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Abstract

Cooperative checkpointing uses global knowledge of
the state and health of the machine to improve perfor-
mance and reliability by dynamically deciding when to
skip checkpoint requests made by applications. Using
results from cooperative checkpointing theory, this pa-
per proves that periodic checkpointing is not expected
to be competitive with the offline optimal. By leverag-
ing probabilistic information about the future, coopera-
tive checkpointing gives flexible algorithms that are op-
timally competitive. The results prove that simulating
periodic checkpointing, by performing only every dth

checkpoint, is not competitive with the offline optimal
in the worst case; a simple modification gives a prov-
ably competitive algorithm. Calculations using failure
traces from a prototype of IBM’s Blue Gene/L show an
application using cooperative checkpointing may make
progress 4 times faster than one using periodic check-
pointing, under realistic conditions. We contribute
an approach to providing large-scale system reliability
through cooperative checkpointing and techniques for
analyzing the approach.

1. Introduction

Periodic checkpointing, the standard method for
providing reliable completion of long-running jobs, is
non-optimal for realistic failure distributions; cooper-
ative checkpointing, in which checkpoint requests may
be skipped, provides greater performance and reliabil-
ity in the face of such distributions. With coopera-
tive checkpointing [6, 7], the application programmer
and the runtime system are both part of the decisions

4Work was performed while a Master’s student at the Mas-
sachusetts Institute of Technology.

regarding when and how checkpoints are performed.
Specifically, the programmer inserts checkpoints at lo-
cations in the code, perhaps where the application state
is minimal, placing them liberally wherever a check-
point would be efficient. At runtime, the application
requests a checkpoint. The system finally grants or de-
nies the checkpoint based on various heuristics, includ-
ing disk or network usage and reliability information.

Checkpointing involves periodically saving a suffi-
cient amount of the state of a running job to stable
storage, allowing for that job to be restarted from the
last successful checkpoint. Checkpoints have an asso-
ciated overhead, usually dictated by the bottleneck to
the stable storage system. Therefore, while there is a
risk associated with not checkpointing, there is also a
direct and measurable cost associated with performing
the checkpoints. As systems grow larger, this overhead
may increase due to the greater coordination neces-
sary to guarantee a consistent checkpoint, more data
that requires saving, and interference with other ap-
plications. Optimally, every checkpoint is used for re-
covery and every checkpoint is completed immediately
preceding a failure. A central insight of cooperative
checkpointing is that skipping checkpoints that are less
likely to be used for recovery can improve reliability
and performance.

Standard practice is to checkpoint periodically, at
an interval determined primarily by the overhead and
the failure rate of the system. Although such a scheme
is optimal under an exponential (memoryless) failure
distribution, real systems do not generally exhibit such
failure behavior [5, 9, 11, 14]. Moreover, applications
need to be recoded when they are ported to a sys-
tem with different reliabilty characteristics. Cooper-
ative checkpointing allows for irregular checkpoint in-
tervals by giving the system an opportunity to skip
requested checkpoints at runtime. Therefore, cooper-
ative checkpointing may be thought of as a hybrid of
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application-initiated and system-initiated checkpoint-
ing. The application requests checkpoints, and the sys-
tem either grants or denies each one. Without coop-
erative checkpointing, all application-initiated check-
points are taken, even if system-level considerations
would have revealed that some are grossly inefficient
or have a low probability of being used for recovery. If
the heuristics used by the system are reasonably con-
fident that a particular checkpoint should be skipped,
a benefit is conferred to both parties. That is, the ap-
plication may finish sooner or at a lower cost because
checkpoints were performed at more efficient times, and
the system may accomplish more useful work because
fewer checkpoints were wasted.

This paper formally describes cooperative check-
pointing and develops a theoretical model. The analy-
sis of this model is a variation of competitive analysis,
which uses a value function in place of a cost func-
tion. The model is used to prove that, in the worst
case, periodic checkpointing is non-competitive; a small
modification to periodic checkpointing yields a cooper-
ative checkpointing algorithm that is competitive. Fur-
thermore, we prove that in the expected case under
certain failure distributions, näıve periodic checkpoint-
ing is not competitive with the offline optimal, but
there is a simple cooperative checkpointing algorithm
that is optimally competitive. It may be surprising
to note that failure distributions found in practice ex-
hibit these properties, and that the distribution ob-
served on a prototype of IBM’s Blue Gene/L (BG/L)
implies that an application using cooperative check-
pointing would have made progress four times faster
than with optimally-placed periodic checkpoints.

