
Compatible Phase Co-Scheduling
on a CMP of Multi-Threaded Processors

�

Ali El-Moursy
�
, Rajeev Garg

�
, David H. Albonesi

�
and Sandhya Dwarkadas

�

�
Departments of Electrical and Computer Engineering and of Computer Science, University of Rochester�

Computer Systems Laboratory, Cornell University
elmours@ece.rochester.edu, � garg,sandhya � @cs.rochester.edu, albonesi@csl.cornell.edu

Abstract
The industry is rapidly moving towards the adoption

of Chip Multi-Processors (CMPs) of Simultaneous Multi-
Threaded (SMT) cores for general purpose systems. The
most prominent use of such processors, at least in the
near term, will be as job servers running multiple indepen-
dent threads on the different contexts of the various SMT
cores. In such an environment, the co-scheduling of phases
from different threads plays a significant role in the over-
all throughput. Less throughput is achieved when phases
from different threads that conflict for particular hardware
resources are scheduled together, compared with the situa-
tion where compatible phases are co-scheduled on the same
SMT core. Achieving the latter requires precise per-phase
hardware statistics that the scheduler can use to rapidly
identify possible incompatibilities among phases of different
threads, thereby avoiding the potentially high performance
cost of inter-thread contention.

In this paper, we devise phase co-scheduling policies for
a dual-core CMP of dual-threaded SMT processors. We
explore a number of approaches and find that the use of
ready and in-flight instruction metrics permits effective co-
scheduling of compatible phases among the four contexts.
This approach significantly outperforms the worst static
grouping of threads, and very closely matches the best static
grouping, even outperforming it by as much as 7%.

1 Introduction

The microprocessor industry is focused on the devel-
opment of Chip Multi-Processors (CMPs) of Simultaneous
Multi-Threaded (SMT) cores for general purpose systems.
IBM’s Power5 [14], Intel’s Montecito [13], and Sun’s Nia-
gara [9] are three examples of this type of microprocessor.
While these initial multi-core efforts contain a limited num-

�
This research was supported in part by NSF grants CSR/AES-

0509270, CNS-0411127, CCF-0325931, ITR/CCF-0219848, ECS-
0225413, INT-0117667, and EIA-0080124; by two IBM Faculty Part-
nership Awards; and by equipment and/or financial grants from Compaq,
IBM, and Intel.

ber of processors and contexts, in the future, microproces-
sors are expected to support upwards of 100 simultaneous
threads.

While much research effort is being expended on the de-
velopment of multi-threaded applications and their efficient
execution on multi-core chips, the most prominent near-
term use of such processors will be as job servers running
independent threads on the different contexts of the vari-
ous SMT cores. With some parallel applications, offline
characterization of thread phases may be viable for deter-
mining how to share context resources among the various
threads of the application. In a job server environment, this
is a much more difficult proposition. The co-scheduling of
phases from different threads plays a significant role in the
overall throughput. Consider the dual-core CMP consisting
of dual-threaded SMT cores shown in Figure 1. Similar to
Intel’s Hyper-Threaded Xeon processor [6], each of the two
threads that share an SMT core can occupy no more than
half of the entries of each shared queue. Furthermore, like
Xeon, the core is designed for good single thread perfor-
mance, and therefore resources are not over-provisioned so
as not to impact single thread pipeline speed. For instance,
there are 128 integer and 128 floating point registers and an
L1 Dcache size of 8KB (similar to Xeon).

In such processors, contention for resources can be se-
vere depending on what threads are scheduled together on
the same SMT core. Figure 2 shows the performance of
the three possible options (relative to the first option) for
scheduling the four threads in each of the ten evaluated
workloads (discussed in detail in Section 3) on the two dual-
thread processor cores. Due to widely varing resource con-
tention among the three different thread groupings, the per-
formance difference between the best and the worst cases is
significant, as much as 25%.

This result motivates the need for thread phase co-
scheduling algorithms in which thread phase-to-processor
assignments are based in part on the compatibility of dif-
ferent thread phases in terms of how well they are able to
share processor resources. While the scheduler may be im-

1

1-4244-0054-6/06/$20.00 ©2006 IEEE

L1
ICache

Decode &
Rename

FQ IRF
IIQ

IFU

FRF
FFUFIQ

L1

LSQ

L2

L1
ICache

Decode &
Rename

FQ IRF
IIQ

FRF

FIQ

L1

LSQ

FFU

IFU
IFU
IFU

IFU

FFU

FFU

IFU
IFU
IFU

Front-end Execution Engine L1 DCache

Figure 1. Dual core CMP of partitioned dual-
threaded SMT processors (FQ: Fetch Queue; IIQ:
Integer Issue Queue; IRF: Integer Register File;
IFU: Integer Functional Unit; FIQ: Floating Point Is-
sue Queue; FRF: Floating Point Register File; FFU:
Floating Point Functional Unit; LSQ: Load/Store
Queue).

plemented at a fine grain in hardware, or coarser grain in
software (we discuss these tradeoffs in Section 6.2), hard-
ware performance counters can be used to gather the appro-
priate information required to assess compatibility among
thread phases.

