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Abstract

Many large-scale scientific simulations generate
large, structured multi-dimensional datasets. Data is
stored at various intervals on high performance I/O
storage systems for checkpointing, post-processing, and
visualization. Data storage is very I/O intensive and
can dominate the overall running time of an applica-
tion, depending on the characteristics of the I/O access
pattern. Our NCIO benchmark determines how I/O
characteristics greatly affect performance (up to 2 or-
ders of magnitude) and provides scientific application
developers with guidelines for improvement. In this pa-
per, we examine the impact of various I/O parameters
and methods when using the MPI-IO interface to store
structured scientific data in an optimized parallel file
system.

1. Introduction

There is a class of scientific simulations that com-
pute on large, structured multi-dimensional datasets
which must be stored at numerous time steps. Data
storage is necessary for visualization, snapshots, check-
pointing, out-of-core computation, post processing [11],
and numerous other reasons. Integrated Parallel Ac-
curate Reservoir Simulation (IPARS) [12] is one such
example. IPARS, a software system for large-scale oil
reservoir simulation, computes on a three-dimensional
data grid at every time step with 9,000 cells. Each
cell in the grid is responsible for 17 variables. A total
of 10,000 time steps will generate approximately 6.9
GBytes of data. Another example of scientific com-
puting on large structured datasets is the Advanced
Simulation and Computing (ASC) FLASH code. The

ASC FLASH code [7], an adaptive mesh refinement
application that solves fully compressible, reactive hy-
drodynamics equations for studying nuclear flashes on
neutron stars and white dwarfs, stores 24 variables per
cell in a three-dimensional data grid. Storing time
step data in structured data grids for applications like
IPARS and ASC FLASH requires using an I/O ac-
cess pattern, which contains both a memory descrip-
tion and a matching file description. When individual
variables are computed and stored, the memory and file
descriptions generated for the resulting I/O access pat-
tern may have contiguous regions as small as a double
(usually 8 bytes). Numerous studies have shown that
the noncontiguous I/O access patterns evident in ap-
plications as IPARS and FLASH are common to most
scientific applications [1, 6]. Most scientific applica-
tions use MPI-IO natively or through higher level I/O
libraries such as pNetCDF [9] or HDF5 [8].

Cluster computing has been rapidly growing as the
leading hardware platform for large-scale scientific sim-
ulation due to cost-effectiveness and scalability. While
I/O has traditionally been a bottleneck in PCs, at-
tempting to service the I/O requirements of an entire
cluster has only augmented this problem to a much
larger scale. Parallel file systems have helped to attain
better I/O performance for clusters by striping data
across multiple disks and are commonly used in most
large-scale clusters [10, 5, 13, 2, 16].

In this paper, we generalize noncontiguous I/O ac-
cess for storing scientific data in a modern parallel file
system and evaluate the effects of varying three I/O
characteristics: region count, region size and region
spacing. We created the noncontiguous I/O bench-
mark, NCIO, to help application designers optimize
their I/O algorithms. NCIO tests various I/O meth-
ods (POSIX I/O, list I/O, two phase I/O, and datatype
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Figure 1. Various I/O access cases. (a) refers to contiguous in memory and file (c-c). (b) refers to
noncontiguous in memory and contiguous in file (nc-c). (c) refers to contiguous in memory and
noncontiguous in file. (d) refers to noncontiguous in memory and file (nc-nc).

I/O methods) in all I/O cases (c-c, nc-c, c-nc, nc-nc)
with the important I/O characteristics of region count,
region size, and region spacing. The results of our test-
ing provides guidelines that can help scientific applica-
tion developers understand how their I/O algorithms
can significantly affect I/O performance between 1 to
3 orders of magnitude. We offer a set of guidelines for
improving I/O performance based on our results.

Our paper is organized as follows. In Section 2,
we define the various cases of noncontiguous I/O and
briefly discuss the current noncontiguous I/O methods
we will test. In Section 3, we explain the three ma-
jor I/O characteristics which affect overall I/O perfor-
mance. In Section 4, we describe the NCIO benchmark,
discuss our software stack and present a brief look at
our implementation and optimizations. In Section 5,
we present the results of the NCIO benchmark and de-
tailed performance analysis. In Section 6, we describe
our guidelines for improving I/O performance for sci-
entific application developers. In Section 7, we sum-
marize the work of this paper and discuss possibilities
for future work.