2. Background

High performance computing systems are tending
toward being larger and more complex. For example, a
64-rack BG/L system contains 65,536 nodes and more
than 16 terabytes of memory [1]. Applications on these
systems are designed to run for days or months. De-
spite a design focus on reliability, failures on such a
large-scale machine will be relatively frequent. Check-
pointing is still the best solution for providing reliable
completion of these jobs on inherently unreliable hard-
ware. There is an I/O bottleneck facing these massive
clusters when they attempt to save their state. It is
clear that standard checkpointing techniques must be
reevaluated [4].

In order for any reliability scheme to be effective,
one must develop useful models of the failure behavior
of supercomputers. Failure events in large-scale com-
modity clusters as well as the BG/L prototype have

been shown [5, 14] to be neither independent, identi-
cally distributed, Poisson, nor unpredictable. A realis-
tic failure model for large-scale systems should admit
the possibility of critical event prediction. Only re-
cently have these predictions been used effectively to
improve system performance [3, 10]. The idea of us-
ing event prediction for proactive system management
has also been explored [13, 15]. A hybrid algorithm
[14] was able to predict critical failures with up to 70%
accuracy on an AIX cluster with 350 nodes.

Checkpointing for computer systems has been a ma-
jor area of research over the past few decades. There
have been a number of studies on checkpointing based
on certain failure characteristics [12], including Pois-
son distributions. Tantawi and Ruschitzka [18] devel-
oped a theoretical framework for performance analysis
of checkpointing schemes. In addition to considering
arbitrary failure distributions, they present the concept
of an equicost checkpointing strategy, which varies the
checkpoint interval according to a balance between the
checkpointing cost and the likelihood of failure.

System-initiated checkpointing is a part of many
large-scale systems. The system can checkpoint any
application at an arbitrary point in its execution. It
has been shown that such a scheme is possible for any
MPI application, without the need to modify user code
[17], and that it can be used to improve QoS [8]. Such
an architecture has several disadvantages, however: im-
plementation overhead, time linear in the number of
nodes to coordinate the checkpoint, lack of compiler
optimization for checkpoints, and a potentially large
amount of state to save.

Application-initiated checkpointing is the dominant
approach for most large-scale parallel systems. Agar-
wal et al [2] developed application-initiated checkpoint-
ing schemes for BG/L. There are also a number of
studies reporting the effect of failures on checkpointing
schemes and system performance. Most of these works
assume Poisson failure distributions and fix a check-
pointing interval at runtime. A thorough list can be
found elsewhere [11], where a study on system perfor-
mance in the presence of real failure distributions con-
cludes that Poisson failure distributions are unrealistic.
Similarly, a recent study by Sahoo et al [16], analyzing
the failure data from a large scale cluster environment
and its impact on job scheduling, reports that failures
tend to be clustered around a few sets of nodes, rather
than following a particular distribution. Only in the
past year (2004) has there been a study on the impact
of realistic large-scale cluster failure distributions on
checkpointing [9]. Our main motivation for this work
is to establish a theoretical basis for checkpointing in
the presence of arbitrary failure distributions. Addi-



tional theoretical results can be found elsewhere [6], as
can experimental results verifying the validity of the
theory and demonstrating the robustness of coopera-
tive checkpointing [7].

3. Cooperative Checkpointing

This section introduces basic terms and definitions
related to checkpointing and reliability. The section
concludes with the introduction of cooperative check-
pointing, an approach to reliability that addresses
many outstanding challenges.

3.1. Terms and Definitions

Define a failure to be any event in hardware or soft-
ware that results in the immediate failure of a running
application. At the time of failure, any unsaved com-
putation is lost and execution must be restarted from
the most recently completed checkpoint.

When an application initiates a checkpoint at time
t, progress on that job is paused for the checkpoint
overhead (C) after which the application may continue.
The checkpoint latency (L) is defined such that job fail-
ure between times t and t+L will force the job to restart
from the previous checkpoint, rather than the current
one; failure after time t + L means the checkpoint was
successful and the application can restart as though
continuing execution from time t. It was shown [11]
that L typically has an insignificant impact on check-
pointing performance for realistic failure distributions.
Therefore, this paper treats C ≈ L.

There is a downtime parameter (D) which measures
for how long a failed node is down and unable to com-
pute, and a checkpoint recovery parameter (R) which
is the time required for a job to restart from a check-
point. Although R and D are included in this model,
they are of no importance when performing a competi-
tive analysis, so long as they are uncorrelated with the
decisions made by the checkpointing algorithm.

