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Abstract

Application awareness is an important factor of efficient
resource scheduling. This paper introduces a novel ap-
proach for application classification based on the Principal
Component Analysis (PCA) and the k-Nearest Neighbor (k-
NN) classifier. This approach is used to assist scheduling
in heterogeneous computing environments. It helps to re-
duce the dimensionality of the performance feature space
and classify applications based on extracted features. The
classification considers four dimensions: CPU-intensive,
I/O and paging-intensive, network-intensive, and idle. Ap-
plication class information and the statistical abstracts of
the application behavior are learned over historical runs
and used to assist multi-dimensional resource scheduling.
This paper describes a prototype classifier for application-
centric Virtual Machines. Experimental results show that
scheduling decisions made with the assistance of the ap-
plication class information, improved system throughput by
22.11% on average, for a set of three benchmark applica-
tions.

1. Introduction

Heterogeneous distributed systems that serve applica-
tion needs from diverse users face the challenge of pro-
viding effective resource scheduling to applications. Re-
source awareness and application awareness are necessary
to exploit the heterogeneities of resources and applications
to perform adaptive resource scheduling. In this context,
there has been substantial research on effective scheduling
policies [38][33][37] with given resource and application
specifications. There are several methods for obtaining re-
source specification parameters (e.g. CPU, memory, disk
information from /proc in Unix systems). However, appli-
cation specification is challenging to describe because of the
following factors:

Numerous types of applications: In a closed environment
where only a limited number of applications are running, it
is possible to analyze the source codes of each application
or even plug in codes to indicate the application execution
stages for effective resource scheduling. However, in an
open environment such as in Grid computing, the growing
number of applications and lack of knowledge or control of
the source codes present the necessity of a general method
of learning application behaviors without source code mod-
ifications.

Multi-dimensionality of application resource consump-
tion: An application’s execution resource requirement is
often multi-dimensional. That is, different applications may
stretch the use of CPU, memory, hard disk or network band-
width to different degrees. The knowledge of which kind of
resource is the key component in the resource consumption
pattern can assist resource scheduling.

Multi-stage applications: There are cases where long-
running scientific applications exhibit multiple execution
stages. Different execution stages may stress different kinds
of resources to different degrees, hence characterizing an
application requires knowledge of its dynamic run-time be-
havior. The identification of such stages presents opportu-
nities to exploit better matching of resource availability and
application resource requirement across different execution
stages and across different nodes. For instance, with pro-
cess migration techniques [29][15] it is possible to migrate
an application during its execution for load balancing.

The above characteristics of grid applications present a
challenge to resource scheduling: How to learn and make
use of an application’s multi-dimensional resource con-
sumption patterns for resource allocation? This paper in-
troduces a novel approach to solve this problem: application
classification based on the feature selection algorithm, Prin-
cipal Component Analysis (PCA), and K-Nearest Neighbor
(k-NN) classifier [18][14]. The PCA is applied to reduce the
dimensionality of application performance metrics, while
preserving the maximum amount of variance in the metrics.
Then, the k-Nearest Neighbor algorithm is used to catego-
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rize the application execution states into different classes
based on the application’s resource consumption pattern.
The learned application class information is used to assist
the resource scheduling decision-making in heterogeneous
computing environments.

The application classifier is inspired by the VMPlant
[26] project, which provides automated cloning and con-
figuration of application-centric Virtual Machines (VMs).
Problem-solving environments such as In-VIGO [11] can
submit requests to the VMPlant service, which is capable
of cloning an application-specific virtual machine and con-
figuring it with an appropriate execution environment. In
the context of VMPlant, the application can be scheduled
to run on a dedicated virtual machine, which is hosted by
a shared physical machine. Within the VM, system per-
formance metrics such as CPU load, memory usage, I/O
activity and network bandwidth utilization, reflect the ap-
plication’s resource usage.

