
Compiler Assisted Dynamic Management of Registers for Network
Processors

Ryan Collins1, Fernando Alegre1, Xiaotong Zhuang1, and Santosh Pande1

1Georgia Institute of Technology
College of Computing

Atltanta, GA 30332-0280 USA
{rcollins, fernando, xt2000, santosh}@cc.gatech.edu

Abstract

Modern network processors support high levels of
parallelism in packet processing by supporting multi-
ple threads that execute on a micro-engine. Threads
switch context upon encountering long latency mem-
ory accesses and this way the parallelism and memory
access can be overlapped. Context switches in the typi-
cal network processor architectures such as the IXP are
designed to be very fast. However, the low overhead is
partly achieved by leaving register management to pro-
grams, with minimal support from the hardware. The
complexity of the multi-engine, multi-threaded environ-
ment makes manual register management a daunting
task, which is better left to a compiler. However, a
purely static analysis is unable to achieve full utiliza-
tion of the register file due to conservative estimates
of liveness. A register that is live across a context
switch point must be considered live for the duration
of all other threads, and so it must be assumed to be
unavailable to other threads. In addition, aliasing fur-
ther reduces the effectiveness of static analysis. The
net effect is a large number of idle cycles that are still
present after static optimization.

We propose a dynamic solution that requires mini-
mal software and hardware support. On the software
side, we take a pre-allocated binary file and annotate
the potential context switch instructions with informa-
tion about the dead registers. On the hardware side,
we try to rename the transfer registers and addresses
to dead general purpose registers and update the usage
of registers. We then replace the long-latency memory
instructions with fast move instructions in the archi-
tecture using the dynamic context. The results show up
to 51% reduction in idle cycles and up to 14% increase
in the throughput for hand coded applications on Intel

IXP 1200 network processor.

1 Introduction

The current demands of Internet traffic have created
a need for fast, programmable network processors. The
need for flexibility arises as the complexity and diver-
sity of network tasks increases. Current tasks range
from IP forwarding to computing the MD4 hash of a
packet to scanning packet contents for potentially ma-
lignant code. Packet processing must also keep up with
increasing network speeds. On the OC-768, the pro-
cessor must complete packet processing in only 13ns to
avoid packet loss.

Typically, a network processor has multiple micro-
engines on-chip and hardware support for multiple
threads on each engine to allow work to be done in par-
allel. Each microengine can process a separate packet
in parallel. The threads are used to mask the latency
of long memory operations, which are frequent due to
the lack of cache. Upon executing a long-latency oper-
ation, the processor may also execute a context switch
(if the programmer explicitly encodes one in the long-
latency instruction) to hide the latency of the opera-
tion. In this way, parallelism is achieved by interleaving
the execution of a thread with memory access for the
others. This work is done entirely by the programmer
or compiler; there is no OS to schedule the threads and
prevent starvation.

Network processors also contain a large number of
registers to decrease the number of memory accesses.
Currently, programmers write the vast majority of net-
work application code in the processor’s native assem-
bly language or a low-level restricted version of C.
There have been efforts to construct an optimizing

1-4244-0054-6/06/$20.00 ©2006 IEEE

compiler with support for using high level languages
[12, 6, 1, 2]. Typical network processors have 128 regis-
ters available which can used in a shared or non-shared
manner across the threads. A compiler or allocator
must determine how to best divide the registers across
threads. In the simplest case, the compiler evenly di-
vides the register set across each thread and does not
perform any inter-thread analysis. In most cases, iden-
tical programs are executing on each thread, so this
method produces acceptable results. [13] proposes an
alternate static algorithm which balances register al-
location across threads according to their needs. This
results in a performance gain for both Symmetric Reg-
ister Allocation (SRA) (one in which all threads exe-
cute the same code) and Asymmetric Register Alloca-
tion (ARA) (one in which each thread executes differ-
ent code) schemes. However, due to static nature of
allocation, the assumptions used by this inter-thread
register allocation are conservative; dynamically, more
aggressive opportunities exist for saving memory traffic
and latencies by undertaking register allocation dur-
ing execution. By effectively utilizing the information
about the dynamic context one can eliminate spills as
well as aliased memory load/stores leading to reduction
in idle cycles and increase in the throughput which is
the theme of the paper.

This paper is organized as follows. In section 2,
we briefly discuss the architecture of the processor we
base our work upon and discuss the semantics of key
instructions. In section 3, we provide the motivation
for our approach, which is described in sections 4,5 and
6. Section 7 shows our results, and finally sections 8
and 9 provide references to related works and discus-
sion about our results, respectively.

2 The Intel IXP1200

In this paper, we used the Intel IXP1200 processor
as the target 1. This processor consists of multiple
RISC cores (microengines) which may work either in
parallel or in a pipeline. Microengines share a common
bus with a number of components.