Figure 1 illustrates typical application behavior.
Periods of computation are occasionally interrupted
to perform checkpoints, during which job progress is
halted. Job failure forces a rollback to the previous
checkpoint; any work performed between the end of
that checkpoint and the failure must be recomputed
and is considered wasted. Applications that run for
weeks or months will have hundreds of these check-
points, most of which will never be used.

From a system management perspective, the most
valuable resource in a supercomputer system is node
time. Define a unit of work to be a single node occu-
pied for one second. That is, occupying n nodes for

e seconds consumes work n · e node-seconds. A node
sitting idle, recomputing work lost due to a failure,
or performing a checkpoint is considered wasted work.
We find it better to use the complementary metric,
saved work, which is the total execution time minus its
wasted time. Saved work (or committed work) never
needs to be recomputed. Checkpointing overhead is
considered wasted work and is never included in the
calculation of saved work. For example, if job j runs
on nj nodes, and has a failure-free execution time (ex-
cluding checkpoints) of ej , then j performs nj ·ej node-
seconds of saved work. If that same job requires Ej

node-seconds, including checkpoints, then a failure-free
execution effectively wastes Ej−ej node-seconds. This
definition highlights an important observation: check-
pointing wastes valuable time, so (ideally) it should be
done only when it will be used in a rollback to reduce
recomputation. The concept of saved work is critical to
understanding the analysis of cooperative checkpoint-
ing in Section 4. Figure 1 shows some example exe-
cutions that help illustrate the concepts of saved and
wasted work.

3.2. Cooperative Checkpointing

Cooperative checkpointing is a set of semantics and
policies that allow the application, compiler, and sys-
tem to jointly decide when checkpoints should be per-
formed. Specifically, the application requests check-
points, which have been optimized for performance by
the compiler, and the system grants or denies these
requests. The general process consists of two parts:

1. The application programmer inserts checkpoint re-
quests in the code at places where the state is min-
imal, or where a checkpoint is otherwise efficient.
These checkpoints can be placed liberally through-
out the code, and permit the user to place an up-
per bound on the number and rate of checkpoints.

2. The system receives and considers checkpoint re-
quests. Based on system conditions such as I/O
traffic, critical event predictions, and user require-
ments, this request is either granted or denied.
The mechanism that handles these requests is re-
ferred to as the checkpoint gatekeeper or, simply,
the gatekeeper. The request/response latency for
this exchange is assumed to be negligible.

Cooperative checkpointing appears to an observer as
irregularity in the checkpointing interval. If we model
failures as having an estimable MTBF, but not much
else, then periodic checkpointing is sensible (even opti-
mal). But once these failures are seen to be predictable,
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Figure 1. Three execution prefixes in which failures cause work to be lost, but checkpoints manage
to save some work as well. The amount of work saved or lost in each fragement is listed.

or other factors are considered, this irregularity can be
exploited. The behavior of applications as they choose
to skip different checkpoints is illustrated in Figure 2.

The primary policy question with regard to cooper-
ative checkpointing is, “How does the gatekeeper de-
cide which checkpoints to skip?” A discussion of the
possible heuristics the gatekeeper could employ is not
included in this paper, but may involve such factors as
network traffic, disk usage, the job scheduling queue,
event prediction, logically connected components, and
QoS guarantees. Note that most of these heuristics
cannot and should not be considered by the applica-
tion programmer at compile-time. At the same time,
there are many aspects of the internal logic of an appli-
cation (data semantics, control flow) that cannot and
should not be considered by the system at runtime.
This observation is central to cooperative checkpoint-
ing.

4. Algorithmic Analysis

Cooperative checkpointing can be understood and
analyzed mathematically. This section presents a for-
malization that helps elucidate the intuition behind co-
operative checkpointing, thereby empowering users to
construct near-optimal checkpointing schemes for any
kind of failure distribution. The model and metrics
reveal that the ability to consider failure distributions
other than exponentials permits users to make the sys-
tem perform significantly better.

Although most competitive analyses use a cost func-
tion that represents how expensive operations are, we
found it beneficial to use a value function that mea-
sures the benefit conferred by the algorithm.

Throughout this paper, many results and proofs are

shortened or omitted; a more complete account of co-
operative checkpointing theory can be found elsewhere
[6].

4.1. Worst-Case Competitive Analysis

We model cooperative checkpointing by considering
the execution of a program that makes a checkpoint
request every I seconds. This request period I is a
characteristic of the program, not the online algorithm.
For example, say a checkpoint is requested at time r.
If that checkpoint is skipped, the next request will be
made at time r + I; if the checkpoint is taken, the next
request will be made at r + I + C.

