
Parallel FPGA-based All-Pairs Shortest-Paths in a Directed Graph

Uday Bondhugula1, Ananth Devulapalli2, Joseph Fernando2, Pete Wyckoff3, and P. Sadayappan1

1Department of Computer Science and Engineering 2Ohio Supercomputer Center (Springfield)
The Ohio State University 1 South Limestone St., Suite 310

Columbus, OH 43210 Springfield, OH 45502
{bondhugu, saday}@cse.ohio-state.edu {ananth, fernando}@osc.edu

3Ohio Supercomputer Center
1224 Kinnear Road

Columbus, OH 43212
pw@osc.edu

Abstract

With rapid advances in VLSI technology, Field Pro-
grammable Gate Arrays (FPGAs) are receiving the atten-
tion of the Parallel and High Performance Computing com-
munity. In this paper, we propose a highly parallel FPGA
design for the Floyd-Warshall algorithm to solve the all-
pairs shortest-paths problem in a directed graph. Our work
is motivated by a computationally intensive bio-informatics
application that employs this algorithm. The design we pro-
pose makes efficient and maximal utilization of the large
amount of resources available on an FPGA to maximize
parallelism in the presence of significant data dependences.
Experimental results from a working FPGA implementation
on the Cray XD1 show a speedup of 22 over execution on
the XD1’s processor.

1 Introduction

Field Programmable Gate Arrays (FPGAs) have long
been used in embedded image and signal processing ap-
plications. With rapid advances in modern VLSI tech-
nology, FPGAs are becoming increasingly attractive to a
much wider audience, in particular, to the High Perfor-
mance Computing community. Modern FPGAs have abun-
dant resources in the form of tens of thousands of Con-
figurable Logic Blocks (CLBs), a large amount of on-chip
memory, and growing numbers of other special-purpose re-
sources. High bandwidth to off-chip memory is sustained

Supported in part by the Department of Energy’s ASC program.

through parallel memory access using the large number of
I/O pins available on an FPGA. These factors allow FP-
GAs to exploit a large amount of parallelism and effectively
reuse data. Reconfigurability allows very efficient use of
available resources tailored to the needs of an application.
This makes it possible for custom-designed parallel FPGA
implementations to achieve significant speedup over mod-
ern general-purpose processors for many long-running rou-
tines. This increase in performance has led to the applica-
tion of FPGAs in HPC systems. Cray and SRC Comput-
ers already offer FPGA-based high-performance computer
systems [3, 10] that couple general-purpose processors with
reconfigurable application accelerators.

In this paper, we leverage the benefits of FPGAs for the
Floyd-Warshall (FW) algorithm used to solve the all-pairs
shortest-paths problem in a directed graph. The all-pairs
shortest-paths problem is to find a shortest path between
each pair of vertices in a weighted directed graph. We were
particularly motivated with accelerating a long-running bio-
informatics code that employs FW [8, 5].

The contributions of this paper are as follows: first, we
propose a highly parallel and scalable FPGA design for FW.
Second, we build a model to capture the performance of the
design and optimize parameters involved. Third, we mea-
sure the performance of our working implementation on the
Cray XD1, demonstrating a high speedup over a modern
general-purpose processor. Experimental results of our de-
sign on the Cray XD1 show an improvement by a factor
of tens over the CPU implementation. To the best of our
knowledge, our work is the first to develop an FPGA-based
solution for the all-pairs shortest-paths problem.

The rest of this paper is organized as follows: In Sec-

1-4244-0054-6/06/$20.00 ©2006 IEEE

tion 2, we present our motivation behind providing an
FPGA-based solution for FW. In Section 3, we give an
overview of FPGAs, followed by an overview of the prob-
lem. In Section 4, we discuss challenges in extracting par-
allelism from FW. In Section 5, we propose a new parallel
FPGA-based design for FW, extend this design for a tiled
algorithm, and discuss how to optimize it to maximize per-
formance. In Section 6, we discuss implementation issues
for the design on the Cray XD1. Finally, we present results
of our experiments in Section 7.

2 Motivation

The need to analyze data for underlying relationships
continues to be a critical element for understanding the be-
havior of complex systems. This capability is particularly
important for analysis of interaction and similarity networks
of biological systems. A recent algorithmic development
for this type of analysis is the Dynamic Transitive Closure
Analysis (DTCA) analysis [15]. Although the method was
developed to evaluate undirected graphs representing large
gene-drug interaction networks in the study of cancer, it
can be used to evaluate any large interaction network. The
method incorporates repeated all-pairs shortest-paths evalu-
ations, which are a computational bottleneck for analysis of
very large networks.

A scalable implementation of the DTCA algorithm was
implemented in a software program called Galaxy as part
of the Ohio Biosciences Library [5]. Reading in microar-
ray expression data for several genes and drugs, the pro-
gram uses the Floyd-Warshall (FW) algorithm to evaluate
for closure on multiple subgraphs of the original interaction
network. The vertices of the graph represent either genes or
drugs under investigation in the study of new therapies for
treating cancer. The weight of an edge in the graph is calcu-
lated using the co-correlation value computed between each
pair of vertices using the microarray expression data pro-
vided for each gene and drug involved in the study. The dis-
tance used for each edge is 1− c2, where c is the computed
co-correlation value. On a genome-wide scale, evaluating
graphs exceeding 20,000 nodes is frequently required. The
resulting computations required for the multiple Θ(n3) FW
evaluations result in run-times of several days even for opti-
mized implementations on modern general-purpose proces-
sors. A more efficient implementation is sought to reduce
evaluation times to more acceptable levels, with a goal of
interactive response.

