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Abstract

We present two cost-effective and high-performance out-
of-core parallel mesh generation algorithms and their im-
plementation on Cluster of Workstations (CoWs). The to-
tal wall-clock time including wait-in-queue delays for the
out-of-core methods on a small cluster (16 processors) is
three times shorter than the total wall-clock time for the in-
core generation of the same size mesh (about a billion ele-
ments) using 121 processors. Our best out-of-core method,
for mesh sizes that fit completely in the core of the CoWs,
is about 5% slower than its in-core parallel counterpart
method. This is a modest performance penalty for savings
of many hours in response time. Both the in-core and out-
of-core methods use the best publicly available off-the-shelf
sequential in-core Delaunay mesh generator.

1. Introduction

Parallel mesh generation is a crucial building block for
large-scale simulations on parallel platforms like CoWs.
Parallel mesh generation procedures decompose the origi-
nal mesh generation problem into smaller subproblems that
can be solved (meshed) in parallel. The subproblems can be
formulated to be either tightly or partially coupled or even
decoupled. The coupling of the subproblems (i.e., the de-
gree of dependency) determines the intensity of the commu-
nication and synchronization between the subproblems [6].

Tightly coupled mesh generation methods such as
Parallel Optimistic Delaunay Mesh (PODM) generation
method [16] are not suitable for out-of-core (OoC) compu-
tations due to very intensive communication among subdo-
mains which leads to frequent (about 25K per second) disk
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accesses. On the other hand, decoupled methods like Paral-
lel Delaunay Domain Decoupling Method [15] use off-the-
shelf state-of-the-art sequential software like Triangle [18]
and lead to very efficient OoC methods. However, these
methods rely upon the solution of a very difficult problem
which is open for 3-dimensional (3D) geometries [14].

The only suitable methods for OoC parallel Delaunay
mesh generation are the partially coupled methods that: (1)
do not rely on domain decompositions and (2) can use off-
the-shelf existing sequential mesh generation libraries. It
takes about ten to fifteen years to develop the algorithmic
and software infrastructure for sequential industrial strength
mesh generation libraries. Moreover, improvements in
terms of quality, speed, and functionality are open ended
and permanent which makes the task of delivering state-of-
the-art parallel OoC mesh generation codes even more diffi-
cult and expensive when they are written from scratch, i.e.,
without re-using the existing code.

In [3, 4] we presented an in-core partially coupled Paral-
lel Delaunay Refinement (PDR) method which relies upon
a simple block data decomposition (see Figure 1, left). The
data decomposition can be generated either with a uniform
2D/3D lattice or a quadtree (octree in 3D) covering the en-
tire domain Ω. The block decomposition is used to guide
the parallel refinement, so that the points, independently
inserted in certain regions of Ω, are a priori Delaunay-
independent. Our analysis indicates that the methods in [3,
4] are extendable to 3D geometries, however, this research
is still in progress. In this paper we use the 2D PDR method
to develop and analyze the performance of the parallel OoC
guaranteed quality Delaunay mesh generation algorithms
and their implementation. The 2D method is not as com-
putationally intensive as the 3D PDR method and thus we
expect that the performance data we present here will im-
prove even further for the 3D case.

Why OoC parallel mesh generation is an important prob-
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lem to solve? While it is possible to generate very large
meshes in-core using parallel computers with large num-
ber of processors by using their aggregate memory, there
are two main drawbacks to this approach: (1) mesh gen-
eration and refinement are memory-intensive tasks and do
not require the computing power of hundreds of CPUs, and
(2) requesting hundreds of nodes on large CoWs shared
by multiple users can result in long wait-in-queue delays
that increase substantially the total wall-clock time. Fig-
ure 1 (right) depicts the average and maximum wait-in-
queue time statistics for parallel jobs on Sciclone cluster
at the College of William and Mary. These data indicate
that the average and the maximum wait-in-queue time for a
parallel job with more than 128 processors is about 3 hours
and 11 days, respectively.

