Leakage-Aware Multiprocessor Scheduling for Low Power

Pepijn de Langen and Ben Juurlink

Computer Engineering Laboratory
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
Phone: (+31) 15 2783644, email: pepijn@ce.et.tudelft.nl

Abstract

It is expected that (single chip) multiprocessors will in-
creasingly be deployed to realize high-performance embed-
ded systems. Because in current technologies the dynamic
power consumption dominates the static power dissipation,
an effective technique to reduce energy consumption is to
employ as many processors as possible in order to finish
the tasks as early as possible, and to use the remaining
time before the deadline (the slack) to apply voltage scaling.
We refer to this heuristic as Schedule and Stretch (S&S).
However, since the static power consumption is expected
to become more significant, this approach will no longer
be efficient when leakage current is taken into account. In
this paper, we first show for which combinations of leak-
age current, supply voltage, and clock frequency the static
power consumption dominates the dynamic power dissipa-
tion. These results imply that, at a certain point, it is no
longer advantageous from an energy perspective to employ
as many processors as possible. Thereafter, a heuristic is
presented to schedule the tasks on a number of processors
that minimizes the total energy consumption. Experimen-
tal results obtained using a public task graph benchmark
set show that our leakage-aware scheduling algorithm re-
duces the total energy consumption by up to 24% for tight
deadlines (1.5x the critical path length) and by up to 67%
for loose deadlines (8x the critical path length) compared
to S&S.

1 Introduction

In contemporary and future embedded as well as high-
performance microprocessors, power consumption is one of

This research was supported in part by the Netherlands Organisation for
Scientific Research (NWO).

1-4244-0054-6/06/$20.00 ©2006 IEEE

the most important design considerations. Not only does
this apply to processors embedded in battery powered de-
vices, but also in desktop machines and high-performance
dedicated systems power consumption is a fundamental
problem that limits clock frequencies. Through the advent
of (single chip) multiprocessors for the embedded market,
such as the IBM/Sony/Toshiba Cell architecture [5] and
Philips Wasabi [12], power consumption is becoming in-
creasingly important for multiprocessor systems as well.

Power consumption can generally be classified in dy-
namic and static power consumption. The first relates to
the power that is dissipated due to switching activity, while
the second one is due to leakage currents. Because in cur-
rent technologies the dynamic power consumption domi-
nates the static power consumption, and because the dy-
namic power dissipation grows quadratically with the sup-
ply voltage, voltage scaling is an effective technique to re-
duce the power consumption. Consequently, when schedul-
ing tasks on a multiprocessor system, it is advantageous to
employ as many processors as possible in order to maximize
the remaining time before the deadline. This slack can then
be exploited to lower the clock frequency and supply volt-
age. However, as technology scales to increasingly smaller
feature sizes, static power dissipation due to leakage current
is expected to grow exponentially in the near future [9]. In
this case, using as many processors as possible combined
with voltage scaling will no longer provide an efficient so-
lution. In other words, while in the past static power con-
sumption could be ignored, it should not be neglected in the
future.

In this paper, we present a scheduling algorithm that is
targeted at a near future technology, where leakage current
is responsible for a significant part of the total power dissi-
pation. The algorithm we present schedules task graphs on a
number of processors that is sufficient to meet the deadline,
while the total power consumption is minimized.

This paper is organized as follows: Section 2 contains an

overview of related work. In Section 3, we describe the con-
ditions under which voltage scaling can be applied to reduce
energy consumption. Section 4 describes our scheduling
and voltage selection algorithm. Experimental results are
provided in Section 5. In Section 6 conclusions are drawn
and directions for future research are given.

2 Related Work

Reducing power consumption has been an important re-
search topic in the past years, both in embedded systems
and in high-performance related research. One of the most
promising techniques that have been proposed in this area
is dynamic voltage scaling (DVS), where both the clock fre-
quency and the supply voltage are scaled down.

The combination of dynamic voltage scaling and multi-
processor scheduling has been investigated by a significant
number of researchers in the past years. Jha [7] provides a
detailed overview of work in this area.

A technique proposed by several authors [4, 16] is to use
existing scheduling techniques, such as list scheduling with
earliest deadline first (EDF), to finish the tasks as early as
possible and use the remaining time to lower the supply
voltage. However, these authors did not include leakage
current in their power estimations. Several authors have
proposed this technique using different names and, there-
fore, we refer to it as Schedule and Stretch (S&S). Figure 1
illustrates the concept behind S&S. First, the task graph in
Figure 1(a) is scheduled in a way that minimizes the length
of the schedule, as depicted in Figure 1(b). From this fig-
ure, it can be seen that after the scheduling process, there
are certain periods in which a processor is idle. This idle
time is often referred to as slack. In the S&S algorithm,
the power consumption is decreased by using the slack that
remains at the end of the schedule to lower the clock fre-
quency and supply voltage of all processors, as depicted in
Figure 1(c).

