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Abstract

The underlying assumption of Divisible Load Scheduling
is that the processors composing the network are obedient,
i.e., they do not “cheat” the algorithm. This assumption
is unrealistic if the processors are owned by autonomous,
self-interested organizations that have no a priori motiva-
tion for cooperation and they will manipulate the algorithm
if it is beneficial to do so. In this paper we propose the
strategyproof mechanism DLS-TL for scheduling divisible
loads in tree networks. Our proposal augments Divisible
Load Theory (DLT) with incentives such that it is beneficial
for processors to report their true processing capacity and
compute their assignments at full processing capacity. Ad-
ditionally, incentives are provided for processors to report
algorithm deviants. Deviants are penalized which abates
the processors’ willingness to deviate.

1. Introduction
One of the most studied topics in distributed systems is

scheduling. Poor scheduling decisions lead to inefficien-
cies, underutilized resources, and suboptimal performance.
In this paper we focus on the problem of scheduling di-
visible loads. Divisible load problems are characterized by
data parallelism. These problems have large data sets where
every element within the set requires an identical type of
processing. The set can be partitioned into any number of
fractions where each fraction requires scheduling. These
problems commonly arise in many domains including im-
age processing [15], databases [8], linear algebra [9], visu-
alization [4], and multimedia broadcasting [5].

Scheduling divisible loads is the subject of Divisible
Load Theory (DLT) which was extensively studied in [6]
where influences such as network architectures (e.g., lin-
ear, bus, tree), task arrangements, and optimality condi-
tions are explored. The underlying assumption of DLT
is that the processors are obedient, i.e., under no circum-

stances will the processors “cheat”. In the real world, the
assumption is unrealistic as the nodes may be owned by
autonomous, self-interested entities that have no a priori
motivation for cooperation and they are tempted to manip-
ulate the algorithms in hope of increased benefits. In this
type of environment, the processors are properly modeled as
strategic agents. New protocols for DLT must account for
this self-interested behavior. Mechanism design theory [21]
— a field of economics that has recently garnered interest
in computer science — provides the framework for solv-
ing such problems involving self-interested parties. The
theory addresses incentive compatibility: rational agents
(self-interested, utility-maximizing) are provided incentives
which induce a behavior that maximizes the social welfare.
Of interest are the strategyproof mechanisms. Each partici-
pant in a mechanism is characterized by private parameters.
A strategyproof mechanism will result in a participant maxi-
mizing its utility if it truthfully reports its private parameters
and follows the specified algorithm.

In our previous work [13], we showed how DLT can be
augmented with incentives. We designed the strategyproof
DLS-BL mechanism for scheduling divisible loads in bus
networks. DLS-BL provides incentives to the processors
to participate and to report their processing capacity to the
centralized, trusted scheduler. The agents maximize their
welfare by truthful reporting their values to the mechanism
and executing their assignments as reported.

In this paper we look to augment DLT with incentives
for tree networks, where the network comprises strategic
processors. In this model, the load is distributed from the
root of the tree downward through intermediate processors
until all processors are assigned load. We propose the strat-
egyproof mechanism DLS-TL to optimally distribute load
among the processors in a tree network. The mechanism
provides incentives to the processors to participate and re-
port their full processing capacity. The DLS-TL is an ex-
ample of autonomous node mechanism, where the agents
(i.e., the processors) have control over both the inputs to
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the algorithm and the algorithm itself. The self-interested
processors will implement a different algorithm if it is ben-
eficial to do such. To combat this scenario, processors are
provided incentives to report algorithm deviants. Penalties
abate processors’ willingness to deviate.

Related work. The divisible load scheduling problem was
studied extensively in recent years resulting in a cohe-
sive theory called Divisible Load Theory (DLT). A refer-
ence book on DLT is [6]. Two recent surveys on DLT
are [7] and [22]. This theory has been used for schedul-
ing loads on heterogeneous distributed systems in the con-
text of different applications such as image processing [15],
databases [8], linear algebra [9], and multimedia broadcast-
ing [5]. Scheduling divisible loads in grids has been inves-
tigated in [25]. New results and open research problems
in DLT are presented in [3]. All these works assumed that
the participants in the load scheduling algorithms are obedi-
ent and follow the algorithm. Recently, several researchers
considered the mechanism design theory to solve several
computational problems that involve self-interested partici-
pants. These problems include resource allocation and task
scheduling [19, 23, 24], routing [10] and multicast trans-
mission [11]. In their seminal paper, Nisan and Ronen [20]
considered for the first time the mechanism design prob-
lem in a computational setting. They proposed and studied
a VCG (Vickrey-Clarke-Groves) type mechanism for the
shortest path in graphs where edges belong to self-interested
agents. They also provided a mechanism for solving the
task scheduling on unrelated machines problem. A general
framework for designing strategyproof mechanisms for one
parameter agent was proposed by Archer and Tardos [1].
They developed a general method to design strategyproof
mechanisms for optimization problems that have general
objective functions and restricted form for valuations. In a
subsequent paper [2] the same authors investigated the fru-
gality of shortest path mechanisms. Grosu and Chronopou-
los [14] derived a strategyproof mechanism that gives the
overall optimal solution for the static load balancing prob-
lem in distributed systems. A strategyproof mechanism
with verification combining incentives and DLT was pro-
posed by Grosu and Carroll [13]. The results and the chal-
lenges of designing distributed mechanisms are surveyed
in [12]. The strategyproof computing paradigm proposed
in [17] considers the self-interest and incentives of partici-
pants in distributed computing systems. Ng et al. [18] pro-
posed a strategyproof system for dynamic resource alloca-
tion in data staging. Mitchell and Teague [16] extended the
distributed mechanism in [11] devising a new model where
the agents themselves implement the mechanism, thus al-
lowing them to deviate from the algorithm.