We address these concerns by presenting two OoC algo-
rithms and their implementation for CoWs with both sin-
gle processor nodes and k-way SMP nodes. Specifically, in
Section 4 we present an OoC method for distributed mem-
ory machines with a single processor per node and in Sec-
tion 5 we present a hybrid OoC method for CoWs with SMP
nodes. Our performance data in Section 6 indicate that the
total wall-clock time including wait-in-queue delays and to-
tal execution time for the hybrid OoC method is 3.3 times
shorter than the total wall-clock time for the in-core gen-
eration of the same size meshes using more than one hun-
dred processors. Although the hybrid OoC method exhibits
about 5% overhead over the corresponding in-core method
(for mesh sizes that fit completely in the core of the CoWs)
this is a modest performance penalty for savings of many
hours in response time. Both OoC codes use the best pub-
licly available off-the-shelf sequential Delaunay mesh gen-
erator [18]. This helps us leverage the on-going improve-
ments in terms of quality, speed, and functionality of se-
quential in-core Delaunay mesh generation methods.

2. Related Work

There are two basic approaches for the out-of-core com-
puting: implicit, usually involves virtual memory (VM)
supported by internal mechanisms of an operating system
(OS); and explicit, which often implies algorithm-specific
optimizations.

While VM is easy to employ it has a number of limita-
tions. First, the amount of VM is limited to 4GB for a single
process on 32-bit architectures (only 2GB under Windows
and Linux since a half is reserved for the OS). Although
the newer processors provide 64-bit address space the OS-
supported VM is optimized for system throughput and usu-
ally cannot exploit access patterns of irregular and adaptive
applications. In our tests an increase in problem size from

From the last four and a half years.

23.8 million elements (fully in-core, 4 processors) to 58.8
million elements (doubling the amount of memory by using
disk, 4 processors) resulted in an increase of the execution
time from 418 seconds to more than 3 hours. Our out-of-
core methods generate meshes of that size (58.8 millions)
in less than a half an hour on 4 processors.

The explicit approach is usually employed to develop
algorithm-specific out-of-core methods. This approach
has been very effective in linear algebra parallel computa-
tions [7, 20]. Out-of-core linear algebra libraries use var-
ious mapping layouts (depending on the underlying I/O
and algorithm specifics) to store out-of-core matrices and
employ vendor supplied libraries for asynchronous disk
I/O. They rely on high performance in-core subroutines of
BLAS [10], LAPACK [8] and ScaLAPACK [5] and a sim-
ple non-recursive (in most cases) pipeline to hide latencies
associated with disk accesses.

Also, Salmon et al. [17] described an out-of-core N-body
parallel method which is irregular but not adaptive, i.e.,
there is no creation or deletion of new bodies during the exe-
cution, unlike the parallel mesh refinement computation we
focus on in this paper. Salmon et al. extend the virtual mem-
ory scheme to store out-of-core pages on the disk. They
use an algorithm-specific space-filling curve to arrange data
within memory pages. A problem-independent feature [17]
is the page replacement algorithm which is based on the last
recently used (LRU) replacement policy. The same policy
is used as a basic virtual memory policy for many platforms
(e.g., Linux). However, the authors extend it by introduc-
ing priorities, different aging speeds for different data types,
and explicit page locking.

Etree [21] is an out-of-core algorithm-specific approach
for sequential mesh generation. The novelty of Etree is in
the use of a spatial database to store and operate on large oc-
tree meshes. Each octant is assigned a unique key using the
linear quadtree technique which is stored as a B-tree. There
are three steps to generate a mesh with Etree: (1) create an
unbalanced octree on disk, (2) balance the etree by decom-
posing further the octants that violate the 2-to-1 constraint,
and (3) store the element-node relations and node coordi-
nates in two separate databases. Subsequently, all the mesh
operations are performed by querying the databases using
Etree calls. This method targets octree meshes and it is ex-
ceptionally fast, especially after recent new improvements
using a two-level bucket sort algorithm [22]. However, it
targets octree-based meshes and is not parallel.