For the application described above, all edge-weights are
fractions between 0 and 1, with an accuracy up to three
places of decimal desired. Hence, all of these weights can
be scaled to integers between 0 and 1000 making a preci-
sion of ten bits sufficient. In the context of our problem, all
weights are non-negative.

3 Overview

In this section, we give an overview of FPGAs, followed
by an overview of the all-pairs shortest-paths problem and
the Floyd-Warshall algorithm.

3.1 Modern FPGAs†

FPGAs are user-programmable gate arrays with various
configurable elements and embedded blocks. At the lowest
hardware level, an FPGA is made up of multiple config-
urable blocks connected to a configurable interconnect, al-
lowing the user to “Field Program” the device for a specific
purpose. Current-day FPGAs are optimized for high density
and performance. Configurable Logic Blocks (CLBs) pro-
vide functional elements for combinatorial and synchronous
logic, including basic storage elements. Apart from CLBs,
modern FPGAs comprise I/O blocks, Block RAM, embed-
ded dedicated multipliers, and sufficient resources for rout-
ing and global clocking.

In the Virtex-II Pro series of FPGAs [14], each CLB in-
cludes four slices, and two tri-state buffers that drive ded-
icated horizontal routing resources. Each slice is equiva-
lent, and comprises two function generators, two storage
elements, large multiplexers, arithmetic logic gates, a fast
look-ahead carry chain, and a few other resources. Each
function generator is configurable as a 4-input look-up ta-
ble (LUT), as a 16-bit shift register, or as 16-bit distributed
RAM. Each CLB has an internal fast interconnect and con-
nects to a switch matrix to access general routing resources.
Apart from CLBs, the Virtex family provides large quanti-
ties of dual-ported RAM blocks, allowing the user to store
more data on-chip, and create deeper and wider pipelines.
Each block RAM resource is an 18Kb dual-port RAM, pro-
grammable in various depth and width configurations. Cray
has chosen several members of the Xilinx Virtex-II Pro and
Virtex-4 families for use in the XD1 (Table 1).

3.2 Cray XD1

A Cray XD1 system is composed of multiple chassis,
each containing up to six compute blades. Each compute
blade (Fig. 1) contains two single- or dual-core 64-bit AMD
Opteron processors, 1 to 8 GB of DDR-SDRAM per pro-
cessor, a RapidArray processor which provides two 2 GB/s
RapidArray links to the switch fabric, and an application ac-
celeration module [3]. The application acceleration module
is an FPGA-based reconfigurable computing module that
provides an FPGA complemented with a RapidArray Trans-
port core providing a programmable clock source, and four

†This overview applies to most modern FPGAs, but many details are
specific to the Xilinx Virtex-II Pro series.

FPGA Max clock Slices Block RAM I/O pins
rate (Kb)

XC2VP50 200 MHz 23,616 4,176 852
XC2VP100 200 MHz 44,096 7,992 1164

XC4VLX160 500 MHz 67,584 5,184 960

Table 1. Some available Xilinx Virtex-II Pro
and Virtex-4 FPGAs.

FPGA
module

To switch

RapidArray

processor

fabric

communication

1.6 GB/s

1.6 GB/s

RAM
AMD

Opteron

Figure 1. The Cray XD1 system

banks of Quad Data Rate (QDR) II SRAM. Cray presently
offers a choice between 8, 16, or 32 MB of SRAM.

3.3 The All-Pairs Shortest-Paths problem

Given a weighted, directed graph G = (V,E) with a
weight function, w : E → R, that maps edges to real-valued
weights, we wish to find, for every pair of vertices u, v ∈V ,
a shortest (least-weight) path from u to v, where the weight
of a path is the sum of the weights of its constituent edges.
Output is typically desired in tabular form: the entry in u’s
row and v’s column should be the weight of a shortest path
from u to v.

3.4 The Floyd-Warshall algorithm

The Floyd-Warshall algorithm uses a dynamic program-
ming approach to solve the all-pairs shortest-paths problem
on a directed graph G = (V,E) [2, 6, 13]. It runs in Θ(|V |3)
time. Let

wi j =

⎧⎨
⎩

0 if i = j,
weight of edge (i, j) if i �= j and (i, j) ∈ E ,
∞ if i �= j and (i, j) /∈ E .