In this paper, we explore various means for accumulat-
ing this hardware information, and its use by thread co-
scheduling policies, for a dual-core CMP of dual-threaded
SMT processors as shown in Figure 1. We discover that
register file and L1 data cache usage or contention are in-
consistent metrics for making effective co-scheduling de-
cisions. Rather, we find that more general information,
namely the number of ready instructions, and the number
of in-flight instructions, provides a very strong indication
of thread phase compatibility, and provides a consistent re-
sult no matter how the threads are grouped when the mea-
surement is made. Our co-scheduling policy at a fine-grain
phase granularity closely matches the best static grouping
of threads, and even exceeds it by as much as 7%. Per-
haps more importantly, the approach avoids the significant
performance degradation of a poor static grouping of in-
compatible threads. Furthermore, we find that the approach
works well at a much coarser time interval, permitting the
decision function to be assumed by the operating system.

The rest of this paper is organized as follows. Related
work is discussed in the next section, followed by our exper-
imental methodology in Section 3. In Section 4, we present
an evaluation of resource contention in SMT processors,
followed by a description of various candidate thread co-
scheduling policies in Section 5. Results are presented in
Section 6, and we conclude in Section 7.

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9 mix10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sp
ee

du
p

Thread0_1/2_3
Thread0_2/1_3
Thread0_3/1_2

Figure 2. Overall performance for ten four-thread
workloads. For each workload, the three bars cor-
respond to the three possible ways that the four
threads can share the two processors.

2 Related Work

The topic of job scheduling on both uni- and multi-
processor systems has been researched for decades. How-
ever, much less attention has been paid to the subject of job
scheduling on an SMT machine. We focus the discussion
in this section on related work in scheduling for SMT ma-
chines.

The first body of work to address scheduling in SMT
machines was by Snavely et al. [18, 19, 20]. Their efforts
focused on a job scheduler called SOS (Sample, Optimize,
Symbios) for monolithic (not partitioned, as in our microar-
chitecture) SMT machines. The approach uses exploration
by running each thread combination for a certain interval of
time. During the sampling period, SOS gathers hardware
statistics such as functional unit and queue conflicts. The
subsequent optimization phase uses this information to de-
termine the symbiosis among the threads in order to make
the best scheduling decision.

Two efforts explore avoiding the high cost of exploration
in the SOS approach by monitoring resource activity to
make on-the-fly SMT scheduling decisions without explo-
ration. The thread scheduling work by Parekh et al. [15] is
the most similar to our own. They examine a variety of met-
rics for determining the best way to schedule threads on an
SMT processor, and experimentally determine that an IPC-
based thread-sensitive scheduling algorithm that schedules
the highest IPC threads together is the best performing
scheduler.

Settle et al. [8, 17] use an L2 cache activity vector to
enhance the Linux scheduler for SMT machines. As we
discuss in more detail in Section 5.1.1, this approach dy-
namically tracks the usage of the L2 cache for each thread
on a set by set basis and creates per-thread cache activity
vectors that indicate the most heavily utilized sets. The log-
ical ANDing of two activity vectors creates a cache conflict

2

vector that is used by the Linux scheduler to determine how
best to co-schedule threads on an SMT machine. Chandra et
al. [3] also address L2 cache contention, but on a dual-core
CMP organization using single-threaded processors. They
propose the analytical Inductive Probability (Prob) model
to produce a very accurate prediction of the number of extra
L2 cache misses due to inter-thread contention. Fedorova et
al. [5] propose a multi-threaded data locality conflict model
to estimate the L2 cache misses for co-scheduled threads.
Their approach requires examining all possible combina-
tions of threads to make a scheduling decision for a multi-
core multi-threaded machine.

Exploration-based approaches are viable only with a lim-
ited number of thread combinations, and therefore, are inap-
propriate for use with the large number of SMT cores and
threads expected in the future. Moreover, although cache
conflicts can certainly be a major source of thread phase
compatibility, threads that can co-exist cache-wise may be
incompatible due to serious conflicts for other resources.
In a CMP of SMT processors with partitioned queues as
explored in this paper (Figure 1), the additional primary
sources of inter-thread contention are the functional units
and the register files. Unfortunately, it is very difficult
to reconcile these different sources of conflict in order to
achieve consistently close to the optimal grouping across a
varied set of workloads. Rather, what is needed is an online
scheduling approach that employs simple metrics to discern
inter-thread phase compatibility independent of the cause of
contention. The development and evaluation of such poli-
cies is the subject of this paper.

Finally, we mention the work by Cazorla et al. [2] on
SMT hardware resource allocation. This effort attempts to
allocate SMT hardware resources to threads in a way that
maximizes performance. Although their objective is differ-
ent than ours (maximize performance given thread phases
that are running together, versus determining which phases
to co-schedule), there are elements in the two approaches
that are similar, such as identifying sensitive and insensitive
threads (called “fast” and “slow” threads in [2]).