3. Parallel Delaunay Refinement Method

The Parallel Delaunay Refinement (PDR) algorithm is
based on a theoretical framework for constructing guaran-
teed quality Delaunay meshes in parallel [2–4]. Sequen-
tial guaranteed quality Delaunay refinement algorithms in-



1

10

100

1000

10000

100000

1000000

32 to 47 48 to 63 64 to 95 96 to 127 128 and higher

# ofrequested processors

Ti
m
e
(s
ec
)

max

average

Figure 1. (Left) The pipe cross-section overlapped by a uniform lattice used by the PDR method. The
squares in bold represent refinement blocks that are subdivided into smaller cells; and (right) the
wait-in-queue time statistics for parallel jobs collected from the last four and a half years from a 300+
processor cluster at the College of William and Mary.

sert points at the circumcenters of triangles of poor quality
or of unacceptable size. Two points are called Delaunay-
independent iff they can be inserted concurrently without
destroying the conformity and Delaunay properties of the
mesh. In [3] we provide a sufficient condition of Delaunay-
independence, which is based on the distance between
points, i.e., two points are Delaunay-independent if the dis-
tance between them is no less than 4r̄, where r̄ is an upper
bound on triangle circumradius in the initial mesh.

Evaluating the above criterion for every pair of candidate
points is very expensive. In [3] we presented an efficient im-
plementation which relies on the use of a coarse auxiliary
lattice (see Figure 2). The lattice is imposed over the trian-
gulation domain (see Figure 1, left) in such a way that the
circumcenters in non-adjacent cells are a-priori Delaunay-
independent. Processors are logically arranged into a two-
dimensional grid, and each processor is assigned some sub-
set of cells for refinement. The parallel meshing in [3] is
implemented by simultaneously shifting cells among pro-
cessors. Buffer cells serve to separate the refinement zones.
After every refinement iteration, the triangles in buffer cells
are exchanged between neighboring processors and are used
in subsequent refinement steps. Data exchange is organized
by shifting cells along vertical, horizontal, and diagonal di-
rections

The PDR algorithm is partially coupled [6] with bulk
communication and very simple and inexpensive data de-
composition. Thus it is suitable for out-of-core parallel
Delaunay mesh refinement. In [13] we presented a varia-
tion of the PDR algorithm for shared memory architectures
(SPDR) and its out-of-core version (OSPDR).

4. Out-of-core Distributed Memory PDR

The Out-of-core Distributed memory PDR (ODPDR) al-
gorithm is designed to create very large meshes in paral-
lel, using the aggregate and concurrent access of disk space
through multiple nodes of a CoW. The following assump-
tions were made for the design of the ODPDR algorithm:
(1) parts of the mesh stored on disk can only be accessed
by the processor that the disk is directly attached to; (2)
only a small fraction of the mesh can be loaded into the sys-
tem memory, and (3) network and disk accesses have a very
high latency. Therefore our goal in ODPDR is to minimize
the number of accesses and overlap them with computation
whenever possible.

The mesh is stored on disk as a collection of subdo-
mains. The subdomains are generated from the block de-
composition (using the auxiliary lattice) we used for the
PDR method. The ODPDR uses different from PDR as-
signment of the cells to processors, but relies on the PDR
(in-core) parallel Delaunay meshing and refinement code.