The classification system described in this paper lever-
ages the capability of summarizing application performance
data by collecting system-level data within a VM, as fol-
lows. During the application execution, snapshots of per-
formance metrics are taken at a desired frequency. A PCA
processor analyzes the performance snapshots and extracts
the key components of the application’s resource usage.
Based on the extracted features, a k-NN classifier cate-
gorizes each snapshot into one of the following classes:
CPU-intensive, IO-intensive, memory-intensive, network-
intensive and idle.

By using this system, resource scheduling can be based
on a comprehensive diagnosis of the application resource
utilization, which conveys more information than CPU load
in isolation. Experiments reported in this paper show that
the resource scheduling facilitated with application class
composition knowledge can achieve better average system
throughput than scheduling without the knowledge.

The rest of the paper is organized as follows: Section
2 briefly introduces VMPlant and motivates the need for a
classifier. The PCA and the k-NN classifier are described in
the context of application classification in Section 3. Sec-
tion 4 presents the classification model and implementa-
tion. Section 5 presents and discusses experimental results
of classification performance measurements. Section 6 dis-
cusses related work. Conclusions and future work are dis-
cussed in Section 7.

2. Virtual Machines and VMPlant

A “classic” virtual machine enables multiple indepen-
dent, isolated operating systems to run on one physical ma-
chine, efficiently multiplexing system resources of the host
machine [23]. A virtual machine is highly customizable,
in terms of hardware (memory, hard disk, devices) as well

as software resources (operating system, user applications
and data). It provides a secure and isolated environment for
application execution [20].

The VMPlant Grid service [26] builds upon VM tech-
nologies and provides support for automated creation and
flexible configuration of virtual machine execution environ-
ments. Customized, application-specific VMs can be de-
fined in VMPlant with the use of a directed acyclic graph
(DAG) configuration. VM execution environments defined
within this framework can then be cloned and dynamically
instantiated to provide a homogeneous application execu-
tion environment across distributed resources.

The application behavior learning proposed in this paper
is designed to capture the behavior of an application running
in a dedicated virtual machine created by a VM scheduler.
The physical machine upon which it is instantiated, how-
ever, is time- and space-shared across many VM instances.
Through the decoupling between virtual and physical ma-
chines, the system performance metrics collected using ex-
isting mechanisms (e.g. /proc) within a VM summarize and
reflect the resource consumption of an application indepen-
dently from others.

The application behavior knowledge gained from the
learning process over its historical runs can be used to as-
sist the resource reservation on the virtual machine’s host
(physical) servers for VM platforms such as [1]. The classi-
fier described in this paper can assist VMPlant or other VM-
based schedulers by providing information that can be used
to determine what resources are needed from the physical
host to match an application’s desired quality of service.

3. Learning Algorithms

Application behavior can be defined by its resource uti-
lization, such as CPU load, memory usage, network and
disk bandwidth utilization. In principle, the more infor-
mation a scheduler knows about an application, the better
scheduling decisions it can make. However, there is a trade-
off between the complexity of decision-making process and
the optimality of the decision. The key challenge here is
how to find a representation of the application, which can
describe multiple dimensions of resource consumption, in
a simple way. This section describes how the pattern clas-
sification techniques, the PCA and the K-NN classifier, are
applied to achieve this goal.

A pattern classification system consists of pre-
processing, feature extraction, classification, and post-
processing. The pre-processing and feature extraction are
known to significantly affect the classification, because the
error caused by wrong features may propagate to the next
steps and stays predominant in terms of the overall classifi-
cation error. In this work, a set of application performance



Figure 1. Application classification model
The Performance profiler collects performance metrics of the target ap-
plication node. The Classification center classifies the application using
extracted key components and performs statistic analysis of the classifica-
tion results. The Application DB stores the application class information.
(m is the number of snapshots taken in one application run, t0/t1: are
the beginning ending times of the application execution, VMIP is the IP
address of the application’s host machine).

metrics are chosen based on expert knowledge and the prin-
ciple of increasing relevance and reducing redundancy [39].