The analysis focuses on failure-free intervals (FF in-
tervals), which are periods of execution between the oc-
currence of two consecutive failures. Such periods are
crucial, because only that work which is checkpointed
within an FF interval will be saved. Let F be a ran-
dom variable with unknown probability density func-
tion. The varying input is a particular sequence of
failures, Q = {f1, f2, . . . , fn}, with each fi generated
from F . Each fi is the length of an FF interval, also
written as |FFI|. The elements of Q determine when
the program fails but not for how long the program
is down. Thus, if execution starts at t = 0, the first
failure happens at f1. No progress is made for some
amount of time following the failure. After execution
begins again at time t = t1, the second failure happens
at t = t1 + f2. Figure 3 illustrates a partial execution
including three FF intervals.

Note that these failure times are independent of
the decisions made by the online algorithm, and that
they happen at particular times rather than at spe-
cific points in the program. Therefore, the algorithm’s
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Figure 2. Three job runs in which different checkpoints are skipped. Run (a) shows typical periodic
behavior, in which every checkpoint is performed. In run (b), the final checkpoint is skipped, per-
haps because the critical event predictor sees a low probability that such a checkpoint will be used
for rollback, given the short time remaining in the computation. Finally, run (c) illustrates optimal
behavior, in which a checkpoint is completed immediately preceding a failure.

decisions affect where in the execution the failure oc-
curs; this may beneficently move a failure to just after a
completed checkpoint or may detrimentally cause more
work to be lost.

The average length of these intervals is related to the
Mean Time Between Failures or MTBF. The fi, how-
ever, do not include the downtime and recovery time.
They are the periods between failures during which the
program can make progress. This input Q is indepen-
dent of the choices made by the checkpointing algo-
rithm, and so fi also includes checkpoint overheads.

Given knowledge of the past behavior of the program
and the system, a cooperative checkpointing algorithm
decides whether to grant or skip each checkpoint re-
quest, as it arrives. Let P be some program, A be
some cooperative checkpointing algorithm, and Q be
some failure sequence of n elements. Say P has infi-
nite execution time, but n is finite, as are the elements
fi ∈ Q. Consider the period of execution starting at
t = 0, before the first failure, and ending with the nth

failure (the span of Q).
Define VA,Q to be the cumulative amount of work

saved by algorithm A during the time spanned by Q.
When discussing an individual FF interval, it is accept-
able to refer simply to VA, which is the amount of work
saved by A in that interval.

Definition 1 An online checkpointing algorithm A
has competitive ratio α (A is α-competitive) if, for ev-
ery failure sequence Q, the amount of work saved by the
optimal offline algorithm (OPT) is at most α times the
amount of work saved by A. That is, VOPT,Q ≤ αVA,Q.

It is worth emphasizing that the definition compares
the quality of the algorithm in terms of the amount of
work that was saved in an execution with worst-case
failure behavior, rather than the work that is lost and
recomputed. (When using lost work, most analyses de-
volve into considering infinite FF interval lengths, and
do not give sensible relationships among checkpointing
algorithms.) In a sense, this definition compares value
instead of cost. When α is infinite, we say that A is
not competitive. Work is typically defined to be exe-
cution time multiplied by the size of the program in
nodes; for competitive analysis, let the program have
unit size. Before discussing this definition in more de-
tail, it is necessary to define the behavior of the optimal
offline cooperative checkpointing algorithm.

Recall that the overhead for performing a checkpoint
is a constant C for every checkpoint. Note that the
downtime (D) and recovery time (R) are paid by every
checkpointing algorithm after every element in Q.

Definition 2 The optimal offline cooperative check-
pointing algorithm (OPT ) performs the latest check-
point in each FF interval such that the checkpoint com-
pletes before the end of the interval (if one exists), and
skips every other checkpoint.

A critical checkpoint is any checkpoint that is used
for recovery at least once. A wasted checkpoint is any
checkpoint that is completed but never used for recov-
ery, or which fails just as it is completing. In an FF in-
terval in which more than one checkpoint is performed,
the last checkpoint is a critical checkpoint and the rest
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Figure 3. The execution of a program with failures, shown up to n = 3. The length of the FF intervals
(fi) varies. The downtime and recovery time following a failure is variable, as well, but is not included
in the failure sequence Q. The execution may continue beyond what is shown.

are wasted checkpoints. Skipping a wasted checkpoint
does not necessarily increase the amount of work that
is saved in an FF interval, because doing so may or may
not allow a later checkpoint to be performed. Later on,
Lemma 1 formalizes how many checkpoints must be
skipped to be advantageous. On the other hand, skip-
ping a critical checkpoint will always result in less saved
work, because rollback must then be done to an earlier
checkpoint. In order for an algorithm to be made in-
crementally more like the optimal, two things can be
done: skip wasted checkpoints and don’t skip check-
points that would make better critical checkpoints.

