors in a single-hop
cluster. Sensors are equipped with the StrongARM SA-
1100 microprocessor, whose speed ranges from 59 MHz
to 206 MHz with 30 discrete levels. The parameters of
Equation II-B.1 - II-B.4 are in coherence with [11], [1],
[10] as follows: Eelec = 50 nJ/b, εamp = 10 pJ/b/m2, VT

= 26 mV, C = 0.67 nF, Io = 1.196 mA, n = 21.26, K =
239.28 MHz/V and c = 0.5 V.

Simulations are run on randomly generated DAGs,
which are created based on three parameters: The number
of tasks numTask, the number of entry-tasks numEntry, and
the maximum number of predecessors maxPred. The num-
ber of each non-entry task’s predecessors, the computation
load, and the resulting data volume of a task are uniformly
distributed over [1, maxPred], [300K CC, ±10%], and
[800 bits, ±10%], respectively. The simulation results
presented in this section correspond to the average of one
hundred independent runs.

B. Effect of the Application Deadlines

The effect of application deadlines and DVS adjustment
are investigated with randomly generated DAGs as num-
Task = 25, numEntry = 6, and maxPred = 3. To evaluate

the effect of DVS, the performance of DCA, H-CNPT
and H-MinMin before the voltage adjustment (denoted as
DCA*, H-CNPT* and H-MinMin*, respectively) are also
investigated.

As shown in Fig. 3(a) and Fig. 3(c), both RT-MapS
algorithms have better capability to meet small deadlines
compared with DCA. When deadlines are very small,
though the DMR of RT-MapS algorithms and DCA are all
high, the average schedule lengths of RT-MapS are much
smaller and closer to deadlines compared with DCA. When
deadline increases, the DMR of the RT-MapS algorithms
drops much faster than DCA. The better adaptability to
deadline changes of RT-MapS algorithms stems from the
fact that RT-MapS can have multiple computing sensors in
parallel according to deadline constraints, while DCA has
only one sensor for high level computing.

Regarding the comparison of the RT-MapS algorithms
themselves, both H-CNPT and H-MinMin intend to use
less computing sensors to decrease communication energy
consumption when the deadline is large, thus their energy
consumption and schedule lengths converge. When dead-
lines are small, H-CNPT outperforms H-MinMin in term
of schedule lengths and DMR. The scheduling criteria of
H-CNPT is determined by schedule lengths only, while
the fitness function of H-MinMin is a combination of
schedule length and energy consumption. The tradeoff
between schedule length and energy consumption degrades
the schedule length performance of H-MinMin algorithm.

Regarding energy consumption, DCA* has better per-
formance than H-CNPT* and H-MinMin* for most sce-
narios according to Fig. 3(b). However, by implementing
DVS algorithm, this energy consumption difference is sig-
nificantly reduced. When deadlines are sufficiently large,
the DVS adjustment results in 25 - 35 % energy savings by
“pushing” the schedule length close to the deadline. Even
when deadlines are relatively small and there is little slack
time before application deadlines, the DVS adjustment of
H-CNPT and H-MinMin can still save about 15% and
10% energy compared with the scenarios without the DVS
adjustment, respectively. This energy saving stems from
exploiting the slack time caused by the unbalanced load of
sensors and communication scheduling. Though the DVS
adjustment may increase schedule lengths (Fig. 3(a)), the
DMR is not affected (Fig. 3(c)) for any of the simulated
deadline values.

C. Effect of the Number of Tasks

To investigate the effect of number of tasks in appli-
cations, three sets of simulations are run on randomly
generated DAGs with 20, 25 and 30 tasks (numEntry =
6, maxPred = 3). According to the simulation results in
Fig. 4, energy consumption is dominated by the number
of tasks. When the number of tasks increases, the energy
consumption of DCA, H-CNPT, and H-MinMin increase

10 15 20 25 30 35 40 45
10

15

20

25

30

35

40

45

Deadline (ms)

S
ch

ed
ul

e
Le

ng
th

 (
m

s)

Deadline
DCA*
DCA
H−CNPT*
H−CNPT
H−MinMin*
H−MinMin

(a) Schedule Length

10 15 20 25 30 35 40 45
6000

7000

8000

9000

10000

11000

12000

Deadline (ms)

O
ve

ra
ll

E
ne

rg
y

C
on

su
m

pt
io

n
(u

J)

DCA*
DCA
H−CNPT*
H−CNPT
H−MinMin*
H−MinMin

(b) Energy Consumption

10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

Deadline (ms)

D
ea

dl
in

e
M

is
si

ng
 R

at
io

DCA*
DCA
H−CNPT*
H−CNPT
H−MinMin*
H−MinMin

(c) Deadline Missing Ratio

Fig. 3. Effect of Application Deadlines

proportionally. Regarding DMR, DCA is affected the most
with task volume increment while H-CNPT is affected the
least (Fig. 4(b)). Thus, the RT-MapS algorithms have better
scalability compared with DCA regarding schedule length
and DMR, and H-CNPT outperforms H-MinMin among
the two RT-MapS algorithms.