2.1 Key Components

The key components relevant to this paper are ex-
plained below. There are several additional compo-
nents present in the IXP1200 which we omitted because
they are not used in this work.

1The main reason for using IXP 1200 was the availability of
an open source simulator; it may be noted that for the scope of
this work, IXP 2400/2800 offer the same problem

Microengines: Microengines are processors with a
small instruction set and hardware support for co-
operative (not pre-emptive) multithreading. Each
microengine has a small program code store shared
by all threads and a separate program counter for
each thread. The IXP1200 supports 4 threads per
microengine.

ALU and GPRs: Each microengine has an arith-
metic and logic unit (ALU) and a set of general-
purpose registers, which are evenly divided into
2 banks (known as A and B.) Upon a context
switch, contents of registers are not saved. There-
fore, context-switches are very fast, but register
file management must be done by the software.

Transfer Registers: Each microengine has special
purpose registers to communicate with memory
units, one such set for each type of memory
(e.g., SRAM or SDRAM) and transfer direction
(read/write.) These are the only means to move
data between the ALU and memory.

Memory Units: Memory units are shared by all mi-
croengines. At least 2 different types of memory
are present: SRAM, with a typical latency of 20
cycles or more, and SDRAM, with a latency of 50
cycles or more.

Data is copied between a transfer register and the
corresponding memory controller asynchronously,
and the processor is signalled when the transfer
is finished. Programs typically perform a context
switch so that they swap out a thread waiting for
a memory transfer and swap in a thread ready
to perform ALU operations. Thus, the effect of
memory latency is diminished.

2.2 IXP Assembly Instructions

Most IXP-architecture assembly instructions follow
the format:

unit[arg1,arg2,...] options

where unit is one of the hardware units that compose
the processor. In this paper, we are concerned with alu
instructions, which operate on general purpose regis-
ters, and with memory instructions, discussed below.

Arithmetic and Logic Unit: Arithmetic, logic and
register-to-register copy operations use the key-
word alu. The first argument typically indicates
the destination operand, which may be either a
general-purpose register or a transfer register. It is

followed by the operator keyword 2 and the source
operand. Not all combinations are legal. In partic-
ular, general-purpose registers must be in different
banks.

General-purpose registers: General-purpose regis-
ters in each bank can be addressed either abso-
lutely (prefixed with @) or relative to each thread
(no prefix.) In the IXP1200, each thread can ad-
dress 16 registers per bank. For example, a ref-
erence to A1 will actually use @A1 when executed
by thread 0 and @A17 when executed by thread 1.
Since code is often shared by threads, this means
that each reference to a relative register uses ac-
tually as many registers as threads.

Transfer registers: Transfer registers are the only
way to move data between the ALU and the mem-
ory. They are denoted by a prefix ($ for sram,$$
for sdram) followed by a number. There are ac-
tually two registers associated to each number: a
read-only register for transfers from memory to
the ALU, and a write-only register for transfers in
the other direction. Therefore, data moved to a
write-only register cannot be read back.

Memory: Programmers are required to determine
where to store (e.g., sdram or sram) a particular
piece of data, since there is nothing equivalent to
the transparent cache hierarchy found in modern
general-purpose computers.

Since it is not possible to move data directly be-
tween a general-purpose register and memory, typ-
ical data transfers take place through transfer reg-
isters as follows:

sdram[read,$$1, b2, 0, 1] // SDRAM[b2] to sdram-xfer
alu[a0,--,B,$$1] // Copy data into GPR A0
...
alu[$0,--,B,b5] // GPR to sram-xfer
sram[write, $0, a1, 0, 1] // Write to SRAM[a1]

Control flow: Other instructions used below are
branching (br) and context switches (ctx_arb,)
which may be either unconditional or conditional.

3 Motivation

Since network processors have real-time constraints,
it is critical that they do not waste cycles running nop
instructions. However, the lack of a cache, the high
cost of memory accesses, and the symmetric programs
typically executed on the IXP create a situation where

2In copy operations, the operator field is empty

Benchmark Number % Cycles
ipfdwr (1 ME) 71 0%
ipfdwr (4 ME) 88210 0.184%
md4 (1 ME) 620388 2.58%
md4 (4 ME) 9574894 19.95%
nat (1 ME) 101284 0.422%
nat (4 ME) 106866 0.223%
url (1 ME) 1006534 4.19%
url (4 ME) 7728240 16.10%

Table 1. Idle Cycles
Register

Benchmark Utilization
ipfdwr (1 ME) 22.27%
ipfdwr (4 ME) 23.02%
md4 (1 ME) 17.94%
md4 (4 ME) 12.67%
nat (1 ME) 25.74%
nat (4 ME) 25.35%
url (1 ME) 12.95%
url (4 ME) 10.60%

Table 2. Register Utiliza-
tion Pre-Optimization

long periods of idle activity are inevitable. In the sym-
metric programming style, it is likely that each thread
will reach a given memory instruction at the same time.
The first thread executes memory operation and passes
control to the second thread which executes a memory
operation and passes control to the third thread and
so on. Since each memory operation requires a large
number of cycles, the processor enters a stage where all
four threads are waiting for their memory operations
to complete, and the only option is to begin issuing
nop instructions. Some experiments were performed to
verify this conjecture. Table 1 shows the number of cy-
cles that each benchmark spends in the idle state. One
can see that for multi-threaded cases, there is a large
number of idle cycles spent by a given micro-engine.