As defined, there are many failure sequences Q such
that no checkpointing algorithm, including the opti-
mal, will permit a program to make progress. Accord-
ing to Definition 1, however, there need not be progress
with every failure sequence. More importantly, the
worst-case input that is considered in the competitive
analysis is not the worst-case input for OPT , but the
input that gives the algorithm in question (A) the worst
performance relative to OPT (highest ratio of VOPT

to VA). For most executions in which A cannot make
progress, neither can OPT .

The key parameters introduced so far are I and C.

Lemma 1 (Skipping Lemma) Let A be some deter-
ministic algorithm. Consider a particular FF inter-
val length such that A performs k wasted checkpoints.
As a result of skipping those checkpoints, VOPT ≥
VA + I�kC

I �.

Recall that both VA and VOPT consider the same
period of time. The proof of the Skipping Lemma is
simple, but its consequences are far-reaching. In par-
ticular, it means that the worst-case competitive ratios
of most algorithms will be functions of �C

I �.
The case of C > I is not purely academic, especially

because I is the request interval, not necessarily the
checkpoint interval. Because such a situation is realis-
tic, the fact that the competitiveness is a function of
�C

I � is worthy of note. It would be desirable to achieve

k-competitiveness for some constant k, independent of
the relationship among the parameters. The Skipping
Lemma forbids this.

Another general difficulty in analyzing the compet-
itiveness is the challenge of identifying the worst-case
input. So far, this input has been described as a se-
quence of failures (Q) such that VOP T,Q

VA,Q
is maximized.

It turns out that it is not necessary to consider the
worst-case sequence, but merely the worst-case inter-
val length. The following results have been proved else-
where [6]; they are restated here for reference.

Theorem 1 Algorithm A is α-competitive iff, ∀ FF
intervals of length f ∈ R

+, the amount of work saved
by OPT is at most α times the amount of work saved
by A.

Corollary 1 To determine the competitive ratio of al-
gorithm A, it is sufficient to consider the f for which
the ratio of VOPT to VA is largest. That ratio is α.

Theorem 2 Let A be a deterministic cooperative
checkpointing algorithm that skips the first checkpoint
in every interval. A is not competitive.

Theorem 3 There does not exist a deterministic co-
operative checkpointing algorithm that is better than
(2 + �C

I �)-competitive.

The proof of Theorem 2 involves constructing a fail-
ure sequence in which a failure always occurs just be-
fore 2I +C seconds have elapsed, when the optimal has
checkpointed once but A has not.

We now turn to competitive analyses of periodic
checkpointing algorithms. Specifically, we describe how
cooperative checkpointing can be used to simulate pe-
riodic checkpointing, and prove that the näıve imple-
mentation is not competitive.

Consider a program that uses cooperative check-
pointing where requests occur every I seconds. There is
some desired periodic checkpointing interval (Ip) that



the online algorithm is trying to simulate. If Ip mod
I = 0, then exact simulation is possible. When Ip

mod I �= 0, an approximation is sufficient; the algo-
rithm uses some d such that dI ≈ Ip. The algorithm
should perform, roughly, one out of every d checkpoint
requests.

Let An,d be the näıve implementation of this sim-
ulation, in which, for any FF interval, the algorithm
performs the dth checkpoint, the 2dth checkpoint, the
3dth checkpoint, and so on.

Theorem 4 An,d is not competitive for d > 1.

Proof An,d deterministically skips the first check-
point in every FF interval. By Theorem 2, An,d is not
competitive for d > 1. �

The case of d = 1 is special. In the previous proof,
An,d did not make progress because it skipped check-
points that were critical checkpoints for OPT . When
d = 1, however, no checkpoints are skipped. Indeed,
this is a special cooperative checkpointing algorithm
whose behavior is to perform every checkpoint request
it receives. Define Aall to be the algorithm An,1. It
has been proved [6] that this algorithm is optimally
competitive. That proof further shows that, asymp-
totically, VOPT grows in proportion to |FFI|.

The original intention, recall, was to simulate pe-
riodic checkpointing using cooperative checkpointing.
Aall doesn’t simulate periodic checkpointing so much
as it is periodic checkpointing. Instead, consider the
following variation of An,d that also performs only ev-
ery dth checkpoint, with a small change to avoid run-
ning up against Theorem 2.