2. Noncontiguous I/O: Definition and
Methods

All types of I/O access patterns, including both con-
tiguous and noncontiguous cases, are shown in Figure
1. For the contiguous in memory and contiguous in file
case, we use the notation c-c. We refer to the noncon-
tiguous cases as nc-c for noncontiguous in memory and
contiguous in file, c-nc for contiguous in memory and
noncontiguous in file, and nc-nc for noncontiguous in
memory and noncontiguous in file.

MPI-IO provides a very rich interface for describing
structured noncontiguous data access. In order to effi-
ciently service noncontiguous data access, a variety of
I/O methods have been proposed and implemented in
MPI-IO. We present a short overview of these methods

in the following subsections. A more detailed analysis
of each I/O method can be found in [4].

2.1. POSIX I/O

Generally, all parallel file systems support what is
called POSIX I/O, which relies on an offset and a
length in both memory and file to service an I/O re-
quest. This method can service noncontiguous I/O
access patterns by dividing up a noncontiguous I/O
access pattern into contiguous regions and then indi-
vidually servicing these contiguous regions with corre-
sponding POSIX I/O operations. The division of the
I/O access pattern into smaller contiguous regions sig-
nificantly increases the amount of I/O requests pro-
cessed by the underlying file system. Also, the divi-
sion often forces more I/O requests than actual num-
ber of noncontiguous regions in the access pattern as
shown in Figure 2a. Serious overhead incurred by ser-
vicing so many individual I/O requests limits perfor-
mance for noncontiguous I/O when using the POSIX
interface. Fortunately, for users which have access to
file systems supporting only the POSIX interface, two
important optimizations were developed for more effi-
ciently performing noncontiguous I/O while using only
the POSIX I/O interface: data sieving I/O and two
phase I/O. Since our test platform (PVFS2) has no I/O
concurrency control we cannot test and do not discuss
data sieving I/O (which is described in full in [14]).
Even if it was supported, data sieving I/O most likely
would provide poor performance since all I/O requests
are serialized in aggregate overlapping I/O access pat-
terns (as used in our tests).

2.2. Two Phase I/O

Figure 2c illustrates the two phase method [15],
which uses both POSIX I/O and data sieving. The
two phase method identifies a subset of the application
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Figure 2. (a) Example POSIX I/O request. Using traditional POSIX interfaces for this access pattern
cost five I/O requests, one per contiguous region. (b) Example list I/O or datatype I/O request. Only
a single I/O request is necessary to handle this noncontiguous access due to more descriptive I/O
requests. (c) Example two phase I/O request. Interleaved file access patterns can be effectively
accessed in larger file I/O operations with the two phase method.

processes that will actually do I/O; these processes are
called aggregators. Each aggregator is responsible for
I/O to a specific and disjoint portion of the file. When
performing a read operation, aggregators first read a
contiguous region containing desired data from storage
and put this data in a local temporary buffer. Next,
data is redistributed from these temporary buffers to
the final destination processes. Write operations are
performed in a similar manner. First, data is gathered
from all processes into temporary buffers on aggrega-
tors. Next, this data is written back to storage using
POSIX I/O operations. An approach similar to data
sieving is used to optimize this write back to storage
when there are still gaps in the data. As mentioned
earlier, data sieving is also used in the read case.

A big advantage of two phase I/O is its ability for
I/O aggregators to combine the noncontiguous file de-
scriptions from all processes and perform only a few
large I/O operations. One significant disadvantage of
two phase I/O is that all processes must synchronize
on the open, set view, read, and write calls. Synchro-
nizing across large numbers of processes with different
sized workloads can be a large overhead. Two phase
I/O performance relies heavily on the MPI implemen-
tation’s high performance data movement. If the MPI
implementation is not significantly faster than the ag-

gregate I/O bandwidth in the system, the overhead of
the additional data movement in two phase I/O is likely
to prevent two phase I/O from outperforming the di-
rect access optimizations (list I/O and datatype I/O).