3 Methodology
Before exploring the different causes of resource con-

tention in the next section, we discuss the methodology used
to obtain the experimental results.

3.1 Simulation Infrastructure and Machine Con-
figurations

Our simulator is based on Simplescalar-3.0 [1] for the
Alpha AXP instruction set. Like the Alpha 21264 [7], the
register update unit (RUU) is decomposed into integer and
floating point issue queues and register files, and a reorder
buffer (ROB).

SMT support in each core has been added by replicating
the fetch control, rename, and ROB per thread. Per-thread

Table 1. Simulator parameters for each core and
the shared L2 cache and main memory.
Branch predictor comb of bimodal and gshare
Bimodal predictor entries 2048
Level 1 table entries 1024
Level 2 table entries 4096
BTB entries, associativity 2048, 2-way
Branch mispredict penalty 10 cycles
Fetch policy ICOUNT.4.32 [21]
Fetch width 32 per core
Fetch queue size 32 per thread
Integer Issue queue size 20 per thread
FP Issue queue size 20 per thread
Load/Store queue size 28 per thread
Issue width 6 per core
Dispatch and commit width 6 per core
Integer Physical Registers 128 per core
FP Physical Registers 128 per core
Reorder Buffer Size 512 per thread
Integer FUs 4 per core
FP FUs 2 per core
L1 ICache 32KB, 2-way per core
L1 ICache Latency 1 cycle
L1 DCache 8KB, 2-way per core
L1 DCache Latency 2 cycles
L2 Cache 2MB, 8-way
L2 Cache latency 20 cycles
TLB (each, I and D) 128 entries, 8KB page size, fully

associative, per thread
Memory latency 100 cycles

fetch, issue, and load/store queues are implemented as dis-
cussed in Section 1, similar to Pentium 4’s Hyperthreading
approach [6]. We model a CMP of two dual-thread SMT
cores using our simulator, in a job-scheduling environment,
i.e., where the threads are independent applications. The
memory hierarchy is modeled in significant detail, includ-
ing accounting for bus contention between the L1 caches
and the unified L2 cache that is shared between the two
cores. Table 1 shows the simulation parameters for each
SMT core, and the L2 cache and main memory.

We model the migration of a thread from one core to the
other by flushing the pipeline, invalidating the cache, and
switching the context to the other core. We arbitrarily select
one of the two threads to be switched as our experiments
indicate that selecting either one has roughly the same per-
formance impact.

3.2 Benchmarks and Multi-Threaded Workloads

Table 2 lists the multi-threaded workload mixes of
SPEC2000 benchmarks used to evaluate the different
scheduling policies. The order of the benchmarks in the
table represents their order in sharing the cores for the base-
line scenario. The case where the first two benchmarks
share one core while the second two share the second core
is represented in the results as P CMP 1. In P CMP 2 and
P CMP 3, the first benchmark shares a core with the third
and fourth benchmarks, respectively. Accordingly, the other

3

Table 2. Multi-threaded workloads.
Workload Name Benchmarks Included
mix1 mgrid, equake, vpr, galgel
mix2 gcc, swim, art, lucas
mix3 swim, equake, art, mgrid
mix4 swim, equake, mgrid, galgel
mix5 perlbmk, mgrid, vpr, galgel
mix6 gcc, mcf, swim, lucas
mix7 gcc, mcf, art, swim
mix8 swim, mesa, equake, art
mix9 art, swim, galgel, applu
mix10 mesa, swim, galgel, art

two benchmarks share the other core.
Each individual benchmark was compiled with gcc with

the -O4 optimization and run with its reference input set.
We report results for both fine-grain (100K cycles) and
coarse-grain (100M cycles) interval schemes. For both
approaches, we fast-forward each benchmark by 4 billion
instructions. When comparing the various fine-grain ap-
proaches, we run for one 100K cycle interval before gath-
ering performance data. This permits each of the dynamic
scheduling policies to gather statistics for an interval and
make an initial pairing. We then run each benchmark for the
next 100 million instructions, and therefore report perfor-
mance results from executing 100 million instructions from
each thread (400 million instructions total) in the workload
mix. In comparing the fine and the coarse-grain schemes,
after fast-forwarding, we first run for one coarse-grain inter-
val (100M cycles) before we begin measuring performance.
We then run each benchmark for 500M instructions (2B in-
structions in all).

3.3 Metrics

As a performance metric, we chose the geometric mean
of the relative IPC ratings of the four threads:

�� � � � �
 � �� �
 � � � �
Since the metric used is a relative measure, the use of a

geometric mean avoids the issue of which configuration is
placed in the numerator or in the denominator [11]. The ge-
ometric mean equally weighs a performance improvement
in one thread and an identical performance degradation in
another simultaneously executing one. The harmonic mean
would overly penalize a performance degradation, while the
arithmetic mean would overly reward a performance im-
provement. The geometric mean avoids skewing the results
in either direction when presenting relative performance.