Principal Component Analysis (PCA) [18] is a linear
transformation representing data in a least-square sense.
When a set of vector samples are represented by a set of
lines passing through the mean of the samples, the best lin-
ear directions result in eigenvectors of the scatter matrix
- the so-called ”principal components”. The correspond-
ing eigenvalues represent the contribution to the variance of
data. When the k largest eigenvalues of n principal compo-
nents are chosen to represent the data, the dimensionality of
the data reduces from n to k.

K-Nearest Neighbor classifier (k-NN) is used in this pa-
per. The k-NN classifier decides the class by considering
the votes of k (an odd number) nearest neighbors. The
nearest neighbor is picked as the training data geometrically
closest to the test data in the feature space.

In this work, a vector of the application’s resource con-
sumption snapshots is used to represent the application.
Each snapshot consists of a chosen set of performance met-
rics. The PCA is used to preprocess the raw data to inde-
pendent features for the classifier. Then, a 3-NN classifier
is used to classify each snapshot. The majority vote of the
snapshots’ classes is used to represent the class of the appli-
cations: CPU-intensive, I/O and paging-intensive, network-
intensive, or idle. A machine with no load except for back-
ground load from system daemons is considered as in idle
state.

4. Application Classification Model and Imple-
mentation

The application classifier is composed of a performance
profiler, a classification center, and an application database
(DB) as shown in Figure 1. In addition, a monitoring system
is used to sample the system performance of a computing
node running an application of interest.

4.1. The Performance Profiler

The performance profiler is responsible for collecting
performance data of the application node. It interfaces with
the resource manager to receive data collection instructions,
including the target node and when to start and stop.

The performance profiler can be installed on any node
with access to the performance metric information of the
application node. In our implementation, the Ganglia [30]
distributed monitoring system is used to monitor applica-
tion nodes. The performance sampler takes snapshots of the
performance metrics collected by Ganglia at a predefined
frequency (currently, 5 seconds) between the application’s
starting time t0 and ending time t1. Since Ganglia uses mul-
ticast based on a listen / announce protocol to monitor the
machine state, the collected samples consist of the perfor-
mance data of all the nodes in a subnet. The performance
filter extracts the snapshots of the target application for fu-
ture processing. At the end of profiling, an application per-
formance data pool is generated. The data pool consists of
a set of n dimensional samples An×m = (a1, a2, · · · ,am),
where m = (t1 − t0)/d is the number of snapshots taken
in one application run and d is the sampling time interval.
Each sample ai consists of n performance metrics, which
include all the default 29 metrics monitored by Ganglia and
the 4 metrics that we added based on the need of classifica-
tion, including the number of I/O blocks read from/written
to disk, and the number of memory pages swapped in/out.
A program was developed to collect these four metrics (us-
ing vmstat) and the metrics were added to the metric list of
Ganglia’s gmond.

4.2. Classification Center

The classification center has three components: the data
preprocessor, the PCA processor, and the classifier. To re-
duce the computation intensity and improve the classifica-
tion accuracy, it employs the PCA algorithm to extract the
principal components of the resource usage data collected
and then performs classification based on extracted data of
the principal components.
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m: The number of snapshots taken in one application run, n: The number of performance metrics,
An×m: All performance metrics collected by monitoring system,
A′

p×m: The selected relevant performance metrics after the zero-mean and unit-variance normalization,
Bq×m: The extracted key component metrics, C1×m: The class vector of the snapshots,
Class: The application class, which is the majority vote of snapshots’ classes.

Figure 2. Performance feature space dimension reductions in the application classification process

4.2.1. Data Preprocessing Based on Expert Knowledge

Based on the expert knowledge, we identified 4 pairs
of performance metrics as shown in Table 1. Each pair
of the performance metrics correlates to the resource con-
sumption behavior of the specific application class and
has limited redundancies. For example, performance met-
rics of CPU System and CPU User are correlated to CPU-
intensive applications; Bytes In and Bytes Out are corre-
lated to Network-intensive applications; IO BI and IO BO
are correlated to the IO-intensive applications; Swap In and
Swap Out are correlated to Memory-intensive applications.
The data preprocessor extracts these eight metrics of the
target application node from the data pool based on our
expert knowledge. Thus it reduces the dimension of the
performance metric from n = 33 to p = 8 and generates
A′

p×m as shown in Figure 2. In addition, the preproces-
sor also normalizes the selected metrics to zero-mean and
unit-variance.