2.3. List I/O

The list I/O interface is an enhanced parallel file
system interface designed to support noncontiguous ac-
cesses shown in Figure 2b. List I/O is an interface
for describing accesses that are both noncontiguous in
memory and file in a single I/O request by using offset-
length pairs. With this interface an MPI-IO implemen-
tation can flatten the memory and file datatypes (con-
vert them into lists of contiguous regions) and then
describe an MPI-IO operation with a single list I/O
request. In previous work [3] we discussed the imple-
mentation of list I/O in PVFS and support for list I/O
under the ROMIO MPI-IO implementation. The ma-
jor drawbacks of list I/O are the creation and process-
ing of these large lists and the transmission of the file
offset-length pairs from client to server in the parallel
file system. Additionally, since we want to bound the
size of the list I/O requests going over the network,
only a fixed number of file regions can be described in
one request. So while list I/O significantly reduces the



number of I/O operations (in our implementation by a
factor of 64), a linear relationship still exists between
the number of noncontiguous regions and the number
of actual list I/O requests (within the file system layer).

2.4. Datatype I/O

Datatype I/O, also illustrated in Figure 2b, is an
effort to address the deficiency seen in the list I/O in-
terface when faced with an access that is made up of
many small regions, particularly one that exhibits some
degree of regularity. Datatype I/O borrows from the
datatype concept used in both message passing and
I/O for MPI applications. The constructors used in
MPI types allow for concise descriptions of the reg-
ular, noncontiguous data patterns seen in many sci-
entific applications (such as extracting a row from a
two-dimensional dataset). The datatype I/O interface
replaces the lists of I/O regions in the list I/O inter-
face with an address, count, and datatype for memory,
and a displacement, datatype, and offset into datatype
for file. These parameters correspond directly to the
address, count, datatype, and offset into the file view
passed into an MPI-IO call and the displacement and
file view datatype previously defined for the file. The
datatype I/O interface is not meant to be used by ap-
plication programmers; it is an interface specifically
for use by I/O library developers. Helper routines are
used to convert MPI types into the format used by the
datatype I/O functions.

Since it can map directly from an MPI-IO I/O oper-
ation with a one-to-one correspondence, datatype I/O
greatly reduces the amount of I/O requests necessary
to service a structured noncontiguous request when
compared to the other noncontiguous access methods.
Datatype I/O is unique in comparison with the other
methods in that increasing the number of noncontigu-
ous regions that are regularly occurring does not in-
cur any additional I/O access pattern description data
passed over the network. When presented with an ac-
cess pattern of no regularity, datatype I/O breaks down
into list I/O.

3. I/O Characteristics Discussion

There are three major I/O access pattern character-
istics that seriously affect noncontiguous I/O perfor-
mance:

• Region Count - For some methods, this can
cause an increase in the amount of data sent
from the clients to the I/O system over the net-
work. When using POSIX I/O, for example, in-
creasing the region count increases the number of

I/O requests necessary to service a noncontiguous
I/O call. However, some other methods such as
datatype I/O are generally expected to be unaf-
fected by this parameter since increasing the re-
gion count does not change the size of the access
pattern representation for that method in struc-
tured data access.

• Region Size - Due to the mechanical nature of
hard drives, a larger region size will achieve better
bandwidth for methods that read/write only the
necessary data. Two phase I/O is not likely to
improve as much as the individual I/O methods
when increasing region sizes since it uses the data
sieving optimization. Since memory does not ex-
hibit the same properties as disk, we do no expect
any performance change due to larger region sizes
in memory.

• Region Spacing - If the distance between file re-
gions is small, two phase I/O will improve perfor-
mance due to internal data sieving. If the distance
is small enough, we expect file system block opera-
tions may help with caching. We note that spacing
between regions is usually different in memory and
in file due to the interleaved data operation that is
commonly seen in scientific datasets that are ac-
cessed by multiple processes. For example, in the
FLASH code, the memory structure of the block
is different that the file structure, since the file
structure takes into account multiple processes.

These characteristics, illustrated in Figure 3, have a
different effect on performance when regarding memory
access descriptions or file access descriptions.