4 Inter-Thread Resource Contention in SMT
Processors

Assuming an SMT processor in which the major queues
(fetch queue, issue queues, and load-store queue in our

processor) are equally partitioned among the two threads
(or, equivalently, shared queues in which each thread may
occupy no more than one-half of the entries), the major
machine resources for which thread phases may contend
are the functional units, register files, and cache hierarchy.
This contention for resources can potentially degrade per-
formance, but it is unclear how this impacts the optimal co-
scheduling of thread phases.

In this section, we perform a series of experiments in
which we individually remove the sources of contention and
observe the impact on the variation in performance with the
three different thread groupings. This provides an indica-
tion as to how well directly measuring these sources of con-
tention can be used to guide thread co-scheduling decisions.
Figures 3 and 4 present the breakdown for two representa-
tive workload mixes. The first set of three bars in each figure
presents the performance on our baseline.

4.1 Register File Contention

Register files and issue queues are relatively long latency
resources. Due to the true dependencies in the instruction
stream, these resources may be occupied for very long pe-
riods of time. The contention among the threads for these
resources is very important and critical to the overall perfor-
mance. Raasch et al. [16] demonstrated that providing each
thread with an equal share of the machine queues as is done
in Intel P4 Hyperthreaded processors [10, 12] performs bet-
ter than sharing the queue resources. Register files, on the
other hand, should be shared to permit a given thread to hide
the effective cache miss latency. The second set of three
bars in Figures 3 and 4 demonstrate this impact by doubling
the register file size and equally partitioning it among the
two threads sharing a CMP, thereby eliminating any register
file contention. Much of the difference between the perfor-
mance of the different thread pairings is eliminated, indicat-
ing that the contention for register file resources with some
thread groupings may be significant, although insignificant
with other groupings.

4.2 Functional Unit Contention

In order to evaluate the impact of functional unit (FU)
contention on thread compatibility, we performed experi-
ments in which we also (in addition to doubling and par-
titioning the register file) doubled the number of FUs and
assigned half to each of the two threads. This in effect gives
each thread a full set of FUs for itself, removing any con-
tention. The results are indicated by the third set of three
bars, which are virtually identical to the prior set with only
register contention removed. Since FUs are low latency re-
sources (in terms of the number of cycles that they are oc-
cupied by a thread) in comparison to the registers and L1
Dcache blocks, contention for these resources has a low
performance impact, showing little change in relative per-
formance.

4

P_CMP Regfile Regfile+FU Regfile+ICache Regfile+DCache
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sp
ee

du
p

Thread0_1/2_3
Thread0_2/1_3
Thread0_3/1_2

Figure 3. Performance variation breakdown for
mix1.

P_CMP Regfile Regfile+FU Regfile+ICache Regfile+DCache
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sp
ee

du
p

Thread0_1/2_3
Thread0_2/1_3
Thread0_3/1_2

Figure 4. Performance variation breakdown for
mix5.

4.3 L1 ICache Contention

The fourth set of three bars eliminates contention for
L1 ICache resources as well by artificially duplicating the
ICache. Due to the very small L1 ICache footprints and low
miss rates of our applications, the ICache has a negligible
impact on the performance variation with different thread
groupings.

4.4 L1 DCache Contention

For the fifth set of three bars, the entire L1 DCache is
replicated for each thread. As can be seen, any remain-
ing differences in performance among the three pairings is
eliminated. Like the register file, the L1 DCache is a long
latency resource and the contention for this resource is very
important. However, an additional factor that may make
it less important than register files is that the contention is
highly dependent on the degree to which the threads simul-
taneously use the same cache sets. In contrast, register files
are fully associative resources that could be used by any
instruction from any thread, which makes them a more sig-
nificant source of contention.

In summary, functional units are used for short periods
and therefore FU contention is a relatively small factor in
terms of thread co-scheduling. Due to the small ICache
footprints and miss rates of our benchmarks, the Icache
plays no role in performance variation with our workload
mixes. The register files are occupied for longer periods and
therefore contention is a much more important factor. Con-
tention in the L1 DCache is also critical but the contention
may not be as frequent as with the register file.

5 Thread Phase Co-Scheduling Policies

The last section identified contention for registers and L1
Dcache sets as the two major causes of performance varia-
tion according to how threads were co-scheduled for our
workloads. In this section, we introduce several candidate
thread co-scheduling policies, some that directly address

Figure 5. Cache set activity vector generation.

these sources of contention, and others that are based on
an alternative approach of thread sensitivity to contention
for these resources. In each of these approaches, per-thread
statistics are gathered for each interval, and a decision made
at the end of an interval on whether threads should migrate
between processors, or the current grouping should be used.