4.2.2. PCA Based Feature Selection

The PCA processor takes the data collected for the per-
formance metrics listed in Table 1 as inputs. It conducts the
linear transformation of the performance data and selects
the principal components based on the predefined minimal
fraction variance. In our implementation, the minimal frac-
tion variance was set to extract exactly two principal com-
ponents. Therefore, at the end of processing, the data di-
mension gets further reduced from p = 8 to q = 2 and the
vector Bq×m is generated, as shown in Figure 2.

4.2.3. Training and Classification

The 3-Nearest Neighbor classifier is used for the applica-
tion classification in our implementation. It is trained by a
set of carefully chosen applications based on expert knowl-
edge. Each application represents the key performance
characteristics of a class. For example, an I/O benchmark
program, PostMark [2], is used to represent the IO-intensive

Performance Metrics Description
CPU System / User Percent CPU System / User
Bytes In / Out Number of bytes per second

into / out of the network
IO BI / BO Blocks sent to / received from

block device (blocks/s)
Swap In / Out Amount of memory swapped

in / out from / to disk (kB/s)

Table 1. Performance metric list

class. SPECseis96 [19], a scientific computing intensive
program, is used to represent the CPU-intensive class. A
synthetic application, Pagebench, is used to represent the
Paging-intensive class. It initializes and updates an array
whose size is bigger than the memory of the VM, thereby
inducing frequent paging activity. Ettcp [3], a benchmark
that measures the network throughput over TCP or UDP be-
tween two nodes, is used as the training application of the
Network-intensive class. The performance data of all these
four applications and the idle state are used to train the clas-
sifier. For each test data, the trained classifier calculates its
distance to all the training data. The 3-NN classification
identifies only three training data sets with the shortest dis-
tance to the test data. Then the test data’s class is decided
by the majority vote of the three nearest neighbors.

4.3. Post Processing and Application
Database

At the end of classification, an m dimension class vec-
tor c1×m = (c1, c2, · · · , cm) is generated. Each element
of the vector c1×m represents the class of the correspond-
ing application performance snapshot. The majority vote
of the snapshot classes determines the application Class.
The complete performance data dimension reduction pro-
cess is shown in Figure 2. In addition to a single value
(Class) the application classifier also outputs class compo-
sition, which can be used to support application cost models



(Section 4.4). The post processed classification results to-
gether with the corresponding execution time (t1 − t0) are
stored in the application database and can be used to assist
future resource scheduling.

4.4. Applications in Cost-based Scheduling

The application class output provided by the proposed
system can be used by resource providers and users to es-
tablish cost-based scheduling models. For example, a cost
model may be conceived where the unit application exe-
cution time cost is calculated as the weighted average of
the units costs of different resources: UnitApplicationCost
= α.cpu% + β.mem% + γ.io% + δ.net% + ε.idle%, where
α, β, γ, δ, and ε are the unit costs of CPU, memory, I/O,
and network capacity, which are defined by the resource
providers. The cpu%, mem%, io%, net% and idle% are the
application class compositions, i.e. the outputs of the appli-
cation classifier. The model gives the resource provider the
flexibility to define their individualized pricing schemes.

5. Empirical Evaluation

We have implemented a prototype for application classi-
fication including a Perl implementation of the performance
profiler and a Matlab implementation of the classification
center. In addition, Ganglia was used to monitor the work-
ing status of the virtual machines. This section evaluates
our approach from the following three aspects: the classifi-
cation ability, the scheduling decision improvement and the
classification cost.