4. NCIO Benchmark

We have designed an I/O benchmark, Noncontigu-
ous I/O Test (NCIO), for studying I/O performance
using various I/O methods, I/O characteristics, and
noncontiguous I/O cases. We test all three I/O charac-
teristics (region size, region count, and region spacing)
against four I/O methods (POSIX I/O, list I/O, two
phase I/O, and datatype I/O) in all four of the I/O
access cases (c-c, nc-c, c-nc, and nc-nc).

We chose to call MPI File sync() after every I/O op-
eration. This enables us to include the time to move
the data to the hard drive and not simply test network
bandwidth. When using two phase I/O, an optimiza-
tion in the PVFS2 driver of ROMIO forces only one
of the processes to actually call MPI File sync(), in-
stead of all 64 processes calling MPI File sync() when
using individual I/O methods. Test runs that did not
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Figure 3. An example of how an access pattern is created from the NCIO parameters.

synchronize the data to disk showed I/O bandwidth as
high as 1.59 GBytes / sec. Our best synchronized re-
sults will barely reach 24% of that (roughly 389 MBytes
/ sec). However, when checkpointing and doing other
persistent data storage operations, file synchronization
to hard disk is not just advised, it is essential to en-
sure that the data is available when the application is
restarted or visualized. All tests used 64 compute pro-
cesses on 32 dual CPU computers and 16 computers
each running a single PVFS2 server process. I/O tests
have a lot of variance, so for each data point for we
averaged 6 repetitions without the high and the low.
We also inserted a one second delay between test runs
to try to minimize effects from previous runs.

In order to observe the individual effect of varying
each of the I/O characteristics, we hold all other char-
acteristics constant during our experiments. We chose
a default region size of 8 bytes to match the size of
a double on most computing platforms. This makes
the test as I/O intensive as possible and provides a
worst case scenario for scientific computing. We used
a default spacing of 128 bytes since this maps well to
applications that use 16 variables per cell (similar to
17 in IPARS and 24 in the ASC FLASH code). We
chose a default region count of 4096 to represent 4096
cells, a mid-size grid. We note that whenever memory
and/or file descriptions are contiguous, we used a con-
tiguous MPI datatype for data representation. We used
a vector MPI datatype for noncontiguous data rep-
resentation. While many scientific applications store
data in multi-dimensional datasets, which can be rep-
resented by vector of vector MPI datatype, we chose
to use a single MPI vector datatype to keep consis-
tent region spacing. Our results can be extrapolated
to approximately determine multi-dimensional region
spacing performance.

4.1. PVFS2 and ROMIO MPI-IO

The Parallel Virtual File System 2 (PVFS2) [16] is a
parallel file system for commodity Linux clusters that
is a complete redesign of PVFS1 [2]. It provides both a
cluster-wide consistent name space and user-defined file
striping found in PVFS1, but also adds functionality to

provide better scalability and performance.
ROMIO is the MPI-IO implementation developed

at Argonne National Laboratory [14]. It builds upon
the MPI-1 message passing operations and supports
many underlying file systems through the use of an
abstract device interface for I/O (ADIO). ADIO allows
the use of file-system specific optimizations such as the
list I/O and datatype I/O interfaces described here.
Additionally, ROMIO implements the data sieving and
two phase optimizations as generic functions that can
be used for all file systems supported by ADIO.

4.2. Implementation and Optimizations

In order to test each noncontiguous I/O method
in PVFS2, we had to implement them in the PVFS2
driver of ROMIO. We rewrote the list I/O implementa-
tion to simplify the code and fix bugs. We added sup-
port for datatype I/O by breaking down MPI datatypes
into PVFS2 datatypes to produce native PVFS2 I/O
datatype requests. We changes the ADIO PVFS2 hints
to select different I/O methods with the MPI Info set()
call. This work is quite substantial, however, due to
a shortage of space, we cannot detail our implemen-
tation. Our modified PVFS2 driver has been sent to
ROMIO developers.

We rewrote the I/O portion of the PVFS2 server
trove component to use read(), write() and lseek() calls
instead of lio listio(). We found this optimization im-
proved performance over an order of magnitude in some
noncontiguous I/O cases. We will send this patch to
the PVFS2 developers when it stabilizes.