5.1 Policies Based on Resource Contention

5.1.1 Data Cache Conflict Scheduling (DCCS)

This policy uses L1 Dcache conflict vectors to co-schedule
threads, similar to what is proposed in [8, 17]. As is shown
in Figure 5, a counter per thread per L1 Dcache set is used to
count the number of accesses during an interval period. At
the end of each interval, these counters are examined, and
each counter value is translated into a bit in a thread cache
set activity vector. To identify whether the set is heavily
used by a thread, the most significant bit and the overflow
bit are logically ANDed to reduce each set counter to a bit
in the activity vector. Each pair of thread activity vectors
are logically ANDed and the produced vector per thread
pair is called the pair conflict vector. This vector shows
the cache sets that have the most contention for these two
threads. With four threads and two dual-thread cores, there
are six possible conflict vectors. As is shown in Figure 6,

5

Figure 6. Combining activity vectors to form con-
flict scores and to determine the best pairing of
the four threads for the next interval.

the number of ones in each conflict vector is determined,
and these are further combined to score the three possible
ways to pair the four threads on the two cores. The smallest
score represents the thread grouping with the fewest cache
conflicts, and this grouping is used in the next interval.

5.1.2 Register File Utilization Scheduling (RFUS)

In this policy, register file utilization is measured for each
thread on an interval-to-interval basis. A per-thread regis-
ter usage counter is maintained, which is incremented at re-
name (when a physical register is assigned to an instruction)
and is decremented at commit time (when the correspond-
ing logical register is overwritten, indicating that the previ-
ously assigned physical register is no longer in use). This
counter is read every cycle and accumulated in a per-interval
counter for each thread. The per-interval counters are read
at the end of an interval and then reset. The values are used
to schedule threads for the next interval. We found that the
best policy was to co-schedule the thread with the lowest
usage count with the median of the other three threads.

5.1.3 Register File Conflict Scheduling (RFCS)

Rather than register file usage, this policy is based on regis-
ter file conflicts due to high register file occupation with par-
ticular thread pairings. Whenever an instruction is unable to
dispatch due to the unavailability of a free register, the con-
flict counter for that thread is incremented. The counters are
read at the end of an interval and then reset. As with RFUS,
the best results were obtained by co-scheduling the thread
with the lowest conflict count with the median of the other
three threads.

5.2 An Alternative Approach: Measuring Thread
Sensitivity

An alternative to directly measuring inter-thread-phase
contention within the L1 Dcache and/or register file is to

determine the sensitivity of thread phases to the need for
these resources. The philosophy behind this approach is
that the critical issue in resource contention between thread
phases is the performance sensitivity to the availability of
critical shared resources. In other words, knowledge regard-
ing the load on the resource is less important than knowing
the degree to which each thread’s performance is impacted
by a reduction in resource availability. This stands to rea-
son since high ILP threads tend to use and recycle resources
rapidly (and therefore their performance is more sensitive to
resource availability), whereas those that, for instance, are
more memory bound, are already at a low IPC point, and
are impacted less by loss of resources; the resources of the
machine are highly utilized but not in an efficient way.

We explore two policies that use thread phase sensitivity
to resource availability: one that uses IPC as a measure of
sensitivity and the other that uses ready instruction and in-
flight instruction metrics.

5.2.1 IPC-based Scheduling (IPCS)

This approach is inspired by the work of Parekh et al. [15] in
which IPC information is used to guide thread scheduling.
Per-thread hardware counters are used to measure IPC on
an interval by interval basis, and used to schedule threads
for the next interval. They observe that the best perfor-
mance is achieved by scheduling threads with the highest
IPC together. The rationale is that scheduling threads to-
gether that can use these resources effectively is the best
approach, as it prevents slow moving threads that occupy
many resources due to long latency instructions (primarily
cache misses) from disturbing fast threads. In effect, IPC is
used to determine thread sensitivity to resource contention.

We chose the simpler IPC MIX approach from [15]
since it only requires one overall performance counter
(compared to G IPC, which separately tracks integer and
floating point instruction IPCs) and achieves close to the
same performance.

5.2.2 Ready Inflight Ratio Scheduling (RIRS)

One drawback of the IPC-based approach is that the IPC
that is measured for a given thread is highly dependent on
which thread it is paired with. (This drawback also holds
for the two policies based on register file contention.) This
is shown in Figures 7 and 8, which plot the IPCs of the in-
dividual benchmarks for the different pairings. In almost
all workloads, the highest performing benchmarks change
dramatically depending on how the threads are paired. This
can lead to significantly different scheduling decisions de-
pending on how the benchmarks are paired when the IPC
measurements are obtained.

Based on these results, we seek a metric that, like IPC,
provides a measure of thread sensitivity, yet whose relative

6

0_1/2_3 0_2/1_3 0_3/1_2
0

1

2

3

IP
C

mix1

mgrid
equake
vpr
galgel

0_1/2_3 0_2/1_3 0_3/1_2
0

0.5

1

IP
C

mix2

gcc
swim
art
lucas

0_1/2_3 0_2/1_3 0_3/1_2
0

0.5

1

1.5

IP
C

mix3

swim
equake
art
mgrid

0_1/2_3 0_2/1_3 0_3/1_2
0

0.5

1

1.5

2

IP
C

mix4

swim
equake
mgrid
galgel

0_1/2_3 0_2/1_3 0_3/1_2
0

0.5

1

1.5

2

IP
C

mix5

perlbmk
mgrid
vpr
galgel

Figure 7. IPC metric variation for each bench-
mark with different groupings (mixes 1-5).