5.1. Classification Ability

The application class set in this experiment has four
classes: CPU-intensive, I/O and paging-intensive, network-
intensive, and idle. Application of I/O and paging-intensive
class can be further divided into two groups based on
whether they have or do not have substantial memory in-
tensive activities. Various synthetic and benchmark pro-
grams, scientific computing applications and user interac-
tive applications are used to test the classification ability.
These programs represent typical application behaviors of
their classes. Table 2 summarizes the set of applications
used as the training and the testing applications in the ex-
periments [4][19][5][2][6][3][34][7][8][9][10]. The 3-NN
classifier was trained with the performance data collected
from the executions of the training applications highlighted
in the table. All the application executions were hosted by
a VMware GSX virtual machine (VM1). The host server of
the virtual machine was an Intel(R) Xeon(TM) dual-CPU
1.80GHz machine with 512KB cache and 1GB RAM. In

addition, a second virtual machine with the same specifica-
tion was used to run the server applications of the network
benchmarks.

Initially the performance profiler collected data of all the
thirty-three (n = 33) performance metrics once every five
seconds (d = 5) during the application execution. Then the
data preprocessor extracted the data of the eight (p = 8)
metrics listed in Table 1 based on the expert knowledge of
the correlation between these metrics and the application
classes. After that, the PCA processor conducted the linear
transformation of the performance data and selected princi-
pal components based on the minimal fraction variance de-
fined. In this experiment, the variance contribution thresh-
old was set to extract two (q = 2) principal components.
This helps to reduce the computational requirements of the
classifier. Then, the trained 3-NN classifier conducts classi-
fication based on the data of the two principal components.

The training data’s class clustering diagram is shown
in Figure 3 (a). The diagram shows a PCA-based two-
dimensional representation of the data corresponding to the
five classes targeted by our system. After being trained
with the training data, the classifier classifies the remaining
benchmark programs shown in Table 2. The classifier pro-
vides outputs in two kinds of formats: the application class-
clustering diagram, which helps to visualize the classifica-
tion results, and the application class composition, which
can be used to calculate the unit application cost.

Figure 3 shows the sample clustering diagrams for three
test applications. For example, the interactive VMD ap-
plication (Figure 3(d)) shows a mix of the idle class when
user is not interacting with the application, the I/O-intensive
class when the user is uploading an input file, and the
Network-intensive class while the user is interacting with
the GUI through a VNC remote display. Table 3 sum-
marizes the class compositions of all the test applications.
These classification results match the class expectations
gained from empirical experience with these programs.
They are used to calculate the unit application cost shown
in section 4.4.

In addition, the experimental data also demonstrate the
impact of changing execution environment configurations
on the application’s class composition. For example, in Ta-
ble 3 when SPECseis96 with medium size input data was
executed in VM1 with 256MB memory (SPECseis96 A),
it is classified as CPU-intensive application. In the SPEC-
seis96 B experiment, the smaller physical memory (32MB)
resulted in increased paging and I/O activity. The increased
I/O activity is due to the fact that less physical memory is
available to the O/S buffer cache for I/O blocks. The buffer
cache size at run time was observed to be as small as 1MB
in SPECseis96 B, and as large as 200MB in SPECseis96 A.
In addition, the execution time gets increased from 291 min-
utes and 42 seconds in the first case to 426 minutes 58 sec-



Table 2. List of training and testing applications
Expected

Application Application Description
Behavior

SPECseis9612 A seismic processing application [19]
CPU Intensive SimpleScalar A computer architecture simulation tool [4]

CH3D A curvilinear-grid hydrodynamics 3D model [5]
PostMark12 A file system benchmark program [2]
PageBench1 A synthetic program which initiates and updates an array whose size is bigger

IO & Paging than the memory of the virtual machine
Intensive Bonnie A Unix file system performance benchmark [6]

Stream A synthetic benchmark program that measures sustainable memory bandwidth
and the corresponding computation rate for simple vector kernels [9]

Ettcp1 A benchmark measuring network throughput over TCP/UDP between two nodes [3]
Network Autobench A wrapper around httperf to work together as an automated web server benchmark [10]
Intensive NetPIPE A protocol independent network performance measurement tool [34]

PostMark NFS The Postmark benchmark with a NFS mounted working directory
Sftp A synthetic program which uses sftp to transfer a 2GB size file

Interactive VMD A molecular visualization program using 3-D graphics and built-in scripting [7]
XSpim A MIPS assembly language simulator with an X-Windows based GUI [8]

Idle Idle1 No application running except background daemons in the machine

1Application is used as a training application.
2Application is used as a test application but with different data size.