Let d(k)
i j be the weight of a shortest path from vertex i to

vertex j for which all intermediate vertices are in the set
{1,2, . . . ,k}. For k = 0, we have d0

i j = wi j. A recursive
definition from the above formulation is given by:

dk
i j =

{
wi j if k = 0
min

(
dk−1

i j ,dk−1
ik + dk−1

k j

)
if k ≥ 1

Input: d[1 . . .N,1 . . .N]
1: for k ← 1,N do
2: for i ← 1,N do
3: for j ← 1,N do
4: d[i, j] ← min (d[i, j], d[i,k]+ d[k, j])
5: end for
6: end for
7: end for

Output: d[1 . . .N,1 . . .N]

Figure 2. The Floyd-Warshall algorithm

The matrix {dN
i j}, 1 ≤ i, j ≤ N, gives the final result. The

above recursive definition can be written as a bottom-up
procedure shown in Fig. 2. We refer to the matrix d as the
distance matrix in the rest of this paper.

The FW code is tight with no elaborate data structures,
and so the constant hidden in the Θ-notation is small. Un-
like many graph algorithms, the absence of the need to im-
plement any complex abstract data types makes FW a good
candidate for acceleration with an FPGA.

4 Design challenges

In this section, we discuss the challenges and issues in
implementing FW on FPGAs.

4.1 Parallelism and data reuse

In the FW computation, we have exactly N2 data ele-
ments, but Θ(N3) computations to perform. Hence, there
is high temporal locality that a custom design can exploit.
Parallelism on an FPGA is often achieved through employ-
ing a large number of processing elements working together
in a particular fashion. Locality is exploited by storing data
in the block RAM on the chip, from which it can be read
or written to in a single clock cycle. The block RAM does
not count as part of the slices that the logic of the design
occupies.

4.2 Reconfiguration cost

The cost of reprogramming an FPGA may be pro-
hibitively high so as to not allow using different optimized
kernels for different cases that may arise for a problem.
Runtime reconfiguration would be particularly useful when
the cost of reconfiguration can be offset by the benefit that
can be obtained by using specific compute kernels for spe-
cific tasks. On the XD1 FPGA, the cost of reprogramming
is currently about 1.6 s. Hence, a feasible design for FW
would be a single kernel that when loaded on the FPGA
would be capable of performing FW for all matrix sizes.

4.3 Data dependences

The FW nested code looks similar to matrix multiplica-
tion, but has additional Read-after-Write and Write-after-
Read dependences in addition to the output dependences
that exist in matrix multiplication. The problem of extract-
ing a large amount of parallelism in the presence of these
dependences is not trivial, and in fact, doing so making
maximum use of available FPGA resources is a major chal-
lenge. At the same time, the design needs to be simple and
modular in order to achieve a high target clock rate. Also,
the design should scale well when – (1) larger FPGAs are
employed, and (2) higher I/O bandwidth to the system is
available.

5 Parallel FPGA design for FW

Let d be the distance matrix of a directed graph of B
nodes. Let us now more closely observe the computation
being performed in the nested loop of Fig. 2.

At any iteration k = r of the outermost loop, the vectors,
d[r,∗] and d[∗,r], update the whole matrix d. Let us call
this row and column, the pivot row and the pivot column,
respectively. Note that d[r,∗] and d[∗,r] are not updated
during iteration k = r, as d[r,r] = 0. Let pr

1 and pr
2 denote

the pivot row and the pivot column, respectively, of iteration
k = r. From the notation introduced in Sec. 3.4, dr[r,∗] and
dr[∗,r] are the rth row and rth column of the matrix after r
iterations of the k loop. Hence, we have:

pr
1[i] = dr[r, i], 1 ≤ i ≤ B (1)

pr
2[i] = dr[i,r], 1 ≤ i ≤ B (2)

5.1 A naive approach

If the k loop is processed sequentially, parallelism can
be extracted for a given k only by reading in and updat-
ing several elements of a row/column simultaneously. Us-
ing this naive approach, the degree of parallelism would be
same as the number of matrix elements that can be read in
and updated simultaneously. For a given iteration of the k
loop, all elements of the matrix are updated exactly once.
This approach would require the matrix (or the tile being
processed) to be stored in the block RAM of the FPGA. If
a batch of row (or column) elements of the tile need to be
processed in parallel, they would require a single element of
the pivot column (or row). This would create a fanout prob-
lem if a large number of operators work in parallel. Second,
there is significant complexity involved in distributing the
tile across BRAMs and in addressing it. Third, the amount
of parallelism that can be extracted using this approach can-
not be increased beyond a certain limit no matter how large

the FPGA is. All of these factors severely effect the de-
gree of parallelism and scalability of this design apart from
making it infeasible to build.

5.2 New parallel architecture

Central Idea. We propose a new approach that extracts
parallelism even from the k loop in the presence of depen-
dences. This is achieved by computing in advance, the pivot
rows and columns that would update the array for any iter-
ation of the outermost loop k. The rth pre-computed pivot
row-column pair is stored in the rth processing element (PE)
in a linear array of PEs. Pipelined parallelism from the array
of PEs is used for both – initially computing the pivot rows
and columns, and subsequently updating the matrix with the
pre-computed pivot rows and columns.

The rth PE is made responsible for updating the matrix
elements with the pivot row and column it has in its storage.
The work done by the rth PE across time corresponds to the
computation in the iteration k = r of the outermost loop of
FW. The above two-phased approach is described in detail
below.