5. Performance Evaluation

All tests were run on the Feynman cluster at Sandia
National Laboratories. Feynman, composed of Europa
nodes, Ganymede nodes, and I/O nodes, has a total of
371 computers. In order to keep our testing as homo-
geneous as possible, we only used the Europa nodes.
The Europa nodes are dual 2.0 GHz Pentium-4 Xeon
CPUs with 1 GB RDRAM. They are connected with a
Myrinet-2000 network and use the Redhat Linux En-
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Figure 4. NCIO results from testing various region counts.

terprise operating system. Since each computer has
dual CPUs, we used 2 compute processes per node.

We used 16 computers for our PVFS2 file system.
All 16 computers ran the PVFS2 server with one com-
puter additionally handling metadata server responsi-
bilities. All PVFS2 files were created with the default
64 KByte strip size, totaling to a 1 MByte stripe across
all I/O servers. Figure 4 shows our results when vary-
ing the region count. Figure 5 shows our results when
varying the region size. Figure 6 shows our results
when varying the region spacing.

5.1. NCIO - Vary Region Count Results

In the c-c case, increasing the region count increases
overall bandwidth. The data sizes per process range
from 16 KBytes at the low end (region count = 2048)
to 8 MBytes at the high end (region count = 1048576).
The overhead of a double network transfer makes two
phase I/O much less efficient than the other methods.

In the nc-c case, two phase I/O and datatype I/O
perform fairly well as the impact of varying the region
count with noncontiguous memory access isn’t as good
as c-c, but still scales up some. List I/O performance
immediately drops since only 64 offset-length pairs are
transferred per request. List I/O must process 1048576

/ 64 = 16384 requests per process, where each request is
only 64 * 8 = 512 bytes. Such a small size is not suited
for a hard disk. Datatype I/O drops significantly as
well due to the PVFS2 server side storage implemen-
tation. The PVFS2 flow component can only handle
processing 1024 offset-length pairs at a time on the
server side. Therefore, datatype I/O can only write 8
KByte regions at a time, which is better than the 512
byte regions in list I/O but still not large enough to
achieve high disk bandwidth.

In the c-nc case, we note that I/O bandwidth is
less than 5% of the maximum bandwidth we saw in
c-c. Noncontiguous data access in file is really hard on
the individual I/O methods (POSIX I/O, list I/O, and
datatype I/O). Performance of datatype I/O drops off
at about 16384 regions. This is mostly likely caused by
the fact that datatype I/O requests block the PVFS2
server until they completely finish. Fsync() calls im-
mediately come after the datatype I/O requests and
block the PVFS2 server from doing other client I/O
requests. Since the fsync() calls arrive at intervals af-
ter each datatype I/O request is completed the aggre-
gate write I/O pattern will have 64 I/O requests inter-
rupted with intermittent fsync() calls. List I/O perfor-
mance isn’t as affected by this fsync() problem because
it breaks down into I/O requests of 64 file offset-length
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Figure 5. NCIO results from testing various region sizes.

pairs. Therefore, the list I/O requests all finish about
the same time (most likely around when the other list
I/O requests are around their last 64 file offset-lengths
pairs) and then the fsync() calls occur, making it less
costly to fsync() versus the datatype I/O case. The
MPI File sync() time for the list I/O test in the c-nc
case never exceeds 18 seconds when region count =
1048576. The datatype I/O MPI File sync() time for
the c-nc case reaches as high 2061 seconds. POSIX
I/O is so slow that with the region count = 1048576, it
took 11014.66 second (0.047 MBytes / sec) to complete
a repetition. In fact, two phase I/O is performing quite
well in comparison because it only does a single fsync()
call between all the processes. This allows it to scale
up much better than the other methods.

In the nc-nc case, performance is nearly identical
to the c-nc case. If the file description is noncontigu-
ous then making the memory description noncontigu-
ous has little impact.

5.2. NCIO - Vary Region Size Results

In the c-c case, we see the same trends as the c-c case
of the region count test. Increasing the total data size
from 32 KBytes (region size = 8) to 16 MBytes (region
size = 4096) / process scales up the I/O bandwidth.