Jejurikar et al. [6] included leakage current in their en-
ergy estimations and proposed to maximize slack time to
allow processors to shut down temporarily. This was com-
bined with DVS and used for real-time scheduling. These
authors, however, assumed tasks that are independent.

In other work [15], the scheduling is done in a way to
optimize the possibilities for selecting different voltages.
Varatkar et al. [13] included communication in their power
estimations and tried to execute part of the code on a lower
supply voltage while minimizing communication.

Some researchers have proposed to also adjust the
threshold voltage when scaling the supply voltage [3, 11].
Others have extended this to scheduling for real-time multi-
processor systems [1, 14]. Both these authors as the ones
mentioned above, however, did not optimize on the the
number of employed processors.

(a) The task graph
A 1
f i
T1 T2 T4 !
Processor 1 ' t
f =
T3 S
Processor 2 t
(b) Schedule produced by EDF
A 1
f |
T1 T2 T4
Processor 1 ' t
f 3
, V
T3 S
Processor 2 t
(c) Stretched schedule

Figure 1. lllustration of the Schedule and
Stretch algorithm.

Other techniques to reduce the energy consumption of a
processor are mostly targeted at caches, since these struc-
tures require a significant portion of the area on a chip, and
are responsible for a large part of the total amount of dissi-
pated power. Therefore, an effective way to reduce power
consumption is to shut down parts of the cache [2, 9].

3 CPU Energy Consumption

In this section, we will first derive how static and dy-
namic power dissipation relate to leakage current, supply
voltage, and clock frequency. From this, we then derive
the extend to which voltage scaling can be used to decrease

the energy consumption for a certain processor. In the sec-
ond part, we will show how these results can be used for
scheduling on multi-processor systems.

3.1 Voltage Scaling Requirements

The power consumption in a CMOS gate can be approx-
imated by:

P=D+S=C,V*f+1,V, (1)

where C7, is the load capacitance, V is the supply voltage,
1, is the leakage current, and f is the clock frequency. The
first term (D) in this equation corresponds to the amount
of dynamically dissipated power, caused by switching cir-
cuitry. The second term (5) models the amount of statically
dissipated power, generated by leakage current.

We will start with looking at what the requirements are
for voltage scaling to be beneficial for the total energy con-
sumption. For this purpose, we will first derive an expres-
sion for the normalized amount of power dissipation.

To normalize Expression (1), we define that at maximum
frequency f,q. and corresponding supply voltage Viaz,
a processor will dissipate an amount of power P,., =
Dinaz + Smaz- The normalized total, dynamic, and static
power dissipation (P, D, and S) can then be written as:

P D S
= =D+S= . 2
P Pmﬂ.ﬂ? + Pmam + Pma:b ()
We then define ¢ and o as:
5 — DTYLa.ﬁE o= Sm(lT
Dmaz+smam7 Dma:r'i_smaz.

In other words, 6 and o denote what fraction of the to-
tal power dissipation at maximum frequency is caused by
switching activity and what is caused by leakage current.
Let V = V/V,,4. be the normalized voltage and F =
f/ fmaz the normalized frequency. The expressions for nor-
malized dynamic and static dissipation can then be rewritten
as:
2
pos D 5 GV
C'L Vy%,az f mazx

= 0V*F,

and S LV
S = = g = .

Combining these equations with Equation (2) then results
in:

P =6V2F +oV.

Using a normalized expression for time 7 = 1/F, the ex-
pression for the normalized energy consumption £ then be-
comes:

E(F,V) =P(F, V)T =6V? +aV/F. 3)

2.00 "
| \B1=02

1.75 4—— \\ \\ B
. “B1=03

Cp1=04

1.50

1.25 -

1.00 S

0.75

0.50

0.25

Normalized energy consumption

0.00 TTTTTITTT T T T T I T I T I I T I I I T T T ITITTITTITTTITTT]
0 01 02 03 04 05 06 0.7 08 09 1
Normalized frequency

Figure 2. Normalized energy consumption as
a function of the normalized frequency.

From this equation it can be seen that voltage scaling only
reduces the energy consumption if for a certain F < 1 there
existsa)V < 1,sothat E(F,V) < 1.