Clearly, reducing the number of memory accesses
will increase efficiency. A way to reduce memory ac-
cess is by transforming some memory references into
register references. Table 2 shows that the register uti-
lization for most benchmark is actually quite low. The
register utilization can be computed using the following
formula,

∑numRegs
r∈regset

∑numCycles
i=0 liveAt(r, i)

numRegs ∗ numCycles

The above formula determines how long a register is

occupied (in terms of cycles) on an average during the
program execution. If the hardware could divert some
memory traffic to the unused registers, the number of
idle cycles would be reduced.

[13] describes an algorithm that statically partitions
the register file into shared registers and private reg-
isters. Shared registers can be accessed by all threads
safely, while private registers can only be accessed by
one particular thread. Conservatively, shared registers
must not be live across any context switch point. Even
though this algorithm results in a large speedup over
the traditional network processor technique of parti-
tioning the register file into equal sets of private reg-
isters, it cannot fully utilize the register set because
of the conservative assumption that the other threads
may be executing any possible instruction in their con-
text. Since the technique is purely static, it has to
assume all possible orderings of thread executions and
thus the technique assumes that a given register to a
thread would be busy throughout the execution dura-
tion of another thread. In short, it can not aggressively
allocate private registers.

Let us consider the following example:

... // no references to @b15 or b15

... // above this point
L0: br!=ctx[0,L1] // jump to L1, unless we are thread 0

alu[@b15,a16,+,b17] // b[15]=a[ctx*Anum+16]+b[ctx*Bnum+17]
... // more code, but no branching
ctx_arb // ctx=next(ctx); goto pc[ctx];
... // more code, but no branching
alu[b17,a16,+,@b15] // b[ctx*Bnum+17]=a[ctx*Anum+16]+b[15]

L1: ... // no references to @b15 or b15
... // below this point

The register @B15 is live across a context-switch
point. Assume each thread executes the code at L0
once. If there were just one thread, then static anal-
ysis would allow us to conclude that @B15 is dead at
L1, and so it can be reused after execution reaches that
point. However, in the presence of several simultane-
ous threads executing at different points in the code,
we must use some dynamic mechanism to check that
all threads have reached L1 before we can declare @B15
dead.

Increased register use would allow for reduction of
redundant memory accesses. Table 3 shows that a large
portion of memory accesses are comprised of redundant
loads. The double-load column shows the number of
times the program loads a value from memory twice
without storing anything to that location in between.
Common causes are register spills, infrequent uses of
values over long lifetimes and aliasing. Obviously, di-
verting some of these accesses to unused registers would
reduce memory latency too.

In conclusion, a significant opportunity exists to re-
duce the load/stores to the memory and idle cycles.

Faster thread execution leads to higher throughput,
which is the main purpose of network processors. This
paper presents a combination of static and dynamic
mechanisms to put dead registers to work towards that
goal. The algorithm consists of two parts. First, static
analysis finds register usage patterns, and then that
information is used dynamically to map memory ad-
dresses to dead registers.

4 Static Implementation

Taking as input a binary file, we perform static anal-
ysis to produce an annotated version of the file. We as-
sume that the existing register allocator uses a simple
allocation strategy that divides the register set evenly
among the threads. However, the optimization will still
work in the presence of a more advanced allocation
strategy.

First, our algorithm follows [13] to create a con-
trol flow graph (CFG) that divides the blocks into
non-switch regions. These are basic blocks that have
been sub-partitioned to include at most one context-
switch instruction at its boundaries, just as normal ba-
sic blocks contain at most one branch instruction (cf.
figure 1.)