Since we have 16 I/O servers, each server only receives
about 1 MByte per compute process at the maximum
size. With larger sizes we could certainly achieve higher
I/O bandwidth. Two phase I/O tails off here again due
to its double network transfer.

In the nc-c case, datatype I/O performs almost
equivalent to the c-c case. Since the default region
count = 4096, and there are 16 I/O servers, the flow
component isn’t a bottleneck for datatype I/O. Two
phase I/O performance is nearly identical to its nc-c
case of the region count test. List I/O actually does
fairly well here as well since it isn’t as limited by its 64
offset-length pair maximum as it was in the nc-c case
of the region count test.

In the c-nc case, datatype I/O peaks rapidly and
then falls due to the fsync() issue discussed in the c-
c case of the region count test. If the fsync() calls
happened after all the writes from all the processes
finished we would expect the scaling to continue. All
I/O methods benefit from the increased region sizes.
Even two phase I/O can benefit quite a bit from the
larger region sizes since it doesn’t have to pass around
such a large amount of offset-length pairs to each of the
aggregators and its percentage of useful data acquired
while using the data sieving method is improving.

In the nc-nc case, the trends of match the c-nc case,
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Figure 6. NCIO results from testing various region spacing.

again showing that if the file description is noncontigu-
ous, then it makes little performance difference if the
memory description is contiguous or noncontiguous.

5.3. NCIO - Vary Region Spacing Results

In the c-c case, we only have a single bar since
varying region spacing has no effect on a contiguous
memory or file description. One interesting thing is
that two phase I/O performs slightly better than the
other methods. This is also evident in the c-c cases
for the other tests when each process is writing 32
KBytes. This is a case where the MPI File sync()
costs are cheaper for two phase I/O (due to the two
phase MPI File sync() optimization). The average
MPI File sync() cost for the two phase I/O runs was
0.0391 seconds versus 0.0705 seconds for the normal
case, which allows two phase I/O a win at this small
write case.

In the nc-c case, datatype I/O and two phase I/O
fluctuate (even with the average policy we used with
6 repetitions and eliminating the high and the low).
The main cause of the fluctuation is that the writes
are only 32 KBytes per process and can only fill half a
strip on the I/O servers. If we average out the datatype
I/O numbers, the result is 23.83 MBytes / sec (23.65

MBytes / sec on the c-c case). If we average out the
two phase I/O numbers, the result is 30.832 MBytes
/ sec (32.017 MBytes / sec in the c-c case). When
going from the c-c case to the nc-c case, datatype I/O
and two phase I/O retain their performance. However,
list I/O takes a large drop due to only processing 64
offset-length pairs at a time. Therefore, each process
calling list I/O must do a series of small writes (64 * 8
= 512 bytes) to finish the access pattern. POSIX I/O
is making 4096 writes of size = 8 bytes, which leads to
an aggregate bandwidth of no more than 0.145 MBytes
/ sec.

In the c-nc case, performance drops for all I/O meth-
ods quite significantly. The individual I/O methods
are all suffering from disk seek penalties. Writing 8
bytes and then skipping up to 4096 bytes makes per-
formance drop rapidly. Two phase I/O surpasses the
other methods due to its internal data sieving imple-
mentation making larger I/O operations until about
1 KByte spacing, where it appears that the penalty
of data sieving large holes overwhelms the benefits of
larger I/O operations and allows datatype I/O to sur-
pass it.

The nc-nc case shows a similar trend to the c-nc
case. Again we note that moving from c-nc to nc-nc
makes only a small performance difference.



6. I/O Guidelines

• Scientific applications accessing structured
datasets should use the MPI-IO interface.
If an application is not using MPI-IO, then unless
the application is doing its own optimization, its
performance most likely follows the POSIX I/O
results. For example, when region count = 4096 in
the nc-nc region count test, switching from POSIX
I/O to two phase I/O would improve aggregate
bandwidth by a factor of about 260.

• When using individual I/O methods, choose
datatype I/O. In nearly all cases datatype I/O
exceeded the performance of the other individual
I/O methods. When region count = 131072 in the
nc-c region count test, datatype I/O outperformed
list I/O by a factor of 90 and POSIX I/O by a
factor of over 800.