Table 3. Experimental data: Application class compositions
Application Class Test Application # of Samples Idle I/O CPU Network Paging

SPECseis96 Aa 3,434 – 0.26% 99.71% – 0.03%
CPU SPECseis96 Cb 112 – – 100% – –

Intensive CH3D 45 – – 100% – –
SimpleScalar 62 – – 100% – –
PostMark 52 – 96.15% – – 3.85%

IO & Paging Bonnie 94 – 86.17% 4.26% – 9.57%
Intensive SPECseis96 Bc 5,150 0.21% 42.87% 50.39% – 6.52%

Stream 96 1.04% 79.17% – – 19.79%
PostMark NFS 77 – – – 100% –

Network NetPIPE 74 4.05% 4.05% – 91.89% –
Intensive Autobench 172 – – – 100% –

Sftp 46 – 2.17% – 97.83% –
Idle + VMD 86 37.21% 40.70% – 22.09% –

Othersd XSpim 9 22.22% 77.78% – – –

aSPECseis96 with medium data size running in a VM with 256MB virtual memory
bSPECseis96 with medium data size running in a VM with 32MB virtual memory
cSPECseis96 with small data size running in a VM with 256MB virtual memory
dUser interactive applications show substantial idle states with a mixture of other activities

Table 4. System Throughput: Concurrent vs. Sequential Executions
Execution Elapsed Time (sec) CH3D PostMark Time Taken to Finish 2 Jobs

Concurrent 613 310 613
Sequential 488 264 752
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Figure 3. Sample clustering diagrams of application classifications
CPU-intensive: (b) Network-intensive: (c) Interactive: (d)

Principal Component 1 and 2 are the principal component metrics extracted by PCA

Figure 4. System throughput comparisons for
ten different schedules

1:{(SSS),(PPP),(NNN)}, 2:{(SSS),(PPN),(PNN)}, 3:{(SSP),(SPP),(NNN)},
4:{(SSP),(SPN),(PNN)}, 5:{(SSP),(SNN),(PPN)}, 6:{(SSN),(SPP),(PNN)},
7:{(SSN),(SPN),(PPN)}, 8:{(SSN),(SNN),(PPP)}, 9:{(SPP),(SPN),(SNN)},
10:{(SPN),(SPN),(SPN)}
S – SPECseis96 (CPU-intensive), P – PostMark (I/O-intensive),
N – NetPIPE (Network-intensive).

Figure 5. Application throughput compar-
isons of different schedules

MIN, MAX, and AVG are the minimum, maximum, average applica-
tion throughput of all the ten possible schedules. SPN is the proposed
schedule 10 {(SPN), (SPN), (SPN)} in Figure 4.



onds in the second case.
Similarly, in the experiments with PostMark, different

execution environment configurations changed the applica-
tion’s resource consumption pattern from one class to an-
other. Table 3 shows that if a local file directory was used
to store the files to be read and written during the program
execution, the PostMark benchmark showed the resource
consumption pattern of the I/O-intensive class. In contrast,
with an NFS mounted file directory, it (PostMark NFS) was
turned into a Network-intensive application.

5.2. Scheduling Performance Improvement

Two sets of experiments are used to illustrate the per-
formance improvement that a scheduler can achieve with
the knowledge of application class. These experiments
were performed on 4 VMware GSX 2.5 virtual machines
with 256MB memory each. One of these virtual machines
(VM1) was hosted on an Intel(R) Xeon(TM) dual-CPU
1.80GHz machine with 512KB cache and 1GB RAM. The
other three (VM2, VM3, and VM4) were hosted on an In-
tel(R) Xeon(TM) dual-CPU 2.40GHz machine with 512KB
cache and 4GB RAM. The host servers were connected by
Gigabit Ethernet.