Let B be the number of PEs. Let an operator comprise
a comparator and an adder of required width. Let l be the
number of operators in each PE. So, l elements can be read
in parallel by PE〈i〉, updated and shifted to PE〈i+1〉. In the
rest of this section, by an “update”, we mean the computa-
tion shown in Fig. 3(b); by “upstream” and “downstream”
with respect to a particular PE, we mean the PEs that are
to its left and right, respectively, in the linear array of PEs.
B and l are determined by resource constraints as described
later.

Phase 1: At each clock cycle, l elements of row i (or col-
umn i, alternating between the two) of a BxB matrix in
the system’s memory are streamed in to PE〈0〉, i go-
ing from 0 to B− 1, i.e., row 0 followed by column
0, row 1 followed by column 1, and so on. These el-
ements are updated until they reach PE〈i〉, at which
they get stored. The idea involved is that the rth row
(or column) gets updated r − 1 times (as it is shifted
through the PEs) before getting stored at PE〈r〉 as that
PE’s pivot row and column. This process is done in a
pipelined fashion.

This computation of pivot rows and columns involves
the same set of operations as in the original FW code,
with the dependences preserved. Hence, pr

1 and pr
2 are

in the storage of PE〈r〉 after it finishes this phase.

Time spent by PE〈r〉 in phase 1 is given by:

T1(r) =
2B∗ (B− r)

l
clock cycles (3)

PE1 PE(r)PE0

p2

p1

l l l

Results

Engine
I/O

control

PE(B−1)

Global PE
control

(a) FW kernel architecture

k

l

k

p2
+, min

d[i][t .. t+l−1]

p1

(b) Parallel update at PE〈k〉

Figure 3. Parallel FPGA-based FW kernel

Phase 2: Since the pivot row and column elements in
the local storage of each PE are themselves partially
computed distances, we need not stream in the matrix
again. Instead each PE, in its turn, starting from PE〈0〉,
streams its pivot row (or column) downstream to be
computed on and updated. Hence, PE〈r〉 would update
and shift r rows of the matrix it would receive from the
previous PE. Then on its turn, it streams its row which
is updated and shifted B− r times by the downstream
PEs. The last PE would output all B2 elements of the
result in row-major order (or column-major if columns
were streamed out). Fig. 3 shows the architecture of
the design. Time spent by PE〈r〉 in phase 2 is given
by:

T2(r) =
B∗ (r + 1)

l
cycles (4)

Summary of work done by each PE. Let PE〈r〉 start
at t = 0. For the first 2B/l clock cycles, it would receive
its pivot row and pivot column, each with B elements. For
the next 2(B/l)(B− r − 1) clock cycles, it would update
batches of elements coming from its left neighbor which are
actually meant to be the pivot row and column elements for
PEs downstream; on finishing this, the PE enters the second
phase. In the second phase, for the first B∗ r/l clock cycles,
it would update and shift elements read from the previous
PE, which are actually the pivot row elements coming from
the PEs upstream. It would then finish up by sending its
own pivot row elements in B/l clock cycles. The pipeline
empties from left to right as each PE finishes with sending
its pivot row elements.

Let p be the pipeline depth of a PE. Then, the latency of
the design is given by:

L = T1(0)+ B∗ p−1 +T2(B−1) cycles

=
(

3B2

l
+ B∗ p−1

)
cycles (5)

5.3 Extending the design for a tiled FW algorithm

The problem of tiling the Floyd-Warshall algorithm in
order to optimize it for the cache hierarchy on general-
purpose processors has been addressed by Venkataraman et
al. [12]. Since the FW kernel described above can handle
only matrices of size BxB, we extend the above design to
handle the tiling scheme proposed in [12]. We first give a
brief description of the same.

Consider the operation shown in Fig. 3(b). Replace each
element by a tile of size BxB so that there are (N/B)2 tiles,
and consider a similar operation happening to tiles. In this
case, we have an entire tile that needs to be updated by the
projection of its elements onto pivot rows and columns that
come from a pivot row-block (d[t . . .t + B−1][1 . . .N]) and
a pivot column block (d[1 . . .N][t . . .t + B− 1]) for the out-
ermost loop k = t to t + B−1. The pivot rows and columns
used to update a particular tile may – (1) come from the
same tile (self-dependent), (2) only the pivot rows come
from a different tile (partially row-dependent), (3) only the
pivot columns come from a different tile (partially column-
dependent), or (4) both the pivot rows and the pivot columns
come from different tiles (doubly-dependent). Fig. 4 shows
these different types of tiles.

The partially row/column-dependent tiles require the
self-dependent tile to be processed first. Similarly, the
doubly-dependent tiles depend on the row-dependent and
column-dependent tiles (Fig. 4). For any large N > B, we
choose a tile size of B. For cases (2), (3) and (4), in which
one or both of the pivot rows and columns come from tiles
different from the one we are updating, no updates need
to be performed on the pivot elements as they are shifted
in Phase 1. In the second phase of the algorithm, for the
doubly-dependent case, the tile that is to be updated needs
to be streamed in as opposed to PEs themselves sending
their pivot row elements downstream. It is to be noted
that for case (2), the PEs send their pivot column elements
downstream as opposed to pivot row elements. Hence, mi-
nor changes to the control instructions sent to the PEs allow

t+B−1t

B

self−dependent

partial row/column
dependent

doubly−dependent

B

+, min

Iteration k=t to k=t+B−1

Figure 4. Tiled FW algorithm proposed in [12]

us to accomplish this.
The latency for all types of tiles is the same as that for

self-dependent tiles, and is given by Eqn. 5.