The supply voltage of a processor must be sufficient to
guarantee that the logic levels are always safely reached be-
fore the end of a clock cycle. This implies that the required
supply voltage actually depends on the clock frequency.
From [10], we take the following expression approximating
the relation between normalized voltage and frequency:

V =051+ BF, “4)

where 01 = Vi /Vinaz and B2 = 1 — B1. Vi, denotes the

threshold voltage and V.. the voltage at maximum fre-

quency. Again, F represents the normalized frequency.
Combining this with Equation (3) yields:

E(F) =6(B1 + BoF)? + 0(B1/F + Ba).)

In Figure 2, the normalized energy consumption is de-
picted as a function of the normalized frequency for a num-
ber of different relative threshold voltages. In this figure,
we have used processors where, at maximum frequency, the
leakage current is responsible for 50% of the total energy
consumption (¢ = 0.5). From this figure, it can be seen
that a higher threshold voltage diminishes the possibility to
effectively employ voltage scaling.

Figure 2 also shows that, for a certain threshold volt-
age and amount of leakage current, there is an optimal
frequency, at which the total energy consumption is mini-
mized. With a threshold voltage of 0.3 times the maximum
supply voltage (31 = 0.3), this optimal frequency is about

0.56 times the maximum frequency. This implies that scal-
ing the frequency to below this point will result in a higher
energy consumption than when running the processor at a
normalized frequency of 0.56 and turning the processor off
for the remainder of time. In order to do this, however, it
must be possible to shut the processors down temporarily.
This is outside the scope of this work.

3.2 Voltage Scaling in a Multiprocessor
Environment

In the previous section, we have determined the circum-
stances under which it is useful to employ voltage scaling
in a single processor. In this section, we will assume that
a task graph has a tight deadline, so that several processors
must be used in order to meet this deadline. For a multipro-
cessor system, the requirements for lowering energy con-
sumption by voltage scaling are equivalent to the case with
only one processor. For technologies with very low leakage
current, where voltage scaling always decreases the energy
consumption, the lowest-energy solution is to run the tasks
on as many processors as possible, with the lowest possible
frequency. On the other hand, when the energy consump-
tion cannot effectively be decreased by voltage scaling, the
lowest-energy solution is to run the tasks on as few proces-
sors as possible. In this work, we assume a technology with
relatively high leakage current where the possibility to re-
duce energy consumption by voltage scaling is limited, so
that we have to find a balance between the number of em-
ployed processors and the clock frequency.

In our approach, we take the following assumptions:
First, we assume that all employed processors must stay
on all the time. In other words, it is not possible to turn
a processor on or of during execution. Second, we assume
that all processors run at the same clock frequency. Further-
more, we consider additional power dissipation and delay
caused by communication to be beyond of the scope of this
paper. Under these assumptions, the normalized power con-
sumption of a multiprocessor with N processors is given by:

Pruiti = N(adV2F + o)), (6)

where « denotes the activity (i.e. the fraction of time that
the processors are busy). The activity is given by:

a= Z w(v)/ND,

veV

where w(v) denotes the execution time of task v, N the
number of processors, and D the deadline. Combining
Equation (6) with Equation (4) then results in:

Pmulti - Naé(ﬂl + ﬂQF)Qf + Na(ﬁl + ﬂQj:)

4 Multiprocessor Scheduling

Due to static power dissipation, employing the maximum
number of processors will not always result in a decreased
energy consumption. Our leakage-aware multiprocessor
scheduling (LAMPS) algorithm determines the number of
processors that results in the lowest energy consumption.

For the case where voltage scaling would increase energy
consumption, finding the optimum number of processors is
just the same as finding the minimum number of processors
that can finish the tasks before the given deadline. For pro-
cessors with a less disastrous leakage current, this number
depends on the amount of parallelism that can be exploited.

Our leakage-aware multiprocessor scheduling (LAMPS)
algorithm works as follows. Let the task graph be repre-
sented by a weighted directed acyclic graph (DAG) G =
(V,E,w), where V corresponds to the tasks, F to task de-
pendences, and w(v) denotes the execution time of task v.

First we determine the minimal number of processors re-
quired to finish the tasks before the deadline. This step is
performed as follows. First, we establish a lower bound on
the number of processors Ny needed to complete the tasks
before the deadline D and an upper bound on the number of
processors Ny, that can be employed efficiently:

Niwp = I—Z w(v)/D“’ Nupb = |V|
veV

Thereafter, a binary search is performed on the interval
[Niwb, Nupb] to determine the minimal number of proces-
sors required to finish the task graph on time. First, it is
determined if N = (N + Nupb)/2 are sufficient to fin-
ish before the deadline. This is done using a list scheduling
algorithm that employs the earliest deadline first (EDF) pri-
ority function. If the makespan of the schedule produced
by the list scheduler is less than or equal to the deadline, the
search continues on the interval [Ny, N|. If not, the search
continues on the interval [N + 1, Nypp).