Our contributions. The main contribution of this paper is
the design of a strategyproof mechanism with verification

for scheduling divisible loads in tree networks assuming a
linear cost model for the processors. We define the mecha-
nism and prove its properties.

Organization. The paper is structured as follows. In Sec-
tion 2 we present a description of the divisible load schedul-
ing problem in the context of tree networks. In Section 3 we
discuss the mechanism design foundations. In Section 4 we
present our proposed mechanism. In Section 5 we prove the
mechanism’s properties. In Section 6 we draw conclusions
and present future directions.

2. Divisible Load Scheduling Problem

We first consider a distributed system comprising m + 1
processors interconnected in a single-level tree network.
The network is composed of a set of terminal processors,
(P1, . . . ,Pm), and their parent, P0. Processor Pi (i = 0, . . . ,m)
is characterized by wi, which is the time it takes to pro-
cess a unit load. The processor is assigned αi units of load
and it takes time αiwi to compute the assignment. This
corresponds to a linear cost model. The parent P0 is the
load-originating processor that is responsible for distribut-
ing the load to the children. We assume that the proces-
sors have front-ends that allow simultaneous communica-
tion and processing and that the root processor can com-
municate with only one terminal processor at a given time
(i.e., we assume the one-port model). Processor P0 trans-
mits α j ( j = 1, . . . ,m) units of load to child Pj in time α jz j,
where z j is the time it takes to communicate a unit load from
P0 to child Pj. We denote by α = (α0, . . . ,αm) the vector
of load allocations. Processor Pi finishes its assignment in
time Ti(α), which is the total time to receive (if i �= 0) and
process its assignment. The execution on a single-level tree
is depicted in Figure 1.

The scheduling problem denoted as SINGLE-LEVEL
TREE-LINEAR is to determine the optimal load alloca-
tion α which minimizes the total execution time T (α) =
max(T0(α), . . . ,Tm(α)). The finish time Ti(α) of processor
Pi is

Ti(α) =

⎧⎪⎨
⎪⎩

0 if αi = 0

αiwi if i = 0 and αi > 0

∑i
j=1 α jz j +αiwi if i �= 0 and αi > 0.

(1)

The SINGLE-LEVEL TREE-LINEAR problem can be for-
malized as

min
α

T (α) (2)

subject to constraints: (i) αi ≥ 0, i = 0, . . . ,m, and (ii)
∑m

i=0 αi = 1
The following theorems proved in [6] characterize the

optimal solution.
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Figure 1. Execution on a m + 1 single-level
tree.

Theorem 2.1. (Sequencing) An optimal solution to the
SINGLE-LEVEL TREE-LINEAR problem is obtained
when z1 ≤ z2 ≤ . . . ≤ zm.

Theorem 2.2. (Participation) The optimal solution for
the SINGLE-LEVEL TREE-LINEAR problem is obtained
when all processors participate and they all finish executing
their assigned load at the same time, i.e., T0(α) = T1(α) =
. . . = Tm(α).

From Figure 1, we derive the following recursive equa-
tions for the optimal load allocation

α0w0 = α1z1 +α1w1 (3)

α jw j = α j+1z j+1 +α j+1w j+1, j = 1, . . . ,m−1. (4)

We can reduce the single-level tree to a single processor
with equivalent processing capacity. Figure 2 illustrates the
reduction. We compute the equivalent processing capacity
weq by

weq = max(T0(α), . . . ,Tm(α)). (5)

Time Ti is the time Pi takes to complete its portion of the
unit load. Since ∑m

j=0 α j = 1, the processing capacity of the
tree is equal to the finish time of the slowest processor. If
α is optimal (i.e., α resulted from (3) and (4)), then weq

reduces to

weq = Ti(α), i = 0, . . . ,m. (6)

w0

w1

z1

· · · wm

zm ⇐⇒ weq

Figure 2. The reduction of a single-level tree
to a single equivalent processor

The subsequent algorithm solves the SINGLE-LEVEL
TREE-LINEAR problem.

Algorithm 2.1. (SINGLE-LEVEL TREE-LINEAR)

Input: Processing capacities w0, . . . ,wm;
Link capacities z1, . . . ,zm such that z1 ≤ . . . ≤ zm;

Output: Load allocations α0, . . . ,αm;
Equivalent processing capacity weq;
1. Compute α0, . . . ,αm by using equations

(3) and (4)
2. Compute weq by using equation (6)

The algorithm is executed by P0 when a new load needs
processing. In order to compute α and weq, processor Pi

(i = 1, . . .m) reports wi to P0. It is assumed that z1,z2, . . . ,zm

are known to P0.
We now consider the problem of scheduling divisible

loads in multi-level tree networks [6]. Figure 3 depicts
an execution on a multi-level tree distributed system com-
posed of eight processors. Notice that after non-terminal
processors receive load, they simultaneously begin comput-
ing a portion and transmitting the remainder of it to its chil-
dren. A tree network comprises processor set (P̄0, . . . , P̄p)
(with processing capacities w0, . . . ,wp and link capacities
z1, . . . ,zp), where P̄0 is the root. In the rest of the paper
we denote by Si the single-level subtree with root P̄i. The
load is distributed from top to bottom, passing through each
level. The TREE-LINEAR scheduling is defined similarly
as SINGLE-LEVEL TREE-LINEAR where we desire to
optimally distribute load across the tree such that we mini-
mize the total execution time. The following theorem char-
acterizes the optimal allocations for trees.