Next, data analysis is performed to discover dead-
until-end registers, i.e., registers that are dead for the
duration of the program. The following dataflow equa-
tions are used:

Dead-Out(BB) =
⋂

s∈Succ(BB)
Dead-In(s)

Dead-In(BB) = Dead-Out(BB) − Use(BB) − Def(BB)
Dead-In(EXIT) = U

It is important to note that Dead-In and Dead-Out
are not the inverse of the traditional Live-In and
Live-Out. A dead register is made live by a use or

Double Loads
Benchmark Total % Mem Accesses

ipfwdr (1 ME) 349931 64.5%
ipfwdr (4 ME) 1319746 64.1%
md4 (1 ME) 115367 11.1%
md4 (4 ME) 152655 6.47%
nat (1 ME) 373967 58.3%
nat (4 ME) 548310 55.0%
url (1 ME) 479226 49.5%

Table 3. Memory Access Patterns

c = ..
b = ...
if(...) br L1

a = ...
b = ...
load ...

a = ...
c = ...
ctx_arb

Figure 1. A non-switch
region CFG

Instruction
Lookup

Instruction
Decode

ALU Op Write Result

Register
Re−mapping
Mechanism

Guess Branch

Figure 2. The modified IXP pipeline

a def. This is because it is unsafe to use a dead regis-
ter across a new definition of it, even if that definition
is never used.

For example, in this code,

alu[a14,a15,+,b15]
alu[a15,a14,+,b15]
...
alu[a14,a15,+,b15]
...

traditional liveness analysis would consider a14 dead
after its use in the second line. However, when multiple
threads are present, it is unsafe to treat a14 as dead
for the rest of the program. Furthermore, since aliasing
allows multiple names to map to the same address, it
is unsafe to unmap an address before the end of the
program. In general, we also found that globals are
the most heavily used aliased variables which are live
through the execution of the program and which would
benefit the most from our algorithm.

The dead/not-dead status of all registers is encoded
as a bit vector at several points in the program. These
bit vectors are collected into a hash-table, indexed by
the program point, which will be loaded into SRAM at
program initialization time. The length of the vector
can be either 128 bits if absolute addressing is used in
the program, or 32 bits if only relative addressing is
used.

Finally, our algorithm needs to analyze the locality
of memory operations. We need to distinguish opera-
tions used for spill values from those used for commu-
nication between microengines. Our dynamic alloca-
tor cannot handle the latter due to inefficiencies of the
IXP1200 model, which lacks more advanced communi-
cation mechanisms such as the Next Neighbor registers
found in the Intel IXP2800 processor. Therefore, each
memory operation is statically annotated with a bit
indicating whether it is used globally or locally.

alu[$0,a3,+,b4]
sram[write,$0,128,0,1]
ctx_arb
...
sram[read,$0,128,0,1]
ctx_arb
alu[a1,b2,+,$0]

alu[a16,a3,+,b4]
alu[a15,--,b,a16]
...
alu[a17,--,b,a15]
alu[a1,b2,+,a17]

alu[a15,a3,+,b4]
alu[$0,--,b,a15]
sram[write,$0,128,0,1]
ctx_arb
...
sram[read,$0,128,0,1]
ctx_arb
alu[a1,b2,+,$0]

Table 4. Dynamic code transformation. Left:
Original code. Middle: When A15-A17 are
dead. Right: When only A15 is dead.

5 Dynamic Implementation

Let us now show how a small modification to the
hardware could use the register usage information from
the previous section to dynamically map memory ad-
dresses to dead registers.

Table 4 shows an example of such transformation
both when there are enough dead registers available
and when there are not. In the latter case, our hard-
ware solution would greedily allocate the dead register
to the next address that required it (the write transfer
register $0 in the example.) This transformation would
preserve the correctness of the original code at the cost
of an additional move instruction.

The new hardware to perform the above dynamic al-
location is inserted into the fourth pipeline stage. (cf.
Figure 2). At that point, the ALU output forms the
memory address for any memory operation. This al-
lows the hardware to use the actual value of a memory
address instead of an alias for it.

Figure 3 formally illustrates the finite state machine
for the allocation hardware. The hardware checks if the
current memory address is already stored in the table;
if so, it replaces the memory operation with a register

<addr,type, reg>
pair

not found

out = dead−reg−th1
 & dead−reg−th2
 & dead−reg−th3
 & dead−reg−th4

out == 0 return null−reg

b = choose a set
bit from out

insert <addr,type,b>
into reg−map
return b

out != 0

return reg from

Lookup <addr,type>
in reg−map

found

Figure 3. Dynamic Allocation FSM

Register Type Mem Addr Reg Map
(4 bits) (17 bits) (7 bits)

a3 0 0x0F000 b4

Table 5. Sample CAM entry
PC Hash Dead-Register Bit-Vector
(5 bits) (32 bits)

0 0010...0
...

...
63 0110...1

Table 6. The 64-entry hash table

move instruction. If the current memory address is
not in the table, it allocates one of the remaining dead
registers and creates a map between the dead register
and the address. The remainder of this section explains
in detail how this process is done in hardware.

A new store consisting of a CAM table and a hash
table is needed. The 8-entry CAM table is a map-
ping from a memory address to a register containing
its cached value. The 64-entry hash table is a mapping
from a program point (PC) to a bit vector marking the
dead registers available at that program point.