After having found the minimal number of processors
Npin required, the number of processors that requires the
least amount of power is determined. This step is performed
as follows. First, we determine the total power consump-
tion for Ny, processors. This is done by lowering the
clock frequency and supply voltage so that the task graph
is completed exactly at the deadline, as in the S&S algo-
rithm. In other words, we stretch the schedule so that it fin-
ishes exactly on time. This is also done for Nyin+1, Nmint2,
etc. processors, until increasing the number of processors
no longer decreases the makespan of the schedule. At this
point, increasing the number of processors will aways in-
crease the total power consumption. The algorithm returns
the configuration (number of processors) that requires the
least amount of power.

In Section 3.1, we noted that scaling the frequency to be-
low the optimal frequency will actually increase the energy
consumption. However, since we assume that the option to
shut down processors temporarily is not available, results
with frequencies below the optimum are still valid.

The reason for performing a linear search instead of a bi-
nary search in the second phase of the algorithm is that the
power consumption as a function of the number of proces-
sors can have local minima. Consequently, a binary search
will not always find the optimal solution. An example of
this will be given in Section 5.

The time complexity of the algorithm depends on the
structure of the task graph and the time it takes to perform
list scheduling. Let Tjs denote the time required to perform
list scheduling. The time 71 amps taken by the LAMPS al-
gorithm is given by:

Tiamps = logy (Nupy — Niwp) - Tis + M - T,

where M is the number of iterations of the second phase
(number of iteration required until the makespan of the gen-
erated schedule no longer decreases). In practice, for all
benchmarks finding the optimal configuration never took
more than six seconds on a 3GHz Pentium 4.

S Experimental Results

In this section, we present the results of our LAMPS
scheduling approach and compare it to the S&S algorithm.

In the experiments, we assume a technology where leak-
age current contributes to the overall power consumption to
a much larger extend than it does today. Specifically, it is
assumed that half of the power consumption at maximum
frequency is due to this leakage current (6 = 0.5,0 = 0.5).
Furthermore, we postulate that the threshold voltage is 0.3
times the supply voltage (31 = 0.3, B2 = 0.7), which, ac-
cording to [10], is representative for current technology.

Note that, although we have assumed a relatively high
leakage current in this processor, according to Figure 2, it
is still theoretically possible to reduce energy consumption
by voltage/frequency scaling, until the frequency becomes
lower than 29% of the maximum frequency.

The experimental results have been obtained using our
in-house scheduling tool and the power model described in
Section 3. Table 1 lists the benchmarks that have been used,
as well as the number of nodes and edges, the length of
the critical path, and the total weight of all the nodes (total
work). The first three benchmarks have been derived from
real applications, while the other three have been randomly
generated. These benchmarks were taken from the Stan-
dard Task Graph Set [8]. Since this set does not provide
deadlines, we have used deadlines of 1.5, 2, 4, and 8 times
the critical path length (CPL).

name number | number | critical total

of nodes | of edges path | work
fpppp 334 1196 1062 | 7113
robot 88 130 545 | 2459
sparse 96 128 122 1920
proto001 273 1688 167 | 4711
proto003 164 646 556 1599
proto279 1342 16762 735 | 13302

Table 1. Employed benchmarks and their
main characteristics.

20 A A
18 Aappasasastt
16
S 14
g <
_g' 12 ‘<‘<<<<<<<‘
Vv
810 vy m fpppp [
g 8 * robot
S vV sparse
z 6 A proto001
4 femet > proto003 ——
oot
2 e < proto279
L0 s R
2 4 6 8101214161820 22242628 30 32 34

Number of processors

Figure 3. Normalized energy consumption for
different benchmarks with the deadline at 1.5
times the critical path length.

Figure 3 depicts the normalized total power consumption
as a function of the number of processors employed for the
case that the deadline is 1.5x the length of the critical path.
From this figure, it can be seen that there are minima that
are not globally optimal. This happens, for example, for the
sparse benchmark at 14 processors. Therefore, a full search
must be performed on the number of processors, in order to
find the optimum for a certain graph and deadline.

Table 2, 3, 4, and 5 depict the obtained results for the
case that the deadline is 1.5, 2, 4, and 8 times as large as
the critical path length, respectively. Results are presented
for the LAMPS algorithm as well as the S&S algorithm.
For each benchmark and scheduling algorithm the (optimal)
number of processors N, the normalized frequency F, and
the normalized total power consumption P are listed.