Theorem 2.3. (Reduction) The optimal solution is obtained
by traversing tree T from bottom to top, replacing single-
level subtrees with single equivalent processors until T is
reduced to one processor. For single-level subtree S j, we
compute load distribution α j and w j

eq by SINGLE-LEVEL
TREE-LINEAR algorithm and replace S j with a processor
with equivalent processing capacity w j

eq.
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Figure 3. Execution on a 8-processor tree net-
work

Proof. (Sketch) SINGLE-LEVEL TREE-LINEAR algo-
rithm computes the optimal load distribution in a single-
level tree and reduces it to a single processor with process-
ing capacity weq. Assume that we have a single-level tree
Si. Let tree Si comprise processor set (Pi

0, . . . ,P
i
mi

) (with
link capacities zi

1 ≤ . . . ≤ zi
mi

), where Pi
0 = P̄i. Let pro-

cessor Pi
j ( j = 1, . . . ,mi) be an equivalent processor that

was defined using SINGLE-LEVEL TREE-LINEAR and
thus is optimal. SINGLE-LEVEL TREE-LINEAR algo-
rithm computes the optimal load distribution for processors
(Pi

0, . . . ,P
i
mi

). Since the load distribution for Si is optimal
and that the load distribution for the processors composing
the subtree associated with equivalent processor Pi

j is op-
timal, then the load distribution for the processors in the
subtree with root P̄i is optimal.

Theorem 2.4. (Tree Participation) The optimal solution for
the TREE-LINEAR problem is obtained when all proces-
sors participate and they all finish executing their assigned
load at the same time.

Proof. (Sketch) The theorem follows directly from reduc-

tion (Theorem 2.3). The SINGLE-LEVEL TREE-LINEAR
algorithm results in all processors participating. Therefore,
all processors in the multilevel tree network will participate
when solving the TREE-LINEAR problem. For proving
that all processors finish computing at the same time, as-
sume that we have a single-level tree comprising of proces-
sor set (P j

0 , . . . ,P j
m j) and that we have computed the optimal

load distribution by the SINGLE-LEVEL TREE-LINEAR
algorithm. All the processors finish at time Tj. Let proces-
sor P j

i (i = 1, . . . ,m j) be an equivalent processor with root
P̄i. Since equivalent processor P j

i completes at time Tj, the
processors in single-level tree Si (the subtree rooted at P̄i)
must complete at time Tj. We continue until the reductions
are completely undone, thus proving that all processors in
the subtree with root P̄j stop at time Tj.

The following algorithm solves the TREE-LINEAR
problem.

Algorithm 2.2. (TREE-LINEAR)

Input: Processor capacities w0, . . . ,wp;
Link capacities z1, . . . ,zp;

Output: Load allocations (α0
0, . . . ,α

0
m0

), . . . ,(αp
0 , . . . ,αp

mp),
where (αi

0, . . . ,α
i
mi

) is the allocation for
single-level tree Si;
1. for i = 0, . . . , p; do
2. αi

0 ← 1
3. until a single processor remains; do
4. Find a single-level subtree Si = (Pi

0, . . . ,P
i
mi

),
where Pi

0 = P̄i

5. αi
0, . . . ,α

i
mi

;wi
eq ←SINGLE-LEVEL

TREE-LINEAR(wi
0, . . . ,w

i
mi

;zi
1, . . . ,z

i
mi

)
6. Replace Si with a single processor with

processor capacity wi
eq

In the above algorithm we set α j
0 = 1 for terminal proces-

sor P̄j, which conveys the fact that P̄j computes all the work
that it receives. Note that α j

0, . . . ,α
j
m j are the load alloca-

tion fractions for single-level tree S j and not for the en-
tire tree T . The root P j

0 distributes load to processor P j
i

(i = 1, . . . ,m j) according to these fractions. Let P̄i be the
root of the subtree which corresponds to equivalent proces-
sor P j

i . Processor P̄j receives γ j fractions of the total work
and sends α j

i fractions to P̄i. Processor P̄i receives γi frac-
tions of the total work given by

γi =

{
1 if i = 0,

γ jα
j
i if i �= 0.

(7)

At the start, the root processor P̄0 is the only processor with
access to load and thus, γ0 = 1. For any other processor
P̄i (i �= 0), its load is dependent on the load received by



its parent. Out of γi fractions of total work, processor P̄i

computes αi
0 fractions of it; thus, it computes αi

0γi fractions
of the total work.

In the above algorithm it is assumed that P̄i reports its
true processing capacity to its parent. When the processors
are owned and operated by disparate, autonomous organiza-
tions that are self-interested and welfare-maximizing, they
will misreport their processing capacity or deviate from the
algorithm in hope of generating increased profits. In the
subsequent sections, we present a mechanism that provides
incentives to the agents to report truthfully and that fine
agents that deviate from the algorithm.