The first set of experiments demonstrates that the ap-
plication class information can help the scheduler to opti-
mize resource sharing among applications running in par-
allel to improve system throughput and reduce throughput
variances. In the experiments, three applications – SPEC-
seis96 (S) with small data size, PostMark (P) with local file
directory and NetPIPE Client (N) – were selected, and three
instances of each application were executed. The sched-
uler’s task was to decide how to allocate the nine application
instances to run on the 3 virtual machines (VM1, VM2 and
VM3) in parallel, each of which hosted 3 jobs. The VM4
was used to host the NetPIPE server. There are ten possible
schedules available, as shown in Figure 4.

When multiple applications run on the same host ma-
chine at the same time, there are resource contentions
among them. Two scenarios were compared: in the first
scenario, the scheduler did not use class information, and
one of the ten possible schedules was selected at random.
The other scenario used application class knowledge, al-
ways allocating applications of different classes (CPU, I/O
and network) to run on the same machine (Schedule 10,
Figure 4). The system throughputs obtained from runs of
all possible schedules in the experimental environment are
shown in Figure 4.

The average system throughput of the schedule chosen
with class knowledge was 1391 jobs per day. It achieved
the highest throughput among the ten possible schedules
– 22.11% larger than the weighted average of the system
throughputs of all the ten possible schedules. In addition,

the random selection of the possible schedules resulted in
large variances of system throughput. The application class
information can be used to facilitate the scheduler to pick
the optimal schedule consistently. The application through-
put comparison of different schedules on one machine is
shown in Figure 5. It compares the throughput of sched-
ule ID 10 (labeled SPN in Figure 5) with the minimum,
maximum, and average throughputs of all the ten possible
schedules. By allocating jobs from different classes to the
machine, the three applications’ throughputs were higher
than average by different degrees: SPECseis96 Small by
24.90%, Postmark by 48.13%, and NetPIPE by 4.29%. Fig-
ure 5 also shows that the maximum application throughputs
were achieved by sub-schedule (SSN) for SPECseis96 and
(PPN) for NetPIPE instead of the proposed (SPN). How-
ever, the low throughputs of the other applications in the
sub-schedule make their total throughputs sub-optimal.

The second set of experiments illustrates the improved
throughput achieved by scheduling applications of different
classes to run concurrently over running them sequentially.
In the experiments, a CPU intensive application (CH3D)
and an I/O intensive application (PostMark) were sched-
uled to run in one machine. The execution time for con-
current and sequential executions is shown in Table 4. The
experiment results show that the execution efficiency losses
caused by the relatively moderate resource contentions be-
tween applications of different classes were offset by the
gains from the utilization of idle capacity. The resource
sharing of applications of different classes improved the
overall system throughput.

5.3. Classification Cost

The classification cost is evaluated based on the unit
sample processing time in the data extraction, PCA, and
classification stage. Two physical machines were used in
this experiment: The performance filter in Figure 1 was run-
ning on an Intel(R) Pentium(R) 4 CPU 1.70GHz machine
with 512MB memory. In addition, the application classifier
was running on an Intel(R) Pentium(R) III 750MHz ma-
chine with 256MB RAM.

In this experiment, a total of 8000 snapshots were taken
with five-second intervals for the virtual machine, which
hosted the execution of SPECseis96 (medium). It took the
performance filter 72 seconds to extract the performance
data of the target application VM. In addition, it took an-
other 50 seconds for the classification center to train the
classifier, perform the PCA feature selection and the appli-
cation classification. Therefore the unit classification cost
is 15 ms per sample data, demonstrating that it is possible
to consider the classifier for online training.