Optimal data distribution reduces the amount of commu-
nication to a necessary minimum and consequently lowers
associated latencies. We propose an interleaving block par-
titioning (see Figure 3, left). That is the domain is parti-
tioned into N2 subdomains, where N is a number related
to the size of the mesh and the amount of available RAM.
Each subdomain is further partitioned into P blocks, where
P is the total number of processors. Since P is a constant
for every configuration, N is chosen such that the memory
requirements of any single block is small enough to fully fit
into RAM of a single node. The total number of blocks in
the domain is P ×N2; each processor stores (on local disk)
one block from each subdomain, total of N2 blocks. This
scattered decomposition helps to implicitly improve work-
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Figure 2. Snapshots of a mesh distributed among four processors. Dark areas are the parts of
the mesh that have already been refined. Grey areas are those that have not been refined. Each
processor starts with an initial coarse mesh and ends up with a refined mesh covering the same
area.
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Figure 3. An example of domain partitioning for the
ODPDR (left) and the OHPDR (right) methods.

There are four refinement steps in the PDR method, each
step is followed by data exchanges or shifts. Due to insuffi-

cient (relatively to the problem size) memory it is impossi-
ble to perform all of the shifts simultaneously as in the PDR.
The ODPDR method uses two levels of data movements:
(1) from the disk to the memory which we call a top-level
shift and (2) from one processor to another which we call a
shift, in consistence with our previous work (PDR).

There are two distinct types of top-level shifts: horizon-
tal/vertical and diagonal. We designed the diagonal shift
to be more efficient than a simple sequence of horizon-
tal/vertical shifts; therefore, it requires a separate explana-
tion. We will describe each shift type using one direction
as an example, and the remaining directions can be easily
understood by analogy. In particular, we will focus on the
horizontal shift to the right and the diagonal shift to the right
and down.

The horizontal/vertical type of top-level shift is rather
straightforward, the order of refinement coincides with the



direction of the shift (see Figure 4):

ODPDR.HORIZONTALSHIFT(M, ∆̄, ρ̄, P , p, N )
Input: M is a Delaunay mesh computed in previous phase(s)

X is a planar straight line graph which defines the domain Ω
∆̄ and ρ̄ are desired upper bounds on triangle area

and circumradius-to-shortest edge ratio, respectively
P is the total number of processors (

√
P is integer)

p is the index of the current processor, 1 ≤ p ≤ P

N is the total number of subdomains (N/
√

P is integer)
Output: a (partially) refined Delaunay mesh Mp which conforms to X

and respects (in certain regions) ∆̄ and ρ̄
0 Calculate row(p) and column(p) of the current processor

// 1 ≤ row(i), column(i) ≤ √
P , 1 ≤ i ≤ P

1 for m = 1, . . . , N
2 for n = 1, . . . , N
3 Load block p of subdomain (m − 1) × N + n as local

mesh Mp

4 if n �= 0 and col(p) = 1
5 Receive cells {ci,1 | 1 ≤ i ≤ 4} of local mesh Mp

6 endif
7 Mp ← PDRrefinement(Mp, ∆̄, ρ̄, P , p)
8 Mp ← PDRshifts(Mp, ∆̄, ρ̄, P , p)
9 if col(p) =

√
P and n �= N

10 Send cells {ci,4 | 1 ≤ i ≤ 4}
to processor in (row(p), 1)

11 endif
12 Store local mesh Mp as block p of subdomain

(m − 1) × N + n
13 endfor
14 endfor
15 return Mp

The diagonal shift is more complex, because the corner
cell shifts both horizontally and vertically and both groups
of side cells shift into their respective directions (see Fig-
ure 4):

ODPDR.DIAGONALSHIFT(M, ∆̄, ρ̄, P , p, N )
Input: same as in ODPDR.HorizontalShift
Output: a (partially) refined Delaunay mesh Mp which conforms to X

0 Calculate row(p) and column(p) of the current processor
// 1 ≤ row(i), column(i) ≤ √

P , 1 ≤ i ≤ P
1 for m = 1, . . . , N
2 for n = 1, . . . , N
3 Load block p of subdomain (m − 1) × N + n as local

mesh Mp

4 if n �= 0 and col(p) = 1
5 Receive cells {ci,1 | 1 ≤ i ≤ 3} of local mesh Mp

6 endif
7 Mp ← PDRrefinement(Mp, ∆̄, ρ̄, P , p)
8 Mp ← PDRshifts(Mp, ∆̄, ρ̄, P , p)
9 if col(p) =