3. Mechanism Design Framework

In this section, we introduce the main concepts of mech-
anism design theory. We limit our discussion to mechanism
design for one parameter agents. Each agent in this mecha-
nism design problem is characterized by private data repre-
sented by a single real value [20]. We define the problem in
the following.

A mechanism design problem for one parameter agents
is characterized by

(i) A finite set L of allowed outputs. The output is a vec-
tor α(w) = (α1(w), . . . ,αm(w)) ∈ L, computed according
to the agents’ bids, w = (w1, . . . ,wm). Here, wi is the bid of
agent i.

(ii) Each agent i (i = 1, . . . ,m) has a privately known
value ti called the true value and a publicly known parame-
ter w̃i ≥ ti called the actual value. The preferences of agent
i are given by a function called valuation Vi(α, w̃).

(iii) Each agent goal is to maximize its utility. The utility
of agent i is Ui(w, w̃) = Qi(w, w̃)+Vi(α(w), w̃), where Qi

is the payment handed by the mechanism to agent i and w̃
is the vector of execution values. The payments are handed
to the agents after the mechanism learns w̃.

(iv) The goal of the mechanism is to select an output α
that optimizes a given cost function g(w,α).

Definition 3.1. (Mechanism with Verification) A mecha-
nism with verification is characterized by two functions.

(i) The output function α(w) = (α1(w), . . . ,αm(w)). The
input to this function is the vector of agents’ bids w =
(w1, . . . ,wm) and returns an output α ∈ L. (ii) The pay-
ment function Q(w, w̃) = (Q1(w, w̃), . . . ,Qm(w, w̃)) where
Qi(w, w̃) is the payment handed by the mechanism to agent
i.

Notation. In the rest of the paper, we denote by w−i the
vector of bids excluding the bid of agent i. The vector w is
represented by (w−i,wi).

The following defines an important property in that an
agent will maximizes its utility when w̃i = wi = ti indepen-
dent of the actions of the other agents.

Definition 3.2. (Strategyproof Mechanism) A mechanism
is called strategyproof if for every agent i of type ti and
for every bids w−i of the other agents, the agent’s utility is
maximized when it declares its real type ti (i.e., truth-telling
is a dominant strategy).

The next property guarantees non-negative utility for
truthful agents. This is important as agents willfully par-
ticipate in hope of profits.

Definition 3.3. (Voluntary Participation Mechanism) We
say that a mechanism satisfies the voluntary participation
condition if Ui((w−i, w̃i) ≥ 0 for every agent i, true value ti,
and other agents’ bids w−i (i.e., truthful agents never incur
a loss).

There are two models for characterizing distributed
mechanisms. They differ in the degree of control that the
agents have. A mechanism is a tamper-proof mechanism
if the agents control the inputs. In these types of mecha-
nism, an agent can only specify its inputs and thus, the only
method of cheating is altering its inputs. A more general
model is the autonomous node model. A mechanism is an
autonomous node mechanism if the agents control the in-
puts and the algorithm. An agent will implement an algo-
rithm different from what is specified if it is beneficial to do
so.

In our model, each processor Pi is characterized by a val-
uation function Vi which in this case is equal to the cost of
processing a given load. A processor Pi wants to maximize
its utility Ui which is the sum of its valuation Vi and the
payment Qi given to it. A processor P̄i is parametrized by
true processing capacity ti. It bids processing capacity wi

to the mechanism; wi may be different than true capacity ti.
It may choose to process its assignment at a different speed
than either its true capacity ti or bid capacity wi. This is its
actual processing capacity w̃i, where w̃i ≥ ti.

4. The Proposed Mechanism
We propose the DLS-TL mechanism for scheduling di-

visible loads in tree networks. The system model comprises
a tree T of p + 1 processors, where the root P̄0 is obedi-
ent and processors P̄1, . . . , P̄p are strategic. Processor P̄0 is
special as it performs functions the ensure mechanism va-
lidity. We assume that the links are obedient and that the
communication protocols are tamper-proof.
Notation. We use the following notations in this section.

• Tree T has processor set (P̄0, . . . , P̄p); processor P̄0

is the root of T . Tree S j is a single-level subtree of
the reduced T with root P j

0 (with processing capacity

w j
0) and leaves (P j

1 , . . . ,P j
m j) (with processing capac-

ities w j
1, . . . ,w

j
m j and link capacities z1 ≤ . . . ≤ zm j ).

Processor P j
0 is an alias for P̄j. Equivalent processor



P j
i (i = 1, . . . ,m j) corresponds to the subtree rooted at

P̄i. Processor P̄k is the parent to processor P̄j.

• Let SKi be the private key of processor P̄i. The secure
digital signature of message m under SKi is sig(m).
The message dsmi(m) = (m,sigi(m)) is the digitally
signed message m under SKi.

The description of DLS-TL mechanism follows. Infor-
mally, we assume the existence of a payment infrastructure
and a public key infrastructure (PKI). We assume that all
processors have a public cryptographic key set and that the
public key from the set is registered with the PKI. Further-
more, we assume a processor recognizes its parent, grand-
parent, siblings, and children and is capable of verifying
their signatures.