Let Ap,d (note the change in subscript) be a co-
operative checkpointing algorithm that simulates pe-
riodic checkpointing by always performing the first
checkpoint, and subsequently performing only every dth

checkpoint. As above, d ≈ Ip

I and d > 0, where I is
the request interval and Ip is the periodic checkpoint-
ing interval that is being simulated. Ap,d performs the
1st checkpoint, the (d + 1)th checkpoint, the (2d + 1)th

checkpoint, and so on.

Theorem 5 Ap,d is (d + 1 + �C
I �)-competitive.

Proof Set f = |FFI| = (d + 1)I + 2C such that
Ap,d performs the first checkpoint, skips d − 1 check-
points, and fails just before completing the (d + 1)th

request. Vp = I. As with Aall, the exact number of
intervals OPT performs before taking its single check-
point depends on the relationship between C and I:
VOPT = (d + 1)I + �C

I �I. The ratio for this interval
length f is d + 1 + �C

I �.

Again, we must consider the asymptotic behavior.
In order to increase VOPT by dI, it is necessary to in-
crease f by exactly dI. To increase Vp by the same
amount (dI), f must be increased by dI +C to accom-
modate the additional checkpoint. The asymptotic ra-
tio of VOPT to Ap,d is dI+C

dI = 1 + C
dI . This is always

strictly less than d+1+ �C
I �, so f = (d+1)I +2C was

the worst-case interval.
By Corollary 1, Ap,d is (d+1+�C

I �)-competitive. �

The space of deterministic cooperative checkpoint-
ing algorithms is countable. Each such algorithm is
uniquely identified by the sequence of checkpoints it
skips and performs. One possible way to encode these
algorithms is as binary sequences, where the first digit
is 1 if the first checkpoint should be performed and 0
if it should be skipped. All the algorithms we have
considered so far can be easily encoded in this way:
Aall = {1, 1, 1, 1, . . .}, An,2 = {0, 1, 0, 1, 0, 1, . . .},
Ap,3 = {1, 0, 0, 1, 0, 0, 1, . . .}.

An upper bound on the length of the FF interval
is easily given the program’s running time, so there is
also a bound on the number of checkpoints and the
length of these binary sequences. Consequently, each
member of this finite set of deterministic algorithms
can be identified by a little-endian binary number.

Let A2x be a cooperative checkpointing algorithm
that doubles V2x at the completion of each checkpoint.
In each FF interval, it performs the 1st, 2nd, 4th, 8th,
etc. checkpoints:

A2x = {1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, . . .}
It has been shown that A2x is (2+�C

I �)-competitive.
The intention in presenting this algorithm is to high-
light a characteristic of worst-case competitive analysis,
which is that a number of very different algorithms can
all be optimally competitive.

4.2. Expected-Case Competitive Analysis

This section proposes a more practical form of com-
petitive analysis in which the algorithm can consider
the actual failure distribution. The algorithms remain
deterministic, but, with this information and the re-
fined model, the analysis is significantly different.

Let F be a random variable whose value is the length
of the failure-free interval and let χ(t) be the probabil-
ity density of F . That is, P (a ≤ F ≤ b) =

∫ b

a
χ(t)dt,

and assume that F ≥ 0, χ(t) ≥ 0∀t, and
∫ ∞
0

χ(t)dt = 1.
Properties of this probability distribution, like mean
(µ = E(F )), variance (σ), and standard deviation, are
calculated in the usual way.



In the previous section, the offline optimal knew in
advance that a failure would happen after executing
for f seconds (the length of the FF interval), and was
effectively using

χ(t) = δ(t − f) (1)

where δ(t) is the Dirac delta function. The checkpoint-
ing algorithm knew nothing of this distribution, how-
ever, and was forced to choose a strategy that mini-
mized the worst-case ratio.

Determining the density function in practice can be
accomplished by using historical data to constantly re-
fine an empirical distribution.

Every deterministic cooperative checkpointing algo-
rithm (A) has a characteristic work function, WA(t).
This function specifies, for all times t within an FF
interval, how much work A has saved. More to the
point, if |FFI| = f , then VA = WA(f). The beginning
of an FF interval is always t = 0. The work function
will be used along with χ(t) to calculate the expected
competitive ratio of the algorithm.

Work functions are nondecreasing, irregularly-
spaced staircase functions, i.e.:

WA(t) = 0, t ≤ I + C WA(t) = nI, n ∈ Z
∗

Lemma 2 Let k be the number of checkpoints com-
pleted in a given FF interval by algorithm A at time t.
Then I� t−kC

I � ≥ WA(t) ≥ kI.