Each CAM entry contains the type of memory acc-
cessed along with the address. The type tag also dou-
bles as a valid bit, with type 0 corresponding to the
invalid state. The memory is then bypassed by access-
ing the register in the Register Map entry. In the case
of table 5, register A3 points to address 0xF000, which
is cached in register B4.

If the current address is not in the lookup table, the
hardware allocates an unused register. It determines
that a register is a candidate if it appears in the inter-
section of the dead-rest bit-vectors for all four threads
at the most recent context switch. The harware then
chooses among those the register corresponding to the

{1} alu[a3,a1,+,b2]
{2} alu[b2,a0,+,b0]
{3} alu[$0,a3,+,b2]
{4} br!=ctx[0,L1]
{5} L1:sram[write,$0,128,0,1]

ctx_arb
{6} alu[a3,a2,+,b2]
{7} sram[read,$0,128,0,1]

ctx_arb
{8} alu[a1,b2,+,$0]

alu[a3,a1,+,b2]
alu[b2,a0,+,b0]
alu[b1,a3,+,b2]
br!=ctx[0,L1]
L1:sram[write,$0,128,0,1]
ctx_arb
alu[a3,a2,+,b2]
sram[read,$0,128,0,1]
ctx_arb
alu[a1,b2,+,$0]

Original code Step 1

alu[a3,a1,+,b2]
alu[b2,a0,+,b0]
alu[b1,a3,+,b2]
br!=ctx[0,L1]
L1:alu[a0,--,b,b1]
alu[a3,a2,+,b2]
sram[read,$0,128,0,1]
ctx_arb
alu[a1,b2,+,$0]

alu[a3,a1,+,b2]
alu[b2,a0,+,b0]
alu[b1,a3,+,b2]
br!=ctx[0,L1]
L1: alu[a0,--,b,b1]
alu[a3,a2,+,b2]
alu[b3,--,b,a0]
alu[a1,b2,+,$0]

Step 2 Step 3

alu[a3,a1,+,b2]
alu[b2,a0,+,b0]
alu[b1,a3,+,b2]
br!=ctx[0,L1]
L1: alu[a0,--,b,b1]
alu[a3,a2,+,b2]
alu[b3,--,b,a0]
alu[a1,b2,+,b3]

Final version

Table 7. Example I. Dynamic code transfor-
mation

lowest order bit in the vectors.
Table 6 shows the contents of the 64-entry hash ta-

ble. The 10-bit PC is the index into the hash table,
but the hardware only stores 5-bits for the PC in the
table. The software side generates a minimal perfect
hash function [3] that maps each 10-bit PC onto a 5-bit
number. Since the program only uses a small subset of
the entire PC range as dead-register points, the soft-
ware can generate a fast hash function that correctly
maps a 64-entry subset of program points onto 5-bit
numbers. The 32-bit dead-register bit-vector contains
a listing of all (thread-relative) dead-registers at the
given program point. If the program uses absolute reg-
ister references in addition to thread-relative register
references, we keep a 128-bit dead-register bit-vector.

The new hardware affects the latency of all memory
operations. By default, even if the hardware cannot
create a mapping between the memory operation and
a register, there is still a latency penalty of 2 cycles
for the opcode match followed by the CAM lookup. If
there is a match for the memory address in the CAM
table, the operation must take an additional 5 cycle
latency penalty to restart the pipeline with the new

move instruction that replaces the old memory oper-
ation. Finally, if there is no match for the memory
address, but there exist free dead-registers, there is an-
other 1 cycle of latency for the test-and-set operation
to allocate a dead-register. So, the latency ranges from
2 cycles (default case) to 8 cycles (unmatched memory
address + free dead regs). The hash-table lookup is
performed in parallel with the CAM lookup, so it does
not add any extra cycles to the overall latency penalty.

The overall chip size increases by 323 bytes. The
8-entry CAM table requires 27 bits ∗ 8 entries = 27
bytes. The 64-entry PC hash table requires 37 bits ∗
64 entries = 296 bytes.

It may be noted that this solution is off the critical
path and does not affect the clocking speed or the la-
tency involved in the design. First, such a processing
is only done at context switch points caused by mem-
ory (SRAM or SDRAM) accesses. Prefetching is used
to get the relevant entry of the mapping table (due to
space limitations we can not get into the details of this
part but in short when a non-context switch region is
entered all its exit entries are prefetched). Thirdly, the
memory access is not delayed beyond the corresponding
latency since these operations are performed in paral-
lel. The only thing that gets delayed is the decision to
context switch. In most cases, when dead registers are
found, a context switch is avoided. When not found,
the latency overhead added would still be only 8 cycles.

We now present a full example to illustrate the
technique.

Example I. Suppose 4 registers in the A bank and 4
registers in the B bank are available, and we are given
the code shown in table 7.