5.4 Parallelism (B and l)

The factors B and l represent two orthogonal ways in
which parallelism is extracted in our design. l is governed
by the I/O bandwidth and the size of the matrix values. B is
constrained by the amount of FPGA resources – the number
of slices or the amount of block RAM. The product of B and
l is the degree of parallelism of our design, and maximizing
this is our goal.

In the presence of lower I/O bandwidth, l can be de-
creased which may free resources to increase B. If higher
I/O bandwidth is available, l can be increased leading to
more parallelism. Likewise, larger number of slices on an
FPGA would allow us to have a higher value for B. Hence,

 0

 200

 400

 600

 800

 1000

 1200

 1400

 8

 16

 32

 64
B (number of PEs) 2

 4

 8

 16

l (PE parallelism)
 0

 200

 400

 600

 800

 1000

 1200

 1400

FW latency (ms)

Figure 5. Effect of parameters B and l on the
latency of FPGA-based FW

our design always makes maximum utilization of FPGA re-
sources even as larger quantities of it are available. For the
purpose of illustrating the effect of parameters, we obtain
the FW latency for an NxN matrix by simply multiplying
(N/B)3, which is the number of tiled computations, with the
per-tile latency from Eqn. 5. Fig. 5 shows this latency for
a 1024x1024 matrix with 16-bit edge-weights. However,
this would not be a true measure of the implementation’s
application-level performance as discussed later.

5.5 Determining optimal values for B and l

We use the following notation throughout the rest of this
paper:

M : Amount of available block RAM
S : Number of slices available for FW kernel
cg : Number of slices occupied by global control
cp: Number of slices occupied by each PE’s control
so : Number of slices occupied by an operator
tc : Target clock cycle time achievable
d : Size of an edge-weight (in bytes)
w : Number of bytes that can be fetched per cycle
p : Depth of the PE pipeline

Storage constraint: Each PE stores 2B elements of matrix
d. For all PEs to have sufficient storage for their pivot
rows and columns:

2B2d ≤ M (6)

Area constraint: The number of slices utilized by the
design should be within the number available on the
FPGA.

soBl + cpB + cg ≤ S (7)

From the above two constraints, we have:

B ≤ min

(
S− cg

sol + cp
,

√
M
2d

)
(8)

I/O bandwidth constraint: With l operators working in
parallel in a single PE, we need to have: l ∗ d ≤ w.

An increase in l leads to an increase only in the number
of operators, while increasing B would add both, operators
and control logic. Thus, the parameter l can be thought of
as providing more parallelism per unit area than B. Hence,
to maximize parallelism which is the product of B and l,
we set l to the maximum value possible, i.e., w/d, and then
determine B from the area constraint. The optimal values l∗
and B∗ are given by:

l∗ =
w
d

; B∗ = min

(
S− cg

sol∗ + cp
,

√
M
2d

)
(9)

To be precise, the optimal values of B and l are the high-
est powers of two less than the corresponding values on the
right-hand side of the above equation.

Since so
 cp (Table 2), to increase B, it is important to
reduce cp, and transfer as much control as possible to global
control, cg. This is dealt with in Sec. 5.6.

5.6 Control design and optimization

Each PE takes only one of the following actions at any
clock cycle:

1. Read and Store: Read and store a row (or column)
batch (set of l elements) in its local storage

2. Process: Read, update and shift a row (or column)
batch

3. Forward: Read and shift a row (or column) batch

4. Send: Send a batch from a stored pivot row (or col-
umn) to the next PE

Control instructions can be streamed through the array
of PEs eliminating the need for each PE to maintain a finite
state machine based on the number of elements received or
the number of clock cycles. Each batch of l elements has a
control instruction associated with it. The improvement due
to this optimization is significant as the amount of control
logic eliminated in each PE is comparable to the slices oc-
cupied by all the l operators in it. For the sake of brevity, we
do not discuss the instruction format and the corresponding
action taken by a PE, but by having an index of log2 B bits
and a three-bit opcode, it is possible for a PE to infer the
action it has to perform, and the address in the pivot row
and column RAM to read from, if necessary. A finite state
machine need only be maintained at the global PE control
shown in Fig. 3(a).

5.7 Overlapping successive tile computations

Computation for successive tiles can be overlapped, i.e.,
emptying and filling of the PE pipeline can be overlapped.
In this case, the latency for doubly-dependent tiles is dif-
ferent from that of self-dependent and partial row/column-
dependent tiles. In the former case, the first PE can start
processing the next tile after 3B2/l clock cycles, while in
the latter, the next tile can be processed (2B2/l + B/l) cy-
cles after the first tile is sent in.