0_1/2_3 0_2/1_3 0_3/1_2
0

0.5

1

IP
C

mix6

gcc
mcf
swim
lucas

0_1/2_3 0_2/1_3 0_3/1_2
0

0.5

1

IP
C

mix7

gcc
mcf
art
swim

0_1/2_3 0_2/1_3 0_3/1_2
0

0.5

1

1.5

2

IP
C

mix8

swim
mesa
equake
art

0_1/2_3 0_2/1_3 0_3/1_2
0

0.5

1

1.5

IP
C

mix9

art
swim
galgel
applu

0_1/2_3 0_2/1_3 0_3/1_2
0

0.5

1

1.5

IP
C

mix10

mesa
swim
galgel
art

Figure 8. IPC metric variation for each bench-
mark with different groupings (mixes 6-10).

Fetch
Unit

Instruction Cache

Decode Register
Rename Int/ld−st

units

FP
Registers

FP
units

Integer
RegistersInteger Instruction queue

Ready on Dispatch bit

Floating Point Instruction queue

Ready on Dispatch bit

PC

Inflight Counter

Decrement

Increment

Data
Cache

dispatch

complete

commit

headtail

ROB

Ready Counter

In−flight

Increment Decrement

Figure 9. Counters used in the RIRS scheme.

rankings among the threads in a workload remains consis-
tent independent of the degree of contention with another
thread. We have found that the ratio between the number
of ready instructions in the issue queues, and the number of
in-flight instructions from the issue to the writeback stages
(which we call the Ready to In-flight Ratio, or RIR) serves
as an effective sensitivity measure that exhibits consistent

results compared with IPC across different thread pairings.
Intuitively, a high ratio of ready to in-flight instructions
means that the thread is able to make good progress with
whatever resources it has available, and that depriving it of
those resources will non-trivially degrade its performance.
Thus, a high value for this ratio indicates high sensitivity for
resources. If the thread is paired with another for which it

7

0_1/2_3 0_2/1_3 0_3/1_2
0

0.05

0.1

RI
R

mix1

mgrid
equake
vpr
galgel

0_1/2_3 0_2/1_3 0_3/1_2
0

0.1

0.2

0.3

0.4

RI
R

mix2

gcc
swim
art
lucas

0_1/2_3 0_2/1_3 0_3/1_2
0

0.02

0.04

0.06

0.08

RI
R

mix3

swim
equake
art
mgrid

0_1/2_3 0_2/1_3 0_3/1_2
0

0.05

0.1

RI
R

mix4

swim
equake
mgrid
galgel

0_1/2_3 0_2/1_3 0_3/1_2
0

0.05

0.1

RI
R

mix5

perlbmk
mgrid
vpr
galgel

Figure 10. RIR metric variation for each bench-
mark with different groupings (mixes 1-5).

0_1/2_3 0_2/1_3 0_3/1_2
0

0.1

0.2

0.3

0.4

RI
R

mix6

gcc
mcf
swim
lucas

0_1/2_3 0_2/1_3 0_3/1_2
0

0.1

0.2

0.3

0.4

RI
R

mix7

gcc
mcf
art
swim

0_1/2_3 0_2/1_3 0_3/1_2
0

0.05

0.1

0.15

0.2

RI
R

mix8

swim
mesa
equake
art

0_1/2_3 0_2/1_3 0_3/1_2
0

0.05

0.1

0.15

0.2

RI
R

mix9

art
swim
galgel
applu

0_1/2_3 0_2/1_3 0_3/1_2
0

0.05

0.1

0.15

0.2

RI
R

mix10

mesa
swim
galgel
art

Figure 11. RIR metric variation for each bench-
mark with different groupings (mixes 6-10).

contends for resources, then although the number of ready
instructions and the number of in-flight instructions may
change, the RIR metric should stay much more constant
than the IPC (which may drop severely).

The integration of the RIR counters within an SMT
pipeline is shown in Figure 9. One of the issues with the
approach is that direct measurement of the number of ready
instructions in the queues on a cycle-by-cycle basis is com-
plex. To avoid this, we use the approximate approach of [4].
Here, the Ready Counter is incremented whenever an in-
struction is dispatched into the queue with both of its source
operands available. In this case, the Ready on Dispatch
bit is set in the queue for this instruction. An instruction
that issues with its Ready on Dispatch bit set decrements
the counter. The In-flight Counter measures the number of
instructions from the issue queue to the write back stage.
Once the RIR ratios are computed within an interval, we
schedule the two threads with the highest RIR ratio together.
We found that, like the IPC MIX policy, this approach out-
performed alternatives such as pairing the threads with the
highest and lowest RIR ratios.