√
P and n �= N

10 Send cells {ci,4 | 1 ≤ i ≤ 3} to processor in
(row(p), 1)

11 endif
12 if row(p) =

√
P and m �= N

13 Send cells {c4,i | 1 ≤ i ≤ 3} to processor in
(1, col(p))

14 endif
15 if p = P and n �= N and m �= N

16 Send cell c4,4 to processor in (1, 1)
17 endif
18 if row(p) = 1 and m < N
19 Receive cells {b1,i | 1 ≤ i ≤ 3} of local buffer B
20 Overwrite cells {c1,i | 1 ≤ i ≤ 3} of block p in

in subdomain m × N + n with the
content of B

21 endif
22 if n < N and m < N
23 Receive cell b1,1 of local buffer B
24 Overwrite cell c1,1 of block p

in subdomain m × N + n + 1 with the
content of B

25 endif
26 Store local mesh Mp as block p of subdomain

(m − 1) × N + n
27 endfor
28 endfor
29 return Mp

5. Out-of-core Hybrid Memory PDR

Our experimental study showed that ODPDR method
performs best when used on distributed memory multipro-
cessors with single processor per node (see section 6). How-
ever, single-processor nodes are rather uncommon today;
therefore, to take advantage of k-way SMP machines we
designed and implemented the Out-of-core Hybrid memory
PDR (OHPDR).

We made the same design assumptions as in the case of
the ODPDR, additionally, processors of the same node have
equal access time to its local disk.

The mesh is stored on disks as a collection of subdo-
mains generated from the block decomposition (using the
auxiliary lattice). Part of the code responsible for meshing
is taken from the OSPDR, but the assignment of cells to pro-
cessors is different. We use an interleaving partition similar
to the one used in the ODPDR (see Figure 3, right). The
mesh is divided into N2 subdomains, where N is a number
related to the size of the mesh and the amount of available
RAM. Each subdomain is then subdivided into ppn × K
blocks, where K is the number of SMP nodes and ppn is
the number of processors per node. The value of N is cho-
sen in the same way we chose the number of subdomains
for the ODPDR method.

The OHPDR also (as the ODPDR) uses the same two
levels of data movements. However, a shift can be either
shared (between processors of an SMP) or distributed, over
the network (between nodes). Similarly, there are two dis-
tinct types of top-level shifts: horizontal/vertical and diago-
nal. Due to the limited space, we will only focus on the hor-
izontal shift to the right and the diagonal shift to the right
and down (the rest is done by analogy).

A top-level horizontal shift is performed in the following
steps (see Figure 4):



OHPDR.HORIZONTALSHIFT(M, ∆̄, ρ̄, K, ppn, p, N )
Input: ppn is the number of processors per node (the same number of

processors on all nodes)
K is the number of nodes (we assume

√
K ∗ ppn is integer and,

for simplicity of the presentation, K = ppn)
p is the index of the current processor, 1 ≤ p ≤ ppn × K
M, X , ∆̄, ρ̄ and N are the same as in ODPDR.HorizontalShift

Output: a (partially) refined Delaunay mesh Mp which conforms to X
and respects (in certain regions) ∆̄ and ρ̄

0 Calculate node(p) and proc(p) of the current processor
// 1 ≤ node(i) ≤ K, 1 ≤ proc(i) ≤ ppn, 1 ≤ i ≤ ppn × K

1 for m = 1, . . . , N
2 for n = 1, . . . , N
3 Load block p of subdomain (m − 1) × N + n as local

mesh Mp

4 if n �= 0 and proc(p) = 1
5 Read cells {ci,1 | 1 ≤ i ≤ 4} of local mesh Mp

from shared-memory buffer
6 endif
7 Mp ← SPDRrefinement(Mp, ∆̄, ρ̄, ppn, K, p)
8 Mp ← SPDRshifts(Mp, ∆̄, ρ̄, ppn, K p)
9 if proc(p) = ppn and n �= N