Let Lsd ,Lrd ,Lcd and Ldd be the latencies of self-
dependent, partially row-dependent, partially column-
dependent and doubly-dependent tiles, respectively. These
latencies are given by:

Lsd = Lrd = Lcd =
(

2B2

l
+

B
l

)
tc (10)

Ldd =
(

3B2

l

)
tc (11)

5.8 Optimizing non-self-dependent tile computa-
tions

Latency for processing partially or doubly-dependent
tiles can be reduced since a set of tiles in a particular row
(or column) block of the array use the same set of pivot
columns (or rows). The pivot columns (or rows) for all tiles
in the row (or column) block need only be fetched once per
that row (column) block. Therefore, the latencies in Eqn. 10
and Eqn. 11 reduce by an amount B2/l when appropriate.

5.9 Pipelining for a high frequency

To achieve a high target clock rate, we use a three-stage
pipeline for the PE. In the first stage, the control instruction
is decoded and addresses for the PE’s pivot row and column
are placed. In the second stage, the pivot row/column ele-
ments are read. The third stage performs the add, compare
and update operation.

The purpose of introducing the second and the third stage
is to separate reading of the pivot row/column elements
from the block RAM, and the add/compare/update opera-
tion. Completing both of them in a single clock cycle led to
a clock rate significantly less than 200 MHz, the maximum
that can be achieved from the XC2VP50 (Table 1). Also,
headroom needs to be left in case higher precision is de-
sired. Pipelining this way allows us to clock the design at a
full 200 MHz. We do not analyze the trade-off between
pipelining and frequency as the benefit obtained by the
higher clock rate was definitely desirable due to the amount
of block RAM never becoming a constraint (Eqn. 8).

6 Implementation

In this section, we briefly describe issues in implement-
ing the proposed parallel FW design on the Cray XD1.

6.1 Multi-level tiling

FPGAs have many times higher bandwidth to off-chip
SRAM than over the interconnect to the system. Hence,
an optimized design on reconfigurable HPC systems like
the Cray XD1, would make use of SRAM as an additional
hierarchy in tiling. We would have two levels of tiling – one
with respect to the maximum tile size which the FPGA can
handle due to its resource constraints, and the second with
respect to the SRAM. The SRAM being several megabytes
in size can accommodate a much larger tile than the FPGA
can handle. A design tiled with respect to the SRAM would
reduce I/O between the FPGA and the system by a factor

proportional to the ratio of the SRAM tile size to the tile
size the FPGA kernel can handle.

Though tiling with respect to the SRAM is conceptually
straightforward, it is tedious to implement with the current
state of tools. Hence, in the design for which results are
presented in the next section, we do not tile with respect to
the SRAM.

6.2 I/O bandwidth and precision

Though our design is parameterized with respect to the
precision of the distance matrix values, our measurements
in the following section are for 16-bit values.

On the Cray XD1, at the theoretical peak rate of
1.6 GB/s, a 64-bit word can be read and written every clock
cycle over the interconnect. Hence, four matrix elements
can be read in a single clock cycle. However, the theoretical
peak bandwidth over the interconnect is not achieved due
to burst requirements and DMA overhead. The design
takes care of this by stalling the PEs in a cascading fashion
(leading to bubbles in the pipeline) whenever data is not
available at the peak rate.

Pivot row/column storage. On-chip Block RAM is uti-
lized for the storage of a pivot row and column in each PE.
The width of each pivot RAM word is l ∗ d, with B/l such
words. Block RAM on the Virtex-II Pro FPGAs can be con-
figured for a desired depth and width, starting from 18Kx1-
bit to 36x512-bit. This makes sure that we are not con-
strained when reading a large number of pivot row/column
elements when higher I/O bandwidth is available.

6.3 FPGA-host communication

The FPGA can perform I/O only to a specially allocated
buffer that is pinned to the system’s memory. The physi-
cal address of this transfer region is communicated to the
FPGA.

We keep the I/O engine on the FPGA simple. The I/O
engine transfers data of specified length to/from contiguous
regions of the communication buffer, and is totally oblivi-
ous to the computation being performed by the FW kernel.
Rows and columns of the distance matrix are placed in the
communication buffer in the fashion required by the design,
for the kind of tile to be processed. 3B2 elements are placed
in the communication buffer for doubly-dependent tiles,
while 2B2 elements are placed for the other three cases. A
special set of registers on the FPGA are used for transfer of
control and status information from and to the application
running on the system. The source and destination buffer
addresses, amount of data to be transferred to/from these

buffers, and the type of tile to be processed, is communi-
cated using these registers.

The Cray User-FPGA API provides functions to pro-
gram the FPGA, create the communication buffer, write
values and addresses to registers on the FPGA, taking care
of virtual to physical address translation in the latter case.
Resetting the logic on the FPGA is done through a write
to a special register. A write to the register meant for the
destination buffer address triggers the computation on the
FPGA. Completion is indicated by setting a bit which the
CPU polls.

7 Measurements

In this section, we measure the performance of FPGA-
based FW, and compare it that of FW on XD1’s CPU.

7.1 Measurements on a modern microprocessor

The measurements for the general-purpose processor
case were taken on a 2.2 GHz 64-bit AMD Opteron with
a 64 KB L1 data cache and a 1 MB L2 cache as found on
the XD1. GCC 3.3 with “-O3” was used for compilation.
The latency reported is averaged over 1000 iterations. Since
the dataset for all the cases shown in Table 4 fits in the L1
data cache, we do not perform any tiling, or copying to a
contiguous buffer to reduce conflict misses. We refer to the
system implementation as CPU-FW in the rest of this sec-
tion.