A processor P̄i may process its assigned load at a differ-
ent processing rate given by the actual processing capacity,
where w̃i ≥ ti. Thus, processor P̄i may process its assigned
load at a slower rate than its true processing capacity. We
cope with this situation by employing a strategyproof mech-
anism with verification. The goal of a strategyproof mech-
anism with verification is to give incentives to agents such
that it is beneficial for them to report their values and pro-
cess the assigned loads using their full processing capacity.
Each processor P̄i is augmented with a tamper-proof meter
that records w̃i and reports the value as dsm0(w̃i).

DLS-TL Mechanism

Phase I (Computing load allocation - bottom-up) We ap-
ply the TREE-LINEAR algorithm with the follow-
ing modifications to bid transmission. In single-level
subtree S j, processor P j

i transmits its digitally-signed
bid dsmi(w

j
i ) to parent P j

0 . We denote by w j =
(w j

0, . . . ,w
j
m j) the vector of bids and by w j

dsm the vector

of signed bids. Processor P j
0 verifies the authenticity of

the received messages and it will terminate the proto-
col if it receives contradictory messages from source
P j

i . Processor P j
0 submits the evidence to P̄0, which at-

tempts to substantiate the claim. If the claim is true, P j
i

is fined C and P j
0 is rewarded C. If the claim is false, P j

0

is fined C and P j
i is rewarded C. Fine C must be larger

than any potential profits that are attainable by cheat-
ing. If P j

i receives an unverifiable message, the pro-
tocol is terminated and no rewards or fines are issued
as either sender or recipient may have invalidated the
message. We denote by α j = (α j

0, . . . ,α
j
m j) the vector

of load fractions for subtree S j. Processor P j
0 com-

putes α j and w j
eq using the SINGLE-LEVEL TREE-

LINEAR algorithm, and it then transmits dsm j(w
j
eq)

to its parent P̄k. The correctness of the w j
eq will be ver-

ified in Phase II. All load allocations α0, . . . ,αp are

computed in this phase.

Phase II (Computing load allocation - top-down) We com-
pute the allocation γi, which is the fraction of the total
load that processor P̄i receives. We recursively undue
the transformations performed in Phase I. The root P j

0
sends message

Gi = (dsmk(γ j),dsm j(γi),

dsmk(w j
eq),dsm j(w

j
0, . . . ,w

j
m))

(8)

to child P j
i , where P̄k is the parent of P̄j, γ j is the frac-

tion of total load transmitted to P̄j from P̄k, and γi is
the fraction of total load transmitted to P̄i from P̄j as
computed by (7). Processor P j

i verifies the various sig-
natures and computations in Gi. Specifically, it verifies
that (w j

0, . . . ,w
j
m) results in w j

eq and that γi = α j
i γ j. Pro-

cessor P̄i terminates the protocol if it cannot validate
the computations, receives contradictory messages, or
cannot validate the signatures. In the first two scenar-
ios, P̄i submits a complaint to P̄0. If the complaint is
confirmed, P̄j is fined C and P̄i is rewarded C. If the
complaint is debunked, P̄i is fined C and P̄j is rewarded
C. If a signature is unverifiable, all parities experience
zero utility.

Phase III (Load distribution and execution) The load is
distributed to the processors from root to leaves. Be-
ginning with processor P̄0, processor P j

0 distributes α j
i

fractions of load to P j
i ; processor P j

0 computes α j
0 frac-

tions itself. A processor begins computing its load
as soon as it receives its entire assignment. Proces-
sor P j

0 may attempt to increase its utility by decreas-

ing its fraction (α̃ j
0 < α j

0) and increasing its children

fractions (α̃ j
i > α j

i ) such that ∑m
l=0 α̃ j

l = 1. In this sce-
nario, γ̃i > γi, where γ̃i is the actual fraction of total
work transmitted to processor P̄i. At this point, pro-
cessor P̄i has no choice but to accept the greater load.
When computing completes, processor P̄i notifies P̄0

about γ̃i > γi. We assume that the data is embedded
with a device 1 Li such that Li permits processor P̄i to
prove it has received γi ≤ γ̃i fractions of load, i.e., a
processor cannot show more work than it has received.
Processor P̄0 substantiates the claim by verifying that
γ̃i > γi and, if the claim is false, P̄i is fined C. If the
claim is confirmed, processor P̄0 begins traversing the
predecessors of P̄i. Let processors P̄x and P̄y be prede-
cessors of P̄i such that P̄x is a child of P̄y; furthermore,

1An example of a simple device Li would be preparing the data by
dividing it into equal-sized blocks and appending a unique, random iden-
tifier to each block. The identifier space must be large enough so that the
probability of an agent successfully guessing a valid identifier is small.
Submitting the identifiers would permit P̄i to show the amount of data it
received.



let P̄x be the root of equivalent processor Py
x . Processor

P̄0 fines C to all processors P̄y where γ̃x > αy
xγ̃y. The

fines are pooled and rewarded to P̄i. A processor may
be fined multiple times depending on the number of
processors impacted by its transgression.