6. Related Work

Feature selection [24][39] and classification techniques
have been applied to many areas successfully, such as in-
trusion detection [28][22][13][27], text categorization [21],
and image and speech analysis. Kapadia’s evaluation of
learning algorithms for application performance prediction
in [25] shows that the nearest-neighbor algorithm has bet-
ter performance than the locally weighted regression al-
gorithms for the tools tested. Our choice of k-NN clas-
sification is based on conclusions from [25]. This paper
differs from Kapadia’s work in the following ways: First,
the application class knowledge is used to facilitate the re-
source scheduling to improve the overall system throughput
in contrast with Kapadia’s work, which focuses on applica-
tion CPU time prediction. Second, the application classifier
takes performance metrics as inputs. In contrast, in [25]
the CPU time prediction is based on the input parameters
of the application. Third, the application classifier employs
PCA to reduce the dimensionality of the performance fea-
ture space. This is especially helpful when the number of
input features of the classifier is not trivial.

Condor uses process checkpoint and migration tech-
niques [29] to allow an allocation to be created and pre-
empted at any time. The transfer of checkpoints may oc-
cupy significant network bandwidth. Basney’s study in [16]
shows that co-scheduling of CPU and network resources
can improve the Condor resource pool’s goodput, which is
defined as the allocation time when a remotely executing
application uses the CPU to make forward progress. The
application classifier presented in this paper performs learn-
ing of application’s resource consumption of memory and
I/O in addition to CPU and network usage. It provides a
way to extract the key performance features and generate
an abstract of the application resource consumption pattern
in the form of application class. The application class in-
formation and resource consumption statistics can be used
together with recent multi-lateral resource scheduling tech-
niques, such as Condor’s Gang-matching [32], to facilitate
the resource scheduling and improve system throughput.

Conservative Scheduling [37] uses the prediction of the
average and variance of the CPU load of some future point
of time and time interval to facilitate scheduling. The appli-
cation classifier shares the common technique of resource
consumption pattern analysis of a time window, which is
defined as the time of one application run. However, the
application classifier is capable to take into account usage
patterns of multiple kinds of resources, such as CPU, I/O,
network and memory.

The skeleton-based performance prediction work intro-
duced in [35] uses a synthetic skeleton program to repro-
duce the CPU utilization and communication behaviors of
message passing parallel programs to predict application

performance. In contrast, the application classifier provides
application behavior learning in more dimensions.

Prophesy [36] employs a performance-modeling compo-
nent, which uses coupling parameters to quantify the inter-
actions between kernels that compose an application. How-
ever, to be able to collect data at the level of basic blocks,
procedures, and loops, it requires insertion of instrumenta-
tion code into the application source code. In contrast, the
classification approach uses the system performance data
collected from the application host to infer the application
resource consumption pattern. It does not require the mod-
ification of the application source code.

Statistical clustering techniques have been applied to
learn application behavior at various levels. Nickolayev
et al applied clustering techniques to efficiently reduce the
processor event trace data volume in cluster environment
[31]. Ahn and Vetter conducted application performance
analysis by using clustering techniques to identify the rep-
resentative performance counter metrics [12]. Both Cohen
and Chase’s [17] and our work perform statistical clustering
using system-level metrics. However, their work focuses on
system performance anomaly detection. Our work focuses
on application classification for resource scheduling.

Our work can be used to learn the resource consumption
patterns of parallel application’s child process and multi-
stage application’s sub-stage. However, in this study we
focus on sequential and single-stage applications.

7. Summary

The application classification prototype presented in this
paper shows how to apply the Principal Component Analy-
sis and K-Nearest Neighbor techniques to reduce the dimen-
sions of application resource consumption feature space and
assist the resource scheduling. In addition to the CPU load,
it also takes the I/O, network, and memory activities into
account for the resource scheduling in an effective way.
It does not require modifications of the application source
code. Experiments with various benchmark applications
suggest that with the application class knowledge, a sched-
uler can improve the system throughput 22.11% on average
by allocating the applications of different classes to share
the system resources.

In this work, the input performance metrics are selected
manually based on expert knowledge. We plan to automate
this feature selection process to support online classifica-
tion. In addition, further research is needed to illustrate how
to make full use of the classification result and the stochastic
information of application behavior for efficient scheduling.
We believe that the application classification approach pro-
posed in this paper is a good complement to related appli-
cation run-time prediction approaches applied to resource
scheduling.
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