Evidence of the relative invariability of the RIR metric
is shown for the ten workload mixes in Figures 10 and 11.
Compared to the IPC (Figures 7 and 8), RIR provides much
better results in terms of consistency across the different ap-

plications with different pairings. For nine of the ten work-
loads, the applications with the top two highest RIR values
do not change with the application grouping.

6 Results

In this section, we first compare the results of the dif-
ferent scheduling policies using a fine-grain interval (100K
cycles). We work at this fine grain to provide maximum
opportunity for the dynamic schemes to improve the per-
formance of the static groupings. However, this granular-
ity requires low level hardware control. Therefore, in Sec-
tion 6.2, we examine the use of a coarser grain interval on
the order of an OS time slice (100M cycles). At this gran-
ularity, it becomes feasible for the OS to read the hard-
ware counters at the end of every interval and make co-
scheduling decisions based on the policies outlined in the
prior section.

6.1 Fine-Grain Thread Co-Scheduling Policies

Figure 12 presents the performance of the various dy-
namic co-scheduling schemes (RFUS [register file utiliza-
tion scheduling], RFCS [register file conflict scheduling],
DCCS [data cache conflict scheduling], IPCS [IPC-based
scheduling], and RIRS [ready inflight ratio scheduling]) rel-
ative to the best of the three static groupings of threads for

8

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9 mix10
−15

−10

−5

0

5

10

P
e

rf
o

rm
a

n
c
e

 i
m

p
ro

v
e

m
e

n
t

(%
)

RFUS
RFCS
DCCS
IPCS
RIRS

Figure 12. Performance of the different scheduling
policies relative to the best static thread grouping.

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9 mix10
0

20

40

60

80

100

 (
%

)

DCCS

thrd0_1
thrd0_2
thrd0_3

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9 mix10
0

20

40

60

80

100

 (
%

)

RIRS

thrd0_1
thrd0_2
thrd0_3

Figure 13. Percentage of time thread 0 shares a
core with the other three threads for DCCS and
RIRS.

each individual workload mix. This baseline assumes that
the best grouping is known a priori and is used throughout
the execution of the four threads. The results show the per-
cent difference in geometric mean performance compared
to this best static baseline. Of the dynamic schemes, the
RIRS scheme that uses the RIR metric performs most con-
sistently across the ten workloads. While the maximum per-
formance loss using the RIR metric is about 2%, it reaches
about 10% for DCCS, 13% for RFUS, 11% for RFCS, and
14% for IPCS. In several cases, RIRS exceeds the perfor-
mance of the best static scheme (by as much as 7%), demon-
strating the benefit of performing dynamic phase-level re-
grouping through thread migration.

Figure 13 shows the percentage of time thread 0 shares
the same core with each of the remaining three threads.
While the optimal grouping varies somewhat on a phase-to-
phase basis, the overall results nonetheless shed some light
on the differences in the approaches. For example, Figure 2
demonstrated that for mix4, it is best overall for threads 0
and 2 to share a processor. Indeed, Figure 13 demonstrates
that RIRS uses this thread grouping for the majority of the
execution of mix4. With DCCS however, this thread group-
ing is never selected, and the result is a large degradation in
performance.

There are a few instances for which RIRS sometimes
picks a suboptimal choice of thread groupings, for example,
with mix3. The cache conflicts metric used by DCCS shows
more stability and DCCS always schedules threads 0 and 2
together, which results in the best performance. The RIR
metric, on the other hand, incorporates both dependence
and resource contention (cache, register, and functional unit
conflicts) information into its metric, and therefore shows
more variation. It switches between pairings more often
because the performance of the pairings do not differ sig-
nificantly, resulting in a slight degradation in performance
relative to DCCS because cache conflicts are the slightly
dominant effect. However, the difference in performance
between the two schemes in any of these cases is � 2%.

6.2 Fine Grain Versus Coarse Grain Intervals

A granularity of 100K cycles requires hardware level
control. However, such a hardware mechanism may in-
terfere with OS-level scheduling decisions. Therefore, it
would be desirable if these techniques could also work well
at the coarser granularity of an operating system time slice
(10-30 ms). In this section, we compare the effectiveness
of the RIRS scheme at fine grain (100K cycles) and coarse
grain (100M cycles) intervals.

Table 3 shows the performance of the coarse-grain
scheme relative to the fine-grain approach for each work-
load. While there are small differences from workload to
workload, overall the coarse and fine-grain schemes achieve
very similar performance. Thus, co-scheduling decisions

9

Table 3. Performance of the coarse-grain RIRS
scheme relative to the fine-grain approach.

Workload Performance improvement(%)
mix1 -0.02
mix2 -0.73
mix3 0.54
mix4 2.80
mix5 1.14
mix6 -0.57
mix7 -0.86
mix8 -1.13
mix9 2.11
mix10 -1.44

can be made at the OS scheduler level given access to the
RIR hardware counters.

7 Conclusions

The advent of CMPs of SMT processors for server envi-
ronments places a premium on determining the assignment
of threads to processors that will maximize overall through-
put. Achieving this goal requires online mechanisms that
gather per-thread statistics that both capture the essential
thread characteristics necessary for making scheduling de-
cisions, and that remain relatively invariant no matter how
the threads are paired when the statistics are gathered.