D. Effect of the Inter-Task Dependency

The inter-task dependency is determined by the in/out
degree of application DAGs. Two sets of simulations with
maxPred = 3 and maxPred = 6 (numTask = 25,
numEntry = 6) are executed. According to the simulation
results of Fig. 5, the inter-task dependency has almost
no effect over the performance of DCA. This is due
to the fact that DCA has most of the tasks executed
on the cluster head and therefore has the least need

10 15 20 25 30 35 40 45 50 55 60
4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

Deadline (ms)

O
ve

ra
ll

E
ne

rg
y

C
on

su
m

pt
io

n
(u

J)

DCA(30 Tasks)
DCA(25 Tasks)
DCA(20 Tasks)
E−CNPT(30 Tasks)
E−CNPT(25 Tasks)
E−CNPT(20 Tasks)
E−MinMin(30 Tasks)
E−MinMin(25 Tasks)
E−MinMin(20 Tasks)

(a) Energy Consumption

10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Deadline (ms)

D
ea

dl
in

e
M

is
si

ng
 R

at
io

DCA(30 Tasks)
DCA(25 Tasks)
DCA(20 Tasks)
E−CNPT(30 Tasks)
E−CNPT(25 Tasks)
E−CNPT(20 Tasks)
E−MinMin(30 Tasks)
E−MinMin(25 Tasks)
E−MinMin(20 Tasks)

(b) Deadline Missing Ratio

Fig. 4. Effect of Number of Tasks (30 tasks VS
25 tasks VS 20 tasks)

for communication. Regarding H-CNPT and H-MinMin,
increasing the in/out degree of DAGs does not introduce
new communication tasks but increases the dependency be-
tween a result delivery task and its immediate successors.
Greater dependency degree between tasks leads to a higher
number of communication tasks scheduled on C and less
parallelism between sensors, which leads to more energy
consumption and longer schedules, especially with small
deadlines. Compared with H-CNPT, H-MinMin is affected
more and has a higher possibility of missing deadlines
when the communication load increases.

E. Evaluation of the Energy Consumption
Balance

The energy consumption balance is another important
factor in the WSN design. In this section, the energy
consumption balance of the proposed RT-MapS algorithms
are evaluated and compared to the DCA algorithm through
simulations. The random DAGs considered in the simula-
tions have the parameters of numTask = 25, numEntry =
6, and maxPred = 3. The observed metric is the Maximum
Energy Consumption per Sensor (MECpS) in addition to
the schedule lengths of all sensors. As shown in Fig. 6,
when deadlines are small, RT-MapS reduces the execu-
tion time by involving more computing sensors, which

10 15 20 25 30 35 40 45
6500

7000

7500

8000

8500

9000

9500

10000

10500

Deadline (ms)

O
ve

ra
ll

E
ne

rg
y

C
on

su
m

pt
io

n
(u

J)

DCA(maxParent = 5)
DCA(maxParent = 10)
H−CNPT(maxParent = 5)
H−CNPT(maxParen = 10)
H−MinMin(maxParent = 5)
H−MinMin(maxParent = 10)

(a) Energy Consumption

10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

Deadline (ms)

D
ea

dl
in

e
M

is
si

ng
 R

at
io

DCA(maxParent = 5)
DCA(maxParent = 10)
H−CNPT(maxParent = 5)
H−CNPT(maxParen = 10)
H−MinMin(maxParent = 5)
H−MinMin(maxParent = 10)

(b) Deadline Missing Ratio

Fig. 5. Effect of Inter-task Dependency (25
tasks)

leads to even distribution of energy consumption among
sensors. Thus, both RT-MapS algorithms have relatively
small MECpS with small deadlines. On the other hand,
DCA assigns the cluster head with all high level task
processing, which leads to unbalanced energy consumption
and a larger MECpS than RT-MapS. When the deadline
increases, the RT-MapS intends to decrease the number
of computing sensors to conserve overall application en-
ergy consumption. These computing sensors have higher
computation load, resulting in increased MECpS for large
deadlines. However, when deadlines are sufficiently large,
only one sensor will be involved in high level computing
in RT-MapS and DCA. The DVS algorithm exploits the
slack time before the deadline and further decreases the
computing sensor’s energy consumption. This DVS incor-
poration decreases MECpS when deadlines are sufficiently
large, as shown in Fig. 6(b).

F. Comparison with EbTA

To compare the performance with EbTA1 , we run sim-
ulations on random DAGs with numTask = 25, numEntry
= 6, and maxPred = 6 on a cluster with one single-hop
wireless channel. Due to the space constraint, we just

1The authors would like to thank Yang Yu for providing the simulator
of EbTA [7].