By static analysis, we see that registers b1 and b3
are dead before non-switch region {1-5}, a0, b0, b1
and b3 are dead before {6-7} and a0,a2,a3,b0,b1 and
b3 are dead before {8}.

When the hardware reaches {3}, it must replace the
register $0 with a general purpose register (cf. Step
1 in table 7 and CAM entries in table 8.) Then, the
dynamic register allocator changes {5} to a new move
instruction (cf. Step 2 in table 7.) Then, the allocator
changes {7} to a move instruction as well. It must also
allocate a new GPR for the read transfer register $0 (cf.
Step 3 in table 7, table 9.) Finally, the allocator maps
the use of the read transfer register $0 in instruction
{8} to its GPR located in the CAM table. The final
transformed code is also shown in table 7

Type Mem Address Register Map
(3 bits) (17 bits) (7 bits)

sram-wr-xfer 0 b1
. . .

– – 0

Table 8. Example I. Register Map Table p1
Type Mem Address Register Map

(3 bits) (17 bits) (7 bits)
sram-wr-xfer 0 b1

sram 128 a0
sram-rd-xfer 0 b3

– – 0
. . . 0

Table 9. Register Map Table p5

immed[$0,1]
sram[write,$0,b0,0,1]
immed[$1,5]
t_fifo_wr[$1,b1,b2,1]
t_fifo_rd[$2,b2,0,1]
alu[add,a1,a3,$2]
immed[$1,7]
br=ctx[0,L0]
t_fifo_wr[$1,b3,0,1]
L0: sram[write,$1,b0,0,1]

immed[$0,1]
sram[write,$0,b0,0,1]
immed[$1,5],no_map
t_fifo_wr[$1,b1,b2,1]
t_fifo_rd[$2,b2,0,1]
alu[add,a1,a3,$2],no_map
immed[$1,7]
immed[$1,7],no_map
br=ctx[0,L0]
t_fifo_wr[$1,b3,0,1]
L0: sram[write,$1,b0,0,1]

Table 10. Example II. Left: Original code.
Right: Transformed code

6 Other IXP Implementation Details

6.1 Transfer Registers

As we mentioned above, the processor uses transfer
registers when transmitting to external devices such as
SRAM. Transfer registers, which cannot be used for
general purposes, are either read-only or write-only.
Thus, we also need to cache the values stored in write-
only registers, so that we avoid going through the pro-
cess of writing them to memory and back to a read-only
register. In summary, for the address-register mapping
scheme to work, instructions that use transfer registers
must replace those registers with general purpose reg-
isters. This may mean that 2 general purpose registers
are required for each memory-address transfer-register
pair. In practice, however, one transfer register is used
for a large number of memory addresses.

During static analysis, we also need to account for
the case where a transfer register is the source of other
memory operations, such as t fifo wr (a write to the
transfer FIFO,) that are not rewritten by the address-
register mapper. Our algorithm does this by looking
for the next store instruction following a transfer reg-

ister definition and the previous load instruction fol-
lowing a transfer register use. If the load or store in-
struction is not a possible remap target, the algorithm
notes that in the option field of the corresponding in-
struction that uses the transfer register. If the transfer
register is the source of both types (via a branch), then
the program splits the instruction into a mappable and
non-mappable version. An example is given in table 10.

This example shows all of the possible cases. The
transfer register instructions that associated with the
FIFO operations are annotated with the no map op-
tion. The transfer register instruction that is the source
of both a t fifo wr instruction and a sram write in-
struction is split into two transfer register instructions,
one of which has the no map option.

6.2 Unpacking Memory Instructions

A memory instruction can load or store a range of
words at once. In that case the transfer register speci-
fied in the destination slot represents only the start of
the range of transfer registers used in the operation.
The hardware needs to unpack the memory operation,
so that each transfer register is exposed in the instruc-
tion stream.

For example,

sram[write,$0,b0,0,4]

transforms into

sram[write,$0,B0,0,1]
sram[write,$1,B0,1,1]
sram[write,$2,B0,2,1]
sram[write,$3,B0,3,1]

7 Results

This paper uses a subset of the Netbench [8] bench-
mark suite for its results. We could only use a small
subset of the suite that has been ported to NePSim [7],
the IXP1200 simulator in which we tested our work.

Each benchmark consists of an infinite loop. We
had each benchmark execute for 8000000 instructions
before halting. The same benchmarks were run in
two configurations: all 6 microengines (4 intermediate
MEs) and 3 microengines (1 intermediate ME).