Phase IV (Payment computation) The payment for pro-
cessor P̄i (with parent P̄j) is computed by P̄i. In
the following, α(wi) = (αi

0, . . . ,α
i
mi

) is the alloca-
tions for single-level subtree Si computed from bids
wi = (wi

0, . . . ,w
i
mi

); w j = (w j
0, . . . ,w

j
m j) are the bids for

S j; α̃i
0 is the actual load allocation for P̄i; w̃i is the ac-

tual processing capacity for P̄i; and γ̃i is the actual frac-
tion of total work received by P̄i. The goal of processor
P̄i is to maximize its utility. The utility of P̄i is

Ui(α(wi),w j, α̃i
0, w̃i, γ̃i) =Vi(α̃i

0, w̃i, γ̃i)+

Qi(α(wi),w j, w̃i, γ̃i),
(9)

where Vi is the valuation function and Qi is the pay-
ment function. The valuation function Vi is

Vi(α̃i
0, w̃i, γ̃i) = −γ̃iα̃i

0w̃i (10)

The payment function Qi is

Qi(α(wi),w j, w̃i, γ̃i) ={
0 if γ̃i = 0,

Ci(α(wi), w̃i, γ̃i)+Bi(α(wi),w j, w̃i) if γ̃i > 0,

(11)

where

Ci(α(wi), w̃i, γ̃i) = γ̃iαi
0w̃i (12)

is the compensation function and

Bi(α(wi),w j, w̃i) =w j
eq(α(w j

−i),w
j
−i)−

w j
eq(α((w j

−i,w
j
i )),(w

j
−i, ŵi))

(13)

is the work bonus function. The function
w j

eq(α(w j
−i),w

j
−i) is the optimal equivalent pro-

cessing capacity of single-level subtree S j without
subtree Si. The function w j

eq(α((w j
−i,w

j
i )),(w

j
−i, ŵi))

is the equivalent processing capacity adjusted for the
actual processing capacity of P̄i, where

ŵi =

⎧⎪⎨
⎪⎩

w̃i if P̄i is a terminal processor in tree T ,

w̃iαi
0 if w̃i ≥ wi,

w j
i if w̃i < wi.

(14)

In the above, we adjust the performance of subtree Si

for the actual performance of processor P̄i. In the event

that P̄i runs slower (w̃i > wi), the equivalent processing
capacity of Si, wi

eq, is dominated by P̄i’s performance;
if P̄i runs faster (w̃i < wi), wi

eq remains unchanged from

w j
i . Processor P̄i saves

Proo fi = (Gi,wi
dsm,dsm0(w̃i),dsmi(γ̃i),Li) (15)

as evidence of correctly computing the payment. It
submits bill Qi to the payment infrastructure. With
probability q (where 0 < q ≤ 1), processor P̄0 requests
Proo fi from P̄i. If Pi fails to provide a valid proof for
Qi, it receives fine C/q.

This concludes the description of the DLS-TL mech-
anism. The mechanism as described above is valid for
selfish-but-agreeable agents but not selfish-and-annoying
agents. A selfish-but-agreeable agent will deviate from the
algorithm only if it strictly improves its welfare, while a
selfish-and-annoying agent will only follow the algorithm
if it is the only action that maximizes its welfare. In the
case of DLS-TL, selfish-and-annoying processors will sub-
vert the mechanism by performing undesirable actions (e.g.,
corrupting data, sending the same data set to multiple chil-
dren, etc.) where their behavior is not constrained by incen-
tives or penalties. If the load is associated with a problem
where the solution can be verified (e.g., searches, factor-
izations), we can easily amend the mechanism to tolerate
selfish-and-annoying processors. We begin by altering (11)
to

Qi(α(wi),w j, w̃i, γ̃i) ={
0 if γ̃i = 0,

Ci(α(wi), w̃i, γ̃i)+Bi(α(wi),w j, w̃i)+S if γ̃i > 0,

(16)

where S = 0 if a solution is not found, and s if a solution
is found. The function S is called the solution bonus. The
bonus s is a small, positive quantity that rewards agents for
following the given algorithm. Selfish-and-annoying agents
will not risk the loss of s; hence; they will not deviate.

5. DLS-TL Properties
In this section we study the properties of the DLS-TL

mechanism. The first property we investigate is strate-
gyproofness. To prove this, we first show that all the pro-
cessors do not have incentives to deviate from the algorithm.
Then we show that if the processors do not deviate (but they
can still execute differently than they bid), then truthful pro-
cessors receive the maximum profit. Combining the two, we
prove that the mechanism is strategyproof.

Lemma 5.1. A selfish-but-agreeable processor will be fined
for deviating from DLS-TL.



Proof. Let processor P̄i be a selfish-but-agreeable agent and
P̄h be a child of P̄i. A selfish-but-agreeable agent will devi-
ate if the action increases its utility. Process P̄i may de-
viate from the protocol by either (i) sending contradictory
messages, (ii) incorrectly computing wi

eq or γh, (iii) decreas-
ing its workload by increasing the workload of its children
(i.e., γ̃h > γh), (iv) requesting a payment greater than Qi,
(v) falsely accusing a processor of cheating. Processor P̄i

will not deviate in other fashions (e.g., corrupt data) because
there is no benefit to do so. To combat deviation, incentives
are provided to processors for monitoring one another. In
case (i), the recipient will report P̄i and obtain reward C;
processor P̄i will be fined C. Fine C is a deterrent as it is
greater than any profit attainable by cheating. In case (ii),
child P̄h will verify the computations in Phase II and will
report P̄i for reward C if the computation cannot be vali-
dated. Again, P̄i is fined C for deviating from the algorithm.
In case (iii), child P̄h receives a reward of at least C for re-
porting P̄i and processor P̄i is penalized C. In case (iv), the
fine C/q (where 0 < q ≤ 1 is the probability of processor
P̄0 requesting a proof) is a deterrent for over billing. The
complete proof for case (iv) can be found in [16]. In case
(v), processor P̄i does not have the evidence to support its
claim. Thus, it will be fined C.