10 20 30 40 50 60
10

15

20

25

30

35

40

45

50

55

60

Deadline (ms)

S
ch

ed
ul

e
Le

ng
th

 (
m

s)

Deadline
DCA
E−CNPT
E−MinMin

(a) Schedule Length

10 20 30 40 50 60
3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

Deadline (ms)

M
ax

 S
en

so
r

E
ne

rg
y

C
on

su
m

pt
io

n

DCA
E−CNPT
E−MinMin

(b) Maximum Energy Consumption per Sensor

Fig. 6. Energy Balance

TABLE I. Comparison with EbTA
Deadline Metrics EbTA H-CNPT H-MinMin

Schedule Length (ms) 37.63 26.42 29.96
30ms DMR (%) 92 0 16

OAEC (uJ) 11087.1 9905.9 9597.5
MECpS (uJ) 5658.9 5687.2 7847.8

Schedule Length (ms) 40.21 39.54 39.45
40ms DMR (%) 37 0 0

OAEC (uJ) 10894.7 7544.6 7669.9
MECpS (uJ) 5469.3 6222.1 6238.2

present partial simulation results in Table I, where each
item stands for the average of 100 independent simulation
runs. Both RT-MapS algorithms have better capability to
meet deadline constraints and are more energy-efficient
regarding OAEC compared with EbTA, though the MECpS
of EbTA can be smaller with the large deadline. The
superior performance of the RT-MapS algorithms mostly
stems from the fact that RT-MapS exploits the broadcast
feature of wireless channel when scheduling communica-
tion events, while a task in EbTA has to send information
individually to its immediate successors.

V. Conclusion

In this paper, we propose a real-time task mapping
and scheduling (RT-MapS) solution for collaborative in-
network processing in DVS enabled WSNs. We consider

applications executed in a single-hop cluster of WSNs with
deadline constraints. The design objective of RT-MapS is
to map and schedule the tasks of an application with the
minimum energy consumption subject to the deadline con-
straint. The wireless channel is modeled as a virtual node
to execute communication tasks, and a communication
scheduling algorithm is presented with the broadcast lever-
age feature. Incorporating our communication scheduling
algorithm, the modified CNPT and Min-Min algorithm
schedule tasks with minimum energy consumption subject
to deadline constraints. DVS technique is implemented to
further reduce energy consumptions. Simulations show su-
perior performance improvements of RT-MapS compared
with existing solutions in terms of guarantee deadline
constrains with minimum energy consumption.

References

[1] A. Wang and A. Chandrakasan, “Energy-efficient DSPs for wireless
sensor networks,” IEEE Signal Processing Magazine, pp. 68–78,
July 2002.

[2] I. F. Akyidiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks (Elsevier)
Journal, vol. 38, no. 4, pp. 393–422, Mar. 2002.

[3] W.-C. Feng, E. Kaiser, W. C. Feng, and M. L. Baillif, “Panoptes:
Scalable low-power video sensor networking technologies,” ACM
Transactions on Multimedia Computing, Communications, and Ap-
plications, vol. 1, no. 2, pp. 151–167, May 2005.

[4] S. Giannecchini, M. Caccamo, and C.-S. Shih, “Collaborative
resource allocation in wireless sensor networks,” in Proc. of Eu-
romicro Conference on Real-Time Systems (ECRTS’04), June/July
2004, pp. 35–44.

[5] S. Shivle, R. Castain, H. J. Siegel, A. A. Maciejewski, T. Banka,
K. Chindam, S. Dussinger, P. Pichumani, P. Satyasekaan, W. Saylor,
D.Sendek, J. Sousa, J. Sridharan, P. Sugavanam, and J. Velazco,
“Static mapping of subtasks in a heterogeneous ad hoc grid environ-
ment,” in Proc. of Parallel and Distributed Processing Symposium,
Apr. 2004.

[6] Y. Tian, E. Ekici, and F. Özgüner, “Energy-constrained task map-
ping and scheduling in wireless sensor networks,” in Workshop
on Resource Provisioning and Management in Sensor Networks
(RPMSN’05), in conjunction with MASS’05, Nov. 2005.

[7] Y. Yu and V. K. Prasanna, “Energy-balanced task allocation for
collaborative processing in wireless sensor networks,” ACM/Kluwer
Jouranl of Mobile Networks and Applications, vol. 10, no. 1-2, pp.
115–131, Feb. 2005.

[8] T. Hagras and J. Janecek, “A high performance, low complexity
algorithm for compile-time job scheduling in homogeneous comput-
ing environments,” in Proc. of International Conference on Parallel
Processing Workshops (ICPPW’03), Oct. 2003, pp. 149–155.

[9] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F. Freund,
D. Hensgen, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D.
Theys, and B. Yao, “A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed
computing systems,” Journal of Parallel and Distributed Comput-
ing, vol. 61, no. 6, pp. 810–837, June 2001.

[10] W. B. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor
networks,” IEEE Transactions on Wireless Communications, vol. 1,
no. 4, pp. 660–670, Oct. 2002.

[11] E. Shih, S. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and
A. Chandrakasan, “Physical layer driven protocol and algorithm
design for energy-efficient wireless sensor networks,” in Proc. of
ACM MobiCom’01, July 2001, pp. 272–286.

[12] M. Garey and D. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Co., 1979.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