10 Write cells {ci,4 | 1 ≤ i ≤ 4}
into shared-memory buffer

11 endif
12 Store local mesh Mp as block p of subdomain

(m − 1) × N + n
13 endfor
14 endfor
15 return Mp

The top-level diagonal shift to the right and down is per-
formed in the following steps (see Figure 4):

OHPDR.DIAGONALSHIFT(M, ∆̄, ρ̄, K, ppn, p, N )
Input: same as in OHPDR.HorizontalShift
Output: a (partially) refined Delaunay mesh Mp which conforms to X

0 Calculate node(p) and proc(p) of the current processor
// 1 ≤ node(i) ≤ K, 1 ≤ proc(i) ≤ ppn, 1 ≤ i ≤ ppn × K

1 for m = 1, . . . , N
2 for n = 1, . . . , N
3 Load block p of subdomain (m − 1) × N + n as local

mesh Mp

4 if n �= 0 and proc(p) = 1
5 Read cells {ci,1 | 1 ≤ i ≤ 3} of local mesh Mp

from shared-memory buffer
6 endif
7 Mp ← SPDRrefinement(Mp, ∆̄, ρ̄, ppn, K, p)
8 Mp ← SPDRshifts(Mp, ∆̄, ρ̄, ppn, K, p)
9 if proc(p) = ppn and n �= N

10 Write cells {ci,4 | 1 ≤ i ≤ 3} into shared-memory
buffer

11 endif
12 if node(p) = K and m �= N
13 Send cells {c4,i | 1 ≤ i ≤ 3} to node node(p)
14 endif
15 if proc(p) = ppn and node(p) = K and n �= N and

m �= N
16 Send cell c4,4 to node 1
17 endif
18 if node(p) = 1 and m < N

19 Receive cells {b1,i | 1 ≤ i ≤ 3} of local buffer B
20 Overwrite cells {c1,i | 1 ≤ i ≤ 3} of block p in

in subdomain m × N + n with the content of B
21 endif
22 if n < N and m < N
23 Receive cell b1,1 of local buffer B
24 Overwrite cell c1,1 of block p

in subdomain m × N + n + 1 with
the content of B

25 endif
26 Store local mesh Mp as block p of subdomain

(m − 1) × N + n
27 endfor
28 endfor
29 return Mp

6. Performance Evaluation

The evaluation of the OSPDR, ODPDR and OHPDR
algorithms was performed on SciClone cluster. We used
4-way SMP nodes of subcluster “Hurricane” (4 quad-cpu
Sun Enterprise 420R servers @ 450 MHz w/ 4 GB mem-
ory and 18.2 GB local disk), 2-way SMP nodes of subclus-
ter “Twister” (32 dual-cpu Sun Fire 280R servers @ 900
MHz w/ 2 GB memory and 72.8 GB local disk) and single-
processor nodes of subcluster “Whirlwind” (64 single-cpu
Sun Fire V120 servers @ 650 MHz w/ 1 GB memory and
36.4 GB local disk). All algorithms are independent of
the geometry of the domain, however, for our performance
evaluation we used a square geometry to eliminate other pa-
rameters like work load imbalance. We also tested it with a
mesh of cross section of a pipe model that is part rocket fuel
system (see Figure 1, left). This test geometry shows that
the impact of load imbalances is much more severe to the
in-core PDR algorithms compared to its OoC counterparts
we present here.

In order to compare the performance of the in-core and
OoC PDR methods which run on different configurations,
we introduce a notion of normalized speed. This new mea-
sure computes the number of elements generated by a sin-
gle processor over a unit time period, and it is given by
V = N

T×P , N is the number of elements generated, P is
the number of processors in the configuration and T is the
total execution time.