Lemma 5.2. A processor receives a fine only if it has devi-
ated from DLS-TL.

Proof. Processor P̄i is fined for either deviating from the
protocol or another processor P̄j produces contradictory
messages signed by P̄i. In the first case, P̄i clearly deviates
from DLS-TL. In the second case, P̄j sends the messages ei-
ther by successfully forging signatures or by possessing the
private key SKi. We assume that the forging of signatures
is impossible. Processor P̄j obtains SKi either by P̄i sharing
it or by stealing it from P̄i. It is a violation of the mecha-
nism for a second party to possess SKi. Thus, P̄i is fined for
protocol deviation.

Theorem 5.1. (Selfish-but-Agreeable Agent Compliance) A
selfish-but-agreeable processor does not have incentives to
deviate from DLS-TL.

Proof. From Lemma 5.1 and 5.2, a selfish-but-agreeable
processor will be fined for and only for deviating. There-
fore, the processor does not have incentives to deviate from
DLS-TL.

Theorem 5.2. (Selfish-and-Annoying Agent Compliance) A
selfish-and-annoying agent does not have incentives to de-
viate from DLS-TL if the solution bonus function is em-
ployed.

Proof. Let processor P̄i be a selfish-and-annoying agent.
Theorem 5.1 handles the cases in which deviation results

in greater utility, i.e., U ′
i −Ui > 0, where U ′

i is the utility
of a deviating P̄i. Processor P̄i will also deviate if it does
not reduce its utility, i.e., U ′

i −Ui = 0. Such actions include
data corruption and sending the same data to different chil-
dren. These actions reduce the possibility of obtaining a
solution to the given problem and thus, reduce the possibil-
ity of receiving the solution bonus. Processor P̄i is welfare
maximizing and thus, will not choose to do such. There-
fore, processor P̄i does not have incentives to deviate from
DLS-TL.

Lemma 5.3. The mechanism is strategyproof if the proces-
sors do not deviate from the algorithm.

Proof. Assume processor P̄j is the parent of P̄i. The utility
Ui of processor P̄i (i = 1, . . . , p) is

Ui = Vi +Qi

= −γ̃iα̃i
0w̃i + γ̃iαi

0w̃i+

w j
eq(α(w j

−i),w
j
−i)−w j

eq(α((w j
−i,w

j
i )),(w−i, ŵi))

We assume that the processors do not deviate and thus abide
by the computed load allocations; therefore, α̃i

0 = αi
0. The

utility Ui is

Ui = w j
eq(α(w j

−i),w
j
−i)−w j

eq(α((w j
−i,w

j
i )),(w−i, ŵi)).

(17)

We consider two cases:
(i) w̃i = ti, i.e., processor P̄i computes the load at full

capacity. Assume P̄i to be a terminal processor in tree T . If

P̄i bids its true value (w[e]
i = ti), then its utility U [e]

i is

U [e]
i = w j

eq(α(w j
−i),w

j
−i)−w j

eq((α((w j
−i, ti)),(w

j
−i, ti))

= w j
eq(α(w j

−i),w
j
−i)−w j[e]

eq . (18)

If P̄i bids lower (w[l]
i < ti), then its utility U [l]

i is

U [l]
i = w j

eq(α(w j
−i),w−i)−w j

eq(α((w−i,w
[l]
i )),(w−i, ti))

= w j
eq(α(w−i),w−i)−w j[l]

eq . (19)

We want to show U [e]
i ≥ U [l]

i , which reduces to showing

w j[e]
eq ≤ w j[l]

eq . By the SINGLE-LEVEL TREE-LINEAR al-
gorithm, we know that α((w j

−i, ti)) is optimal. By bidding
lower than the true value, P̄i is assigned more load and the
other processors are assigned less load. The greater load
will increase the execution time of P̄i and increase the equiv-

alent processing capacity such that w j[e]
eq ≤ w j[l]

eq . There-

fore, U [e]
i ≥U [l]

i . The other possibility is that P̄i bids higher

(w[h]
i > ti). Its utility U [h]

i is

U [h]
i = w j

eq(α(w j
−i),w

j
−i)−w j

eq(α((w j
−i,w

[h]
i )),(w j

−i, ti))

= w j
eq(α(w j

−i),w
j
−i)−w j[h]

eq . (20)



Similar to above, we want to show U [e]
i ≥ U [h]

i . Bidding
higher than the true value, results in reduced load to P̄i and
increased load to the other processors. Since α((w j

−i, ti)) is

optimal, w j[e]
eq ≤ w j[h]

eq and thus, U [e]
i ≥U [l]

i .
We now assume P̄i to be an interior processor of tree T .