7.2 Measurements for FPGA-based FW

The FPGA on the Cray XD1 is a Xilinx Virtex-II
Pro XC2VP50 (Table 1). Xilinx ISE 7.1i was used for
synthesizing, mapping, placing, and routing the design.
The version of Cray User-FPGA API used was 1.2. The
Operating System on the XD1 is Linux kernel version
2.6.5. The FPGA-based FW implementation is referred to
as FPGA-FW in the rest of this section.

Resource utilization. Table 2 gives the resource utiliza-
tion of different modules of FPGA-FW as reported by the
mapping tool. Since we have 16-bit distance values, d = 2.
Since four such values can be fetched in a clock cycle, we
have l = 4. The PE pipeline depth p is three as mentioned
in Sec. 5.9. We clock FPGA-FW at the maximum of
200 MHz, i.e., tc = 5 ns. The XC2VP50 has over 200 18Kb
dual-ported Block RAMs. As the block RAM is also used
for other purposes – mainly for the interstage buffers of
the PEs’ pipelines, we fix M at a conservative 128 KB.
Substituting these values into Eqn. 9, we find that the
highest power of two that B can assume for the XC2VP50
FPGA is 32. In Table 3, we give an estimate of the tile sizes

Area group Number of Slices
8x8 16x16 32x32

Operator (so) 25 25 25
PE 584 550 553

Global control (cg) 73 73 73

FW 3,983 8,256 17,223
I/O subsystem 3,193

Total utilization 8,017 12,293 21,229
Block RAM utilization 48 80 144

Available (A) 23,616

Table 2. Resource utilization for FPGA-FW on
the Xilinx XC2VP50 FPGA

FPGA Available B
Slices l = 4 l = 16

XC2VP50 23,616 32 16
XC2VP100 44,096 64 32

XC4VLX160 67,584 64 64

Table 3. Tile size supported by the largest
FPGA-FW kernel that can fit on various FP-
GAs

that would be possible on some larger FPGAs.

Per-tile overhead. The latency of processing a single
tile includes certain overhead that does not show up when
the tiled implementation is used iteratively for a full-fledged
matrix. We make an effort to characterize this overhead.
This overhead can be measured by setting the number of
bytes to be transferred to the destination buffer to zero: in
this case, as soon as the FW kernel receives its first batch
of input data, completion is indicated. Hence, we get the
interval of time between the point when a call to reset is
made in the user application and the point when the FW
kernel starts computation. We subtract this overhead from
the total time measured: the result is the per-tile latency that
is an indicator of performance of the FW kernel. We find the
overhead to be a constant 2.1 µs.

To time FPGA-FW, we use the measured latency aver-
aged over 1000 iterations. Each iteration is a write to the re-
set register followed by a destination address write that trig-
gers the computation, that finishes by polling of the com-
pletion flag by the CPU. Table 4 gives a comparison of the
measured performance of FPGA-FW and CPU-FW.

Table 5 compares the latency estimated from Eqn. 5 and
the one actually measured, and shows the speedup achieved
with the FPGA over the microprocessor. It is to be observed
that the measured latencies for various tile sizes closely
agree with the estimated values. The deviation from the es-
timated value is due to the fact that the available I/O band-

Tile FPGA-FW CPU-FW
size Total Overhead Compute

8x8 2.49 µs 2.07 µs 0.42 µs 1.6 µs
16x16 3.36 µs 2.07 µs 1.29 µs 14.1 µs
32x32 6.91 µs 2.07 µs 4.84 µs 106.5 µs

Table 4. Measured performance comparison
of FW: FPGA-FW vs. CPU-FW

Tile FPGA-FW CPU-FW Measured
Size Estimated Measured Speedup
8x8 0.36 µs 0.42 µs 1.6 µs 3.8x

16x16 1.20 µs 1.29 µs 14.1 µs 11x
32x32 4.14 µs 4.84 µs 106.5 µs 22x

Table 5. FPGA-FW: Estimated vs. measured
performance and speedup over CPU-FW

width is less than the theoretical peak. Fig. 6 gives a break-
down of the latency for processing a tile.

A high speedup is obtained without making use of off-
chip SRAM. Apart from the large degree of parallelism that
is extracted, adapting the FPGA resources for the appropri-
ate amount of precision necessary for the problem at hand,
is an important factor responsible for the acceleration. For
example, for the 32x32 case, we have 128 (= 32x4) op-
erators working in parallel each clock cycle. All of these
benefits heavily offset the downside of having a clock rate
on the FPGA that is almost ten times lower than that of the
microprocessor.

8 Related work

The Floyd-Warshall algorithm was first proposed by
Robert Floyd [6]. Floyd based his algorithm on a theorem

 0

 1

 2

 3

 4

 5

 6

 7

 8 16 32

L
at

en
cy

 (
us

)

Tile Size

Computation
Reset to start of computation
User-application reset latency

Figure 6. Breakup of FPGA-FW latency

of Warshall [13] that describes how to compute the transi-
tive closure of boolean matrices. Venkataraman et al. [12]
proposed a blocked algorithm to optimize it for the cache
hierarchy of modern processors.