Table 1 shows the performance of all three out-of-core
methods on a single 4-way SMP node from the “Hurricane”
subcluster. The PDR performance is also included for com-
parison. However, the PDR has to use 9 and 16 processors,
respectively for the second and the third problems since they
would not fit in the aggregate memory of fewer processors.
As expected OSPDR and OHPDR show the best perfor-
mance (not including the PDR). The ODPDR does not take
advantage of shared memory and thus is slower. These data

http://www.compsci.wm.edu/SciClone/index.html.



suggest that the OHPDR method is about 5% slower than
its counterpart in-core PDR method for the mesh sizes that
fit completely in the core of the CoWs.

Table 1. Parallel Delaunay refinement for a
mesh of a unit square using the Hurricane
subcluster. The OSPDR, the ODPDR and the
OHPDR use 4 processors; the PDR uses 4, 9
and 16 processors.

Mesh size, PDR OSPDR ODPDR OHPDR
# elements normalized speed
×106 (103 triangles per sec per proc)
23.8 12.22 5.95 5.31 5.54
58.8 13.33 8.89 7.94 8.77
109.3 12.35 11.32 10.38 11.68
175.4 n/a 10.19 9.31 9.96

Table 2 shows the performance of distributed memory
out-of-core PDR methods along with the in-core PDR using
up to 121 processors. The unit square is used as a test case.
The OHPDR is tested on two slightly different configura-
tions: (1) using 16 nodes with a single processor per node,
listed as OHPDR and (2) using 8 nodes with two processors
per node, listed as OHPDR2. The OSPDR being designed
solely for shared memory cannot run on these configura-
tions.

Table 2. Parallel Delaunay refinement for the
unit square using the Twister and Whirlwind
subclusters. The ODPDR and the OHPDR
use 16 processors of Twister (16 nodes, 1
CPU per node); the OHPDR2 uses 16 proces-
sors of Twister (8 nodes, 2 CPUs per node);
the PDR uses up to 121 processors.

Mesh size, PDR ODPDR OHPDR OHPDR2
# elements normalized speed
×106 (103 triangles per sec per processor)
109.3 23.24 13.06 13.01 13.91
175.4 23.78 12.17 12.22 12.69
255.0 24.01 12.06 12.25 12.4
352.6 24.23 12.01 11.9 12.43
470.7 25.1 12.3 12.24 12.68
587.8 24.6 13.02 13.12 13.13
738.9 24.63 12.92 13.02 13.38
873.5 24.55 13.1 13.06 13.5

On SMP nodes the OHPDR (listed as OHPDR2) per-
forms slightly better. This is expected since a substantial
part of communication is done inside the SMP node us-
ing shared memory as opposed to ODPDR where all data

The total number of nodes in the “Hurricane” subcluster is 16 and it is
not possible to generate in-core meshes larger than 109.4 million triangles.

transfers happens over network. The normalized speed of
the parallel OoC methods is approximately constant for all
large problem sizes we ran. This suggests that the parallel
OoC methods scale very well with respect to the problem
size.

The total execution time for about 0.9 billion elements
is a little over one hour (one hour and seven minutes) us-
ing parallel OoC methods and 16 processors. However the
wait-in-queue delays for parallel jobs with more than 100
processors —they are required to generate the same size
mesh using the in-core PDR— in our cluster is on average
about five hours. While on the same cluster the waiting time
for 16 processors is less than half an hour. This makes the
OHPDR2 response time 3.3 times shorter than the response
time of the in-core PDR, for mesh sizes close to a billion
elements.

Table 3. Parallel Delaunay refinement for a
mesh of the pipe model using the Twister
and Whirlwind subclusters. The ODPDR and
the OHPDR use 16 processors of Twister
(8 nodes, 2 CPUs per node); the PDR uses
varying number of processors.