Table 11 shows the SRAM dynamic load+store
counts before and after optimization. There are two
factors that limit the number of load+stores that can
be removed: 1) Most importantly, the optimization re-
quires many registers, while the number of available
dead registers is limited. 2) Some of the load+store ac-
tivity facilitates inter-engine communication, and these
cannot be removed. The store numbers are universally
better than the load numbers because any store can

Benchmark #Pkts #Pkts % Increase
Pre-Opt Post-Opt

ipfdwr (1 ME) 18297 18701 2.21%
ipfdwr (4 ME) 70302 75490 7.38%
md4 (1 ME) 4210 4485 6.53%
nat (1 ME) 28645 32755 14.35%
nat (4 ME) 44898 50101 11.59%
url (1 ME) 2174 2245 3.27%
url (4 ME) 7139 7387 3.47%

Table 13. Throughput

be immediately allocated to a register, while a load re-
quires that a corresponding store be already allocated
to a register.

Table 12 shows the reduction in idle cycles. The
idle cycle reduction varies between benchmarks. How-
ever, we observe a correlation between the dynamic
load+store count and the idle cycle reduction. Also,
the relative number of idle cycles removed decreases
when the number of microengines increases. This is
probably due to the increase in cross-microengine com-
munication.

We also performed experiments that change the
amount of latency associated with the new hardware.
If, for instance, the hash table lookup and the CAM ta-
ble lookup can not be done in parallel, the total latency
increases from 8 cycles worst-case to 10 cycles worst-
case (assuming that the hashing and retrieval can be
completed in 2 cycles). The idle cycle reduction for 10-
cycle worst-case latency hardware is obviously worse
than the idle cycle reduction for 8-cycle worst-case la-
tency hardware, but overall the performance gain is
still good.

There is a 50% reduction in idle cycles for the nat
benchmark.

Table 13 shows the increase the packet through-
put for each benchmark. Intuitively a decrease in idle
cycles should cause an increase in throughput perfor-
mance. The throughput however is a complicated func-
tion of many parameters not just idle cycles. We ex-
amined the benchmarks and the throughput is mainly
a function of the design and inter PE communication
which is not handled by our framework. In some cases,
the idle cycles form a part of the critical path and our
framework optimized it away significantly. For exam-
ple, there is a 14% increase in the speed of the nat
benchmark, which is promising.

Table 14 shows the different reasons that the
algorithm is unable to remove all spills. Cross-
communication indicates a memory access that is in-

Dynamic Load Count Dynamic Store Count
Benchmark Pre-Opt Post-Opt Decrease Pre-Opt Post-Opt Decrease

ipfdwr (1 ME) 339643 301484 11% 91515 74127 19%
ipfdwr (4 ME) 1284455 1134751 12% 351549 283618 19%
md4 (1 ME) 674500 571901 15% 320169 256253 20%
md4 (4 ME) 1739127 1471492 15% 894918 187932 21%
nat (1 ME) 491110 364786 25% 207839 149644 28%
nat (4 ME) 732668 568279 23% 346453 261299 25%
url (1 ME) 860114 785074 9% 132049 94208 12%
url (4 ME) 2612944 2407754 8% 420058 365450 13%

Table 11. SRAM Counts

Benchmark Pre-Opt Post-Opt Decrease Post-Opt Decrease
8-cycle lat 10-cycle lat

ipfdwr (1 ME) 61 139 -221% 334 -548%
ipfdwr (4 ME) 88217 – – 49019 55.6%
md4 (1 ME) 629387 469737 25.4% – –
md4 (4 ME) 9574894 9470987 1.1% 9565548 0.1%
nat (1 ME) 101284 26676 73.7% 50443 50.2%
nat (4 ME) 106866 38325 64.1% 73344 31.4%
url (1 ME) 1006534 860238 14.5% 1058777 -5.2%
url (4 ME) 7728240 7079193 8.4% 7376432 4.6%

Table 12. Idle Cycle Count

herently unremovable with the current IXP hardware.
It is a memory access the programmer uses for com-
munication with another microengine rather than for
storage purposes. The more important reason that the
hardware cannot remove a spill is due to size restric-
tions. The program only has a limited amount of dead
registers, furthermore the CAM table can only hold 8
different addresses simultaneously.

8 Related Works

[13] is the work most related to this paper. That
paper introduces the concept of splitting the register
file into shared and private registers. A shared register
must be dead across all context switch points. This
paper extends [13] by the relaxing the constraint that
the shared register must always be dead across context
switch points.

[4] presents an alternative scheme for IXP register
allocation. It uses Integer Linear Programming to solve
to optimally allocate the registers based on the con-
straints set for each register type. This static technique
performs well in practice, but they do not address the
issue of threads in their paper or inter-thread alloca-

tion.
Register renaming is an old concept in superscalar

processors [11] [9]. There are two key differences be-
tween the renaming mechanism presented here and the
renaming unit in a superscalar processor. The hard-
ware presented here attempts to rename memory ad-
dresses to register, rather than renaming virtual reg-
isters to physical registers. Also, the goal here is to
reduce memory activity, while traditionally the goal is
to remove data dependencies between instructions, in-
creasing the amount of parallelism.