If P̄i bids its true value (w[e]
i = ti), then its utility U [e]

i is

U [e]
i = w j

eq(α(w j
−i),w

j
−i)−

w j
eq(α((w j

−i,w
j[e]
i )),(w−i,w

j[e]
i ))

= w j
eq(α(w j

−i),w
j
−i)−

w j
eq(α((w j

−i,w
j[e]
i )),(w j

−i,α
i[e]
0 ti)) by (5)

= w j
eq(α(w j

−i),w
j
−i)−w j[e]

eq , (21)

where w j[e]
i is the processing capacity of Si. If P̄i bids lower

(w[l]
i < ti), then its utility U [l]

i is

U [l]
i = w j

eq(α(w−i),w
j
−i)−

w j
eq(α((w j

−i,w
j[l]
i )),(w j

−i,α
i[l]
0 w[l]

i ))

= w j
eq(α(w j

−i),w
j
−i)−w j[l]

eq , (22)

where w j[l]
i is the processing capacity of Si and αi[l]

0 is the
fraction of load assigned to P̄i, both of which are computed

with bids (w[l]
i ,wi

1, . . . ,w
i
mi

). We know that α((w j
−i,w

j[e]
i ))

is the optimal allocation by the SINGLE-LEVEL TREE-
LINEAR algorithm. By bidding lower, P̄i is assigned more

load, i.e., αi[l]
0 ≥ αi[e]

0 . The performance of the single-level

subtree is constrained by P̄i. Thus, w j[e]
eq ≤ w j[l]

eq which

proves U [e]
i ≥U [l]

i . Finally, if P̄i bids higher (w[h]
i ≥ ti), then

its utility U [h]
i is

U [h]
i = w j

eq(α(w j
−i),w

j
−i)−w j

eq(α((w j
−i,w

j[h]
i )),(w j

−i,w
j[h]
i ))

= w j
eq(α(w j

−i),w
j
−i)−w j[h]

eq . (23)

where w j[h]
i = α j[h]

0 w[h]
i . We know that α((w−i,w

j[e]
i )) is the

optimal allocation. By bidding higher, greater load is as-
signed to the other processors which reduces the perfor-

mance of subtree S j. This results in w[e]
eq ≤ w[h]

eq ; hence,

U [e]
i ≥U [h]

i .
(ii) w̃i > ti, i.e., processor Pi computes the load slower

than its full processing capacity. A similar argument as in
case (i) applies.

Theorem 5.3. (Strategyproofness) The DLS-TL mecha-
nism is strategyproof.

Proof. Lemma 5.3 states that if no deviation occurs, the
mechanism is strategyproof. Theorems 5.1 and 5.2 state
that processors have no incentives to deviate from the algo-
rithm. Therefore, the mechanism is strategyproof.

Another useful property is voluntary participation.
When a mechanism satisfies the voluntary participation
condition, a truthful processor will never obtain negative
utility (i.e., Ui ≥ 0).

Lemma 5.4. If the processors do not deviate from the pro-
tocol, the DLS-TL mechanism satisfies the voluntary par-
ticipation condition.

Proof. The utility of processor P̄i (with parent P̄j) when it
bids its true value is

Ui = w j
eq(α(w j

−i),w
j
−i)−w j

eq(α((w j
−i,w

j
i )),(w

j
−i, ŵi)).

(24)

If P̄i is an intermediate processor, then w j
i = ŵi = αi

0ti. If
it is a terminal processor, then ŵi = ti. If we let αi

0 = 1
for terminal processor P̄i (as we did in Section 2), then we
simplify (24) to

Ui = w j
eq(α(w j

−i),w
j
−i)−w j

eq(α((w j
−i,α

i
0ti)),(w

j
−i,α

i
0ti)).
(25)

The equivalent processing capacity w j
eq(α(w j

−i),w
j
−i)

is obtained by using all the processors except for
P̄i and its subtree Si. By Theorem 2.4, we know
that the optimal equivalent processing capacity w j

eq

is obtained when all processors participate and
thus, w j

eq(α((w j
−i,α

i
0ti)),(w

j
−i,α

i
0ti)),(w

j
−i,α

i
0ti)) ≤

w j
eq(α(w j

−i),w
j
−i). Therefore, the utility is Ui ≥ 0.

Theorem 5.4. (Voluntary Participation) The DLS-TL
mechanism satisfies the voluntary participation condition.

Proof. We construct the proof similar to Theorem 5.3.
Lemma 5.4 states that the mechanism satisfies voluntary
participation if no deviation occurs. By Theorems 5.1 and
5.2, we know that processors will not deviate. Hence, DLS-
TL mechanism satisfies the voluntary participation condi-
tion.

Due to the lack of space, we quickly examine the com-
munication complexity of DLS-TL. Disregarding the com-
munication with P̄0 for algorithm enforcement and the dis-
tribution of load, we see that Phase II dominates commu-
nication in terms of message quantity and size. In that
phase, the root of a single-level subtree must send a m + 1-
sized message to each of its m children. The worst case is
then a single-level tree with n processors in which the root
must transmit an n-sized message to each of its n− 1 chil-
dren; thus, the communication complexity in the worst-case
is Θ(n2).



6. Conclusion
In this paper we proposed the strategyproof mechanism

DLS-TL for scheduling divisible loads in tree networks. In
a tree network, the load originates at the root and it is dis-
persed through intermediate processors until the load is dis-
tributed to all. Through the use of incentives, processors
report and process their assignments at full capacity. Incen-
tives are also provided for reporting algorithm deviation. A
processor will readily report a deviant in order to receive
a reward. The fine for deviation is greater than any profits
attainable by cheating, which will dissuade processors form
attempting it. In a final note, DLS-TL satisfies the voluntary
participation condition. All truthful, non-deviating proces-
sors will obtain non-negative utility.

We are planning to continue our investigation into the
augmentation of DLT with incentives. By examining vari-
ous influences such as network architectures and the ratio-
nal behavior of links, we hope to achieve a cohesive theory
combining DLT with incentives.
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