In this paper, we examined a number of potential mech-
anisms, and determined that per-thread measurements of
the ready to in-flight instruction ratio (RIR) permits effec-
tive co-scheduling decisions to be made. This approach
achieves consistently competitive performance with the best
a priori static scheme, and even achieves up to a 7% per-
formance improvement due to its ability to make dynamic
runtime adjustments. We also found that the scheme is ef-
fective at a coarser granularity that would permit the use of
the RIR metric within the operating system scheduler.

We plan to explore schemes for parallel applications and
more aggressive CMP-SMT configurations in the future.

References

[1] D. Burger and T. Austin. The Simplescalar toolset, version 2.0. Tech-
nical Report TR-97-1342, University of Wisconsin-Madison, June
1997.

[2] F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernández. Dynam-
ically Controlled Resource Allocation in SMT Processors. In Pro-
ceedings of the 37th International Symposium on Microarchitecture,
pages 171–182, December 2005.

[3] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting Inter-Thread
Cache Contention on a Chip Multi-Processor Architecture. In Pro-
ceedings of the 11th International Symposium on High-Performance
Computer Architecture, pages 340–351, February 2005.

[4] A. El-Moursy and D. H. Albonesi. Front-End Policies for Improved
Issue Efficiency in SMT Processors. In Proceedings of the 9th Inter-
national Symposium on High Performance Computer Architecture,
pages 31–40, February 2003.

[5] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Performance
Of Multithreaded Chip Multiprocessors And Implications For Oper-
ating System Design. In Proceedings of USENIX 2005 Annual Tech-
nical Conference, pages 395–398, June 2005.

[6] Intel Corporation. IA-32 Intel Architecture Optimization: Reference
Manual. http://www.intel.com/design/pentium4/manuals, 2004.

[7] R. Kessler. The Alpha 21264 Microprocessor. IEEE Micro,
19(2):24–36, March/April 1999.

[8] J. L. Kihm and D. A. Connors. Implementation of Fine-Grained
Cache Monitoring for Improved SMT Scheduling. In Proceedings of
the 22nd IEEE International Conference on Computer Design, pages
326–331, October 2004.

[9] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way
Multithreaded Sparc Processor. IEEE Micro, 25(2):21–29, March
2005.

[10] D. Koufaty and D. T. Marr. Hyperthreading Technology in the Net-
burst Microarchitecture. IEEE Micro, 23(2):56–65, March 2003.

[11] K. Luo, J. Gummaraju, and M. Franklin. Balancing Thoughput and
Fairness in SMT Processors. In International Symposium on Perfor-
mance Analysis of Systems and Software, pages 164–171, January
2001.

[12] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A.
Miller, and M. Upton. Hyper-Threading Technology Architecture
and Microarchitecture. Intel Technology Journal, 6(1):4–15, Febru-
ary 2002.

[13] C. McNairy and R. Bhatia. Montecito: A Dual-Core, Dual-Thread
Itanium Processor. IEEE Micro, 25(2):10–20, March 2005.

[14] R. Merritt. IBM Weaves Multithreading into Power5. EE Times,
2003.

[15] S. Parekh, S. Eggers, and H. Levy. Thread-Sensitive Scheduling for
SMT Processors. Technical report, University of Washington, 2000.

[16] S. Raasch and S. Reinhardt. The Impact of Resource Partitioning
on SMT Processors. In Proceedings of the 12th International Con-
ference of Parallel Architectures and Compilation Techniques, pages
15–26, September 2003.

[17] A. Settle, J. L. Kihm, A. Janiszewski, and D. A. Connors. Archi-
tectural Support for Enhanced SMT Job Scheduling. In Proceedings
of the 13th International Conference on Parallel Architectures and
Compilation Techniques, pages 63–73, October 2004.

[18] A. Snavely and D. M. Tullsen. Explorations in Symbiosis on Two
Multithreaded Architectures. In Proceedings of the Workshop on
Multithreaded Execution, Architecture, and Compilation, January
1999.

[19] A. Snavely and D. M. Tullsen. Symbiotic Job Scheduling for a Si-
multaneous Multithreading Architecture. In Proceedings of the 9th
Symposium on Architectural Support for Programming Languages
and Operating Systems, pages 234–244, November 2000.

[20] A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic Job Schedul-
ing with Priorities for a Simultaneous Multithreading Processor. In
Proceedings of the International Conference on Measurement and
Modeling of Computer Systems, June 2002.

[21] D. Tullsen, S. Eggers, H. Levy, J. S. Emer, H. M. Levy, J. L. Lo,
and R. L. Stamm. Exploiting Choice: Instruction Fetch and Issue on
an Implementable Simultaneous Multithreading Processor. In Pro-
ceedings of the 23rd Annual International Symposium on Computer
Architecture, pages 191–202, May 1996.

10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