The proof can be found elsewhere [6]. The work
function for OPT is WOPT (t). This function is unique:

WOPT (t) = I� t − C

I
�

WOPT (t) gives an upper bound for the work functions
of all other algorithms: WOPT (t) ≥ WA(t) ∀t.

In the worst-case competitive analysis, recall that
OPT was nondeterministic and had absolute knowl-
edge about when the FF interval would end. Similarly,
this work function for OPT does not obey the rules to
which deterministic algorithms are bound. For exam-
ple, after increasing by I, WA(t) cannot increase again
until at least I + C seconds later. WOPT (t), on the
other hand, increases by I every I seconds. This is
equivalent to an OPT that knows χ(t) as the function
in Equation 1 and waits until the latest possible time
before performing a single checkpoint.

At the beginning of a failure free interval, the co-
operative checkpointing scheme selects some determin-
istic algorithm A based on what it knows about χ(t)
for this interval. How this selection process proceeds is
derived from the definition of expected competitiveness
and the calculation of the expected competitive ratio
ω.

Definition 3 An online checkpointing algorithm A
has expected competitive ratio ω (A is ω-competitive)
if the expected amount of work saved by the optimal
offline algorithm (OPT) is at most ω times the ex-
pected amount of work saved by A. That is, E[VOPT ] ≤
ωE[VA].

By the definition of VA, if a failure happens at time
t = h, VA = WA(h). Let T be the maximum FF in-
terval length, easily determined by the running time
of the program. We can now define ω in terms of fi-
nite integrals over the products of piecewise continuous
functions and probability densities:

ω =
E[VOPT ]
E[VA]

=

∫ T

0
I� t−C

I �χ(t)dt∫ T

0
WA(t)χ(t)dt

(2)

This concludes the presentation of the model and
analysis tools. The following section investigates the
implications of these results both for theory and for
practice.

5. Conclusions and Contributions

Among the results in this section is a proof that
näıve periodic checkpointing can be arbitrarily bad rel-
ative to cooperative checkpointing for certain failure
distributions, and a case analysis demonstrating that,
under realistic conditions, an application using cooper-
ative checkpointing can make progress four times faster
than one using periodic checkpointing.

The cooperative checkpointing scheme now behaves
as follows. At the beginning of each FF interval, the
system considers everything it knows about χ(t) and
selects a deterministic algorithm A that maximizes the
overlap between WA(t) and χ(t). Given some informa-
tion about χ(t), A should be chosen to maximize the
denominator in the equation for ω, because we want
that quotient to be as small as possible. Intuitively, we
want to match up WA(t) and χ(t).

The expected competitiveness model for checkpoint-
ing allows all kinds of distributions, making it far more
general than a scheme that presumes a memoryless
failure distribution. How powerful is this generality?
Consider F , distributed with some failure probability
density χ(t). Let Aλ be a periodic checkpointing algo-
rithm; restrict Aλ, however, to only have access to an
exponential distribution χλ(t) = λe−λt with 1

λ = E[F ].
Aλ always has an accurate measure of the mean of the
distribution χ(t), but may otherwise have no similari-
ties. For example, the exponential variance will be 1

λ2

while the variance of χ(t) may be infinite. OPT , as
usual, knows χ(t). Pick χ(t) such that the expected
competitiveness is worst-case.



Theorem 6 Aλ is not competitive.

Proof Pick χ(t) to be the sum of two Dirac delta func-
tions at t1 and t2: χ(t) = aδ(t − t1) + (1 − a)δ(t − t2)
with 0 ≤ a ≤ 1. The mean of this distribution is
1
λ = E[F ] = at1 + (1− a)t2. Set t1 = I + C. OPT will
always make progress, because t1 is large enough for
OPT to save at least that one request interval before
failing. To give Aλ every advantage, let it checkpoint

with the optimal period: IOPT =
√

2C
λ .

Make Aλ checkpoint with period ≥ I; use 2I to be
safe:

IOPT =
√

2C
λ =

√
2CE[F ] =√

2C(a(I + C) + (1 − a)t2) ≥ 2I

Isolating the variables over which we have control:

a(I + C) + (1 − a)t2 ≥ 2I2

C
(3)

Using Equation 3 as the constraint, we want to make
a as close to 1 as possible, so that the FF interval
almost always ends after I + C, when OPT has made
progress but Aλ has not. As a → 1, t2 → ∞ in
order to maintain the inequality (unless C > I). As
before, T is the maximum length of an FF interval.
If we allow T to go to infinity, Aλ will not make
progress arbitrarily often, though OPT always will.
The competitive ratio approaches infinity. �

Remark When a is set to 1, χ(t) is really just the
worst-case failure scenario. Having set the periodic
checkpointing interval to 2I, this is forcing Aλ to be a
deterministic algorithm that skips the first checkpoint.
By Theorem 2, the algorithm is not competitive.