9 Conclusion

In conclusion, the dynamic register allocation ap-
proach presented here attempts to go beyond the best
statically available allocation techniques, by combin-
ing static analysis with dynamic allocation. By dy-
namically mapping memory addresses onto registers,
it can reduce the total number of dynamic memory op-
erations. In turn, reducing the total number of mem-
ory operation reduces the idle cycle count, which is
the goal of all optimizations for systems with real-time
constraints.

Benchmark Removed Spills Cross-Communication Out of Space
ipfwdr (1 ME) 55547 22248 353363
ipfwdr (4 ME) 217635 31599 1386770
md4 (1 ME) 166515 52399 775755
md4 (4 ME) 974621 181459 1477965
nat (1 ME) 184519 33410 481020
nat (4 ME) 249543 81628 747950
url (1 ME) 112881 47425 831857
url (4 ME) 259798 204846 3292800

Table 14. Occurrences of memory accesses by type

The results show that this approach is able to re-
duce idle cycle counts in all benchmarks and achieve
an unweighted average decrease of 51% in idle cycles
with a 8 cycle latency. These results also show that
idle counts can be reduced even further if hardware
supporting Next Neighbor registers is available. The
hardware overhead introduced by our method is in-
significant and is off the critical path. This paper shows
that it is viable to use smart dynamic allocation tech-
niques over existing static algorithms.

Our current work is focused on getting around the
limitations of running out of dead registers. In par-
ticular, we are developing dynamic deadness detection
mechanisms to assist in this regard by combining static
analysis with dynamic information.

References

[1] M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu,
and R. Ju. Shangri-la: achieving high performance
from compiled network applicati ons while enabling
ease of programming. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pages 224–236, New York, NY,
USA, 2005. ACM Press.

[2] J. Dai, B. Huang, L. Li, and L. Harrison. Automat-
ically partitioning packet processing applications for
pipeline d architectures. In Proceedings of the ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 237–248, New York,
NY, USA, 2005. ACM Press.

[3] E. A. Fox, L. S. Heath, Q. F. Chen, and A. M.
Daoud. Practical minimal perfect hash functions for
large databases. Commun. ACM, 35(1):105–121, 1992.

[4] L. George and M. Blume. Taming the ixp network
processor. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, pages 26–37, New York, NY, USA, 2003.
ACM Press.

[5] J. Hasan, S. Chandra, and T. N. Vijaykumar. Efficient
use of memory bandwidth to improve network proces-
sor throughput. In ISCA ’03: Proceedings of the 30th

annual international symposium on Computer archi-
tecture, pages 300–313, New York, NY, USA, 2003.
ACM Press.

[6] J. Kim, S. Jung, Y. Paek, and G.-R. Uh. Experience
with a retargetable compiler for a commercial network
processor. In CASES ’02: Proceedings of the 2002 in-
ternational conference on Compilers, architecture, and
synthesis for embedded systems, pages 178–187, New
York, NY, USA, 2002. ACM Press.

[7] Y. Luo, J. Yang, L. N. Bhuyan, and L. Zhao. Nepsim:
A network processor simulator with a power evalua-
tion framework. IEEE Micro, 24(5):34–44, 2004.

[8] G. Memik, W. H. Mangione-Smith, and W. Hu. Net-
bench: a benchmarking suite for network processors.
In ICCAD ’01: Proceedings of the 2001 IEEE/ACM
international conference on Computer-aided design,
pages 39–42, Piscataway, NJ, USA, 2001. IEEE Press.

[9] T. Monreal, A. Gonzalez, and M. V. et al. De-
laying physical register allocation through virtual-
physical registers. In MICRO 32: Proceedings of the
32nd annual ACM/IEEE international symposium on
Microarchitecture, pages 186–192, Washington, DC,
USA, 1999. IEEE Computer Society.

[10] T. Sherwood, G. Varghese, and B. Calder. A pipelined
memory architecture for high throughput network pro-
cessors. In ISCA ’03: Proceedings of the 30th an-
nual international symposium o n Computer architec-
ture, pages 288–299, New York, NY, USA, 2003. ACM
Press.

[11] R. M. Tomasulo. An efficient algorithm for exploiting
multiple arithmetic units. In Instruction-level paral-
lel processors, pages 13–21, Los Alamitos, CA, USA,
1995. IEEE Computer Society Press.

[12] J. Wagner and R. Leupers. C compiler design for an
industrial network processor. In LCTES ’01: Proceed-
ings of the ACM SIGPLAN workshop on Languages,
compilers and tools for embedded systems, pages 155–
164, New York, NY, USA, 2001. ACM Press.

[13] X. Zhuang and S. Pande. Balancing register allocation
across threads for a multithreaded network processor.
In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 289–300, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