• Try to group writes into larger file regions
as much as possible. Larger file regions favor
better performance. When the file description is
noncontiguous, all I/O methods performed best on
the file region test with large file region sizes. For
example, if we have a multi-dimensional dataset
with several variables per cell where the variables
are the lowest array dimension when flattened into
a file, try to write as many of the variables at a
time is possible (which should increase file region
sizes). Also, in general, nc-c tests outperformed
c-nc and nc-nc tests. Performance generally im-
proved between a factor of 2 to 4 for list I/O,
datatype I/O, and two phase I/O when moving
from c-nc to nc-c in the region size test,

• Reduce the spacing between file regions be-
ing written. All I/O methods, while writing
the same amount of data with the same region
sizes decreased significantly in performance as the
file spacing increased. Application designers can
hopefully alleviate file region spacing issues by
helping control which processes are responsible for
portions of the data grid and keep them logically
close in file. In two phase I/O c-nc case, when
going from a region spacing of 1024 to 512, per-
formance increased by about 85%.

• Noncontiguous memory description versus
contiguous memory description makes little
difference if the file description is noncon-
tiguous. If the file description is noncontiguous,
it may be tempting to copy noncontiguous mem-
ory data into a contiguous buffer before using a
MPI Write() call, however, our results show that

this won’t affect performance and will just incur
extra memory overhead.

• If the file description is noncontiguous, the
region sizes are small and the count of file
regions is very large (i.e. greater than
16384), use two phase I/O. Two phase I/O,
with its aggregate data sieving properties, is best
suited for this case since it creates large I/O re-
quests for the hard disk. However, at larger file
region sizes, the individual I/O methods may sur-
pass the two phase I/O performance quite rapidly.

• Consider the cost of two phase I/O synchro-
nization. While two phase I/O performance may
look appealing in some cases, one caveat with two
phase I/O is that all processes must synchronize on
open, read/write, and setting the file view. If your
application automatically synchronizes before all
compute processes write, the cost of two phase
I/O synchronization will be minimal. However, if
computational times between processes vary (i.e.
an AMR code) and data is written at random in-
tervals, then even if two phase I/O results in this
paper may have surpassed individual I/O meth-
ods, the penalty of waiting may take away any
benefit of increased bandwidth of the actual I/O
operation.

7. Conclusions and Future Work

We have described the problem of storing structured
scientific data and how it is affected by I/O character-
istics and I/O methods. Our contributions include:

• MPI-IO, PVFS2 implementation and tun-
ing - We rewrote the I/O portion of the ROMIO
PVFS2 device driver to support list I/O and
datatype I/O. We reimplemented the read/write
procedures in the PVFS2 trove component to im-
prove performance by over an order of magnitude
for noncontiguous access patterns in many cases.

• Created NCIO benchmark and provided de-
tailed performance evaluation - We imple-
mented the NCIO benchmark to provide a use-
ful tool for learning more about how noncontigu-
ous I/O. Our performance analysis helps to un-
derstand how and why I/O access patterns are af-
fected by various I/O methods, I/O cases, and I/O
characteristics.

• Provided guidelines for application develop-
ers - Our results and discussion have led us to pro-
duce a series of insights for how and when appli-
cation designers can get the best utilization out of



their high performance file system. Many of these
suggestions can make performance differences of 1
to 2 orders of magnitude.

While our testing does not cover the entire range of
possibilities of how one create access patterns, it has
generated a simple set of guidelines that can aid in
structured scientific storage and make significant I/O
improvements.

There are a range of possibilities for future work. We
plan to improve the two phase I/O method in ROMIO.
We will experiment with two phase I/O to internally
use the individual I/O methods, which may improve
performance for certain cases. We can work on the
request scheduler on the server side to make sure to
delay requested fsync() calls until pending I/O oper-
ations to a particular file complete to reduce client
MPI File sync() costs.

While noncontiguous file access performance is less
than ideal, we feel that the I/O methods we have
available provide a substantial improvement over the
POSIX I/O interface. The noncontiguous file ac-
cess situation has improved significantly over the last
decade and our paper provides some insight on how to
take advantage of these improvements. In summary, we
hope our study will benefit scientific application design-
ers in more efficiently storing their structured datasets.
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