Corollary 2 By Theorem 6, a periodic checkpointing
algorithm that assumes an exponential failure distribu-
tion may be arbitrarily bad compared to a cooperative
checkpointing algorithm that permits general probability
density functions as failure distributions.

In light of this result, it is worth asking how badly
a real machine might do by using periodic checkpoint-
ing with an assumption of exponentially distributed
failures, versus how it might do by using cooperative
checkpointing. What is the potential gain under realis-
tic conditions? Does anything like the failure distribu-
tion in the proof of Theorem 6 ever occur in practice?
We repeat the comparison from Theorem 6 using real
parameters from IBM’s BG/L supercomputer.

First, set C = 6 minutes (360 seconds); the upper
bound for checkpointing on BG/L was estimated at 12

minutes (720 seconds) so this is a reasonable average.
Second, assume that the random variable F , the length
of each FF interval, is independent and identically dis-
tributed with exponential distribution χ(t) = λe−λt.
Third, consider an installation of BG/L that consists
of 64 racks with a total of 65,536 nodes.

In practice, Sahoo et al [5] estimate the mean time
between failures for a 4,096-node BG/L prototype to be
3.7 failures per day (MTBF = 6.5 hours). Presuming
linear scaling, the 64-rack machine will have E[F ] =
24 minutes (1,459 seconds). The MTBF corresponds
roughly to a 3-year component lifetime. Recall that
this data is from a prototype, so the full machine may
be more reliable than we project.

On the full BG/L machine, the optimal periodic
checkpointing algorithm would checkpoint every 17
minutes (1,025 seconds). With an overhead of 6 min-
utes, it would spend 26% of the machine time perform-
ing checkpoints.

In order to comment on the performance of co-
operative checkpointing, we must hypothesize a non-
exponential failure distribution that might better de-
scribe BG/L’s behavior. Use χ(t) = aδ(t − t1) + (1 −
a)δ(t − t2). In the prototype study [5], the maxi-
mum uptime was slightly more than 140 hours (504,000
seconds), far larger than the mean. This real data
already echoes the construction of the proof of non-
competitiveness for Aλ [6]; pick t1 to be small, t2 to
be very large, and a to be nearly 1. Use C = 360 sec-
onds. As before, pick I to be half the optimal periodic
checkpointing interval, meaning that Aλ performs ev-
ery other request starting with the second: I = 512
seconds. Set E[F ] at 1,459 seconds, t2 at 504,000 sec-
onds, and t1 at I + C = 872 seconds:

E[F ] = 1459 = at1 + (1 − a)t2 = 872a + (1 − a)504000

Which fixes a at 0.9988. In other words, 99.88% of the
time the application fails at time I + C, a situation
in which Aλ saves no work, but OPT saves I. The
remaining 0.22% of the time,

Vλ = I� t2
2I + C

� = 512�504000
1384

� = 186368 units

VOPT = I� t2 − C

I
� = 512�503640

512
� = 503296 units

The expected ratio for this example case is,

ω =
VOPT

Vλ
=

0.9988(512) + 0.0022(503296)
0.0022(186368)

= 3.95

This means roughly that, in an infinite execution under
these system parameters and this failure distribution,
cooperative checkpointing can accomplish 4 times as



much useful work in a given amount of machine time,
compared to even the optimal periodic checkpointing
algorithm. Certainly, increasing the throughput of the
machine four-fold would be a worthwhile investment.
This example illustrates that cooperative checkpoint-
ing is not merely of theoretical value; it can result in
tangible improvements in reliability and performance
over periodic checkpointing.

This paper makes the following contributions:

• Introduces cooperative checkpointing, where the
application requests checkpoints and the system
dynamically decides which to perform and which
to skip.

• Proposes a model and metrics for checkpointing.
The model allows for the creation of near-optimal
checkpointing schemes for general failure distribu-
tions.

• Analyzes cooperative checkpointing as an online
algorithm. The worst-case and expected-case
analyses prove that cooperative checkpointing can
do arbitrarily better than periodic checkpointing.

• Argues that empirical data suggest cooperative
checkpointing would confer significant benefits in
practice, with one case analysis projecting perfor-
mance improvement by a factor of four.
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