Researchers have recently demonstrated the competi-
tiveness of FPGAs with modern processors for double-
precision floating-point arithmetic and dense linear algebra
operations [11, 16]. A significant amount of work also pro-
poses FPGA designs for specific applications demanding
high performance. However, most of these studies do not
provide experimental data, but only project performance.

A significant amount of systolic literature exists on the
transitive closure problem and its generalized form - the Al-
gebraic Path Problem [7, 9, 4]. However, designs proposed
in these works do not address practical resource constraints
that necessitate a tiled solution for a large problem size.

9 Future work

A number of design trade-offs and implementation
choices arise when a large NxN matrix is to be processed
using the FPGA kernel we have developed. Some of the is-
sues include – layout transformation for the distance matrix,
reducing and hiding copy costs to the FPGA communica-
tion buffer, and eliminating or hiding the start-up overhead
of the FW kernel. The intent of this work is to provide a
high-performance FPGA kernel to process a tile efficiently;
this kernel can be used to build a complete tiled solution for
a graph with a large number of vertices [1]. We plan to in-
tegrate the final implementation into Galaxy, and reduce the
running time of the application significantly.

10 Conclusions

In this paper, we have proposed a parallel FPGA de-
sign for the Floyd-Warshall algorithm to solve the all-pairs
shortest-paths problem in a directed graph. In order to uti-
lize parallelism without data access conflicts, the compu-
tation was reorganized into a sequence of two passes: first
compute a set of pivot rows and columns, and then use the
stored pivot rows and columns to compute the updates to
matrix elements in a streamed fashion. This approach en-
abled the creation of a simple and modular design that max-
imizes parallelism and makes maximal use of the resources
available on the FPGA. A model was constructed to deter-
mine the optimal values of parameters that govern the ex-
ploitable degree of parallelism in the design under resource
constraints. The implemented kernel can be used to de-
velop a tiled algorithm [12] for highly accelerated solution
of large all-pairs shortest-paths problems. Experimental re-
sults from a working implementation of the kernel show a
speedup of 22 on the Cray XD1.

References

[1] U. Bondhugula, A. Devulapalli, J. Dinan, J. Fernando,
P. Wyckoff, E. Stahlberg, and P. Sadayappan. Hard-
ware/Software Codesign for All-Pairs Shortest Paths on a
Reconfigurable Supercomputer. Technical Report OSU-
CISRC-1/06-TR13, Jan. 2006.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. The MIT Press, second edition, 2001.

[3] Cray Inc. Cray XD1 whitepaper, 2005.
[4] C. T. Djamégni, P. Quinton, S. V. Rajopadhye, and T. Ris-

set. Derivation of Systolic Algorithms for the Algebraic Path
Problem by Recurrence Transformations. Parallel Comput-
ing, 26(11):1429–1445, Oct. 2000.

[5] D. P. Dougherty, E. A. Stahlberg, and W. Sadee. Network
Analysis Using Transitive Closure: New Methods for Ex-
ploring Networks. Journal of Statistical Computation and
Simulation, 2005.

[6] R. W. Floyd. Algorithm 97: Shortest Path. In Communica-
tions of the ACM, volume 5, page 345, June 1962.

[7] S.-Y. Kung, S.-C. Lo, and P. S. Lewis. Optimal Systolic De-
sign for the Transitive Closure and the Shortest Path Prob-
lems. IEEE Transactions on Computers, 36(5):603–614,
May 1987.

[8] Ohio Supercomputer Center. Galaxy.
http://www.osc.edu/hpc/software/apps/galaxy.shtml.

[9] D. Sarkar and A. Mukherjee. Design of Optimal Systolic
Algorithms for the Transitive Closure Problem. IEEE Trans-
actions on Computers, 41(4):508–512, Apr. 1992.

[10] SRC Computers Inc. SRC MAPstation.
[11] K. D. Underwood and K. S. Hemmert. Closing the

Gap: CPU and FPGA Trends in Sustainable Floating-Point
BLAS Performance. In Proceedings of the IEEE Sympo-
sium on Field-Programmable Custom Computing Machines
(FCCM’04), Apr. 2004.

[12] G. Venkataraman, S. Sahni, and S. Mukhopadhyaya. A
Blocked All-Pairs Shortest-Paths Algorithm. Journal of Ex-
perimental Algorithmics, 8:2.2, Dec. 2003.

[13] S. Warshall. A Theorem on Boolean Matrices. In Journal of
the ACM, volume 9, pages 11–12, Jan. 1962.

[14] Xilinx Inc. Virtex-II Pro and Virtex-II Pro X Platform FP-
GAs: Complete Data Sheet. Xilinx Inc., 2005.

[15] X. Zhou, M. Kao, and W. Wong. Transitive Functional
Annotation by Shortest-Path Analysis of Gene Expression
Data. In P. Natl. Acad. Sci., USA, 2002.

[16] L. Zhuo and V. K. Prasanna. Design Trade-offs for BLAS
Operations on Reconfigurable Hardware. In Proceedings
of the International Conference on Parallel Processing
(ICPP’05), pages 78–86, June 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