Mesh size, PDR ODPDR OHPDR
# elements normalized speed
×106 (103 triangles per sec per proc)
58.3 16.12 9.42 9.96
91.1 15.18 8.42 8.84

131.2 14.29 8.31 8.32
178.6 14.35 8.01 8.39
233.3 13.3 8.31 8.33
295.3 14.08 8.81 8.89
364.6 15.72 8.73 8.83
441.1 17.2 9.09 9.46

Table 3 shows the performance of distributed and shared
memory methods along with the PDR on large configura-
tions for an irregular geometry, the pipe model. The uni-
form block data decomposition we used for the pipe model
results in an uneven distribution of work to processors.
This load imbalance reduces the speed for both the in-core
method (by 64%) and the OoC method (by 26%). However,
in the case of OoC methods, at every point of time pro-
cessors refine only a portion of over-decomposed [1] mesh,
with all processor working in close proximity of each other.
As a result the workload is implicitly balanced because by
far all processors have to perform the same amount of com-
putation.

7. Summary

We presented two OoC methods for parallel guaranteed
quality Delaunay mesh generation. First, the distributed



memory PDR method which extends the maximum size of
the meshes we can generate compared to its counterpart
shared memory OoC PDR methods [13]. Second, a com-
bination of the OoC shared and distributed memory PDR
method which is efficient for CoWs with k-way SMP nodes.
The OoC methods are cost-effective (in terms of response
time). The total wall-clock time including wait-in-queue
delays and total execution time for the OoC methods is 3.3
times shorter than the total wall-clock time for the in-core
generation of the same meshes using more than one hundred
processors. Our best out-of-core method is only about 5%
slower than its counterpart in-core method for mesh sizes
that fit completely in the core of the CoWs. This is a modest
performance penalty for savings of many hours in response
time and power consumption. Moreover, both OoC codes
use the best publicly available off-the-shelf sequential De-
launay mesh generator and thus leverage from on-going im-
provements in terms of quality, speed, and functionality of
the sequential in-core Delaunay mesh generation methods.

Although the data we presented are from 2D geome-
tries, the contribution of this paper is still important for two
reasons: (1) the memory management for 3D remains the
same and thus the overheads for the 3D geometries will
be much smaller since the 3D sequential mesher (Pyra-
mid [19]) is more computationally intensive than its 2D
counterpart (Triangle) which is the in-core mesh generation
kernel we use and (2) 2D mesh generation is still important
for some 3D simulations like direct numerical simulations
of turbulence in cylinder flows (“drag” crisis simulations)
with very large Reynolds numbers [9] and coastal ocean
modeling for predicting storm surge and beach erosion in
real-time [23]. In both cases, 2D mesh generation is taking
place in the xy-plane and it is replicated in the z-direction in
the case of cylinder flows or using bathemetric contours in
the case of coastal ocean modeling applications. With the
increase of the Reynolds number, the size of the mesh (in
drag crisis simulations) grows in the order of Re9/4 [12],
which motivates the use of parallel out-of-core mesh gen-
eration algorithms. Similarly, we have seen the difference
in damages few inches (in the z-direction) made in two re-
cent hurricanes in the Gulf Coast, this suggests very high
resolution (and thus generation of very large meshes) for
predicting storm surge and beach erosion.

Our future work is directed toward improving the
performance of disk memory using commercial off-the-
shelf databases, a highly efficient technology for out-of-
core query-based computations like OoC mesh genera-
tion. Finally, we are developing an out-of-core algorithm-
independent framework using the percolation model of the
HTMT Petaflops design [11], for relatively easy conversion
of existing (in-core) parallel mesh generation codes to out-
of-core ones.
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Figure 4. Out-of-core schemes of top-level shifts for ODPDR (4 processors, 9 subdomains, distributed memory and disk storage)
and OHPDR (2 nodes, 2 processors with shared memory per node, 9 subdomains, disk storage).
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