Note that for the S&S algorithm the normalized clock
frequency can be derived as the ratio of the critical path

LAMPS S&S

benchmark | N | F P N| F P

fpppp 71076 | 4.46 91067 | 4.76
robot 41082 | 290 71 0.67 | 3.57
sparse 17 1 072 | 10.24 || 19 | 0.67 | 10.37
proto001 27 1 079 | 1841 || 36 | 0.67 | 19.37
proto003 31074 1.88 51067 | 248
proto279 17 1 078 | 11.53 || 25 | 0.67 | 13.14

Table 2. Results for deadline at 1.5 times the
length of the critical path.

LAMPS S&S

benchmark | N | F P N| F P

fpppp 61064 | 3.19 91050 | 3.63
robot 31077 | 2.05 71050 | 275
sparse 14 | 0.65 | 7.51 || 19 | 0.50 | 7.84
proto001 22 1 0.69 | 13.01 || 36 | 0.50 | 14.68
proto003 21 0.75 1.32 51050 | 193
proto279 151 0.65 | 820 | 25| 0.50 | 10.04

Table 3. Results for deadline at 2 times the
length of the critical path.

LAMPS S&S

benchmark | N | F P N| F P

fpppp 31058 | 1.47 91025233
robot 2| 0.57 | 098 71025 1.79
sparse 71059 | 348 || 19 | 0.25 | 4.96
proto001 12 | 0.60 | 6.19 || 36 | 0.25 | 9.35
proto003 110721 0.63 51025 1.27
proto279 81058 397 | 25]0.25] 645

Table 4. Results for deadline at 4 times the
length of the critical path.

LAMPS S&S

benchmark | N | F P N | F P

fpppp 21042 | 0.75 910.12 | 1.81
robot 1]0.56 | 048 71012 | 1.40
sparse 31066 | 171 | 19 | 0.12 | 3.83
proto001 6| 059|304 136|012 7.24
proto003 110361033 51012 | 1.00
proto279 41057 | 196 | 25| 0.12 | 5.01

Table 5. Results for deadline at 8 times the
length of the critical path.

70.00%
65.00% ——| I frppp
60.00% —— Il robot
55.00% —— [l sparse
50.00% —— [l proto001
45.00% Il proto003
40.00% —+— [proto279
35.00%
30.00%
25.00% |

Power reduction

1.5 2 4 8
deadline/CPL

Figure 4. Power reduction achieved by our
LAMPS scheduling algorithm over S&S.

length to the deadline. Also note that for S&S, the number
of processors is independent of the deadline. This algorithm
employs as many processors as possible to finish the tasks as
early as possible in order to maximize the amount of slack
that can be used to lower the clock frequency. LAMPS, on
the other hand, uses fewer processors and a slightly higher
clock frequency to balance the amount of static and dy-
namic power dissipation.

Figure 4 depicts the power reduction achieved by the
LAMPS algorithm compared to S&S. Recall that since the
schedules generated by both algorithms finish at the same
time, they can be compared by power dissipation instead of
energy consumption. It can be seen that LAMPS achieves
significant energy savings relative to S&S. Furthermore,
as expected, the improvement increases with the deadline.
For example, if the deadline is tight (1.5x the critical path
length), the relative power reduction ranges from 1% to
24%. On the other hand, if the deadline is relatively loose
(8x the critical path length), the improvement ranges from
approximately 55% to 67%. If the deadline is less strict,
fewer processors can be used to finish the tasks on time.
This allows LAMPS to improve upon S&S which always
employs as many processors as can be used to reduce the
makespan of the generated schedule.

It can also be seen from Tables 2 to 5 and Figure 4 that
the amount of improvement also depends on the benchmark.
For example, for the sparse benchmark a power reduction of
only 1% is achieved when the deadline is 1.5x the critical
path length, while for proto003 a power saving of 24% is
attained. The reason for this behavior is that LAMPS re-
quires 17 processors to finish sparse on time, while S&S
requires 19, so only 2 or 2/19 = 10.5% of the processors

can be turned off to reduce power dissipation. On the other
hand, for proto003 2 out of 5 or 40% of the processors can
be turned off, which results in a more significant power re-
duction. The geometric means of the savings by LAMPS
upon S&S are: 11%, 17%, 39%, and 61% for deadlines of
respectively 1.5, 2, 4, and 8 times the length of the critical
path.

Generally, processors that support DVS can only scale
to a fixed number of predetermined voltage/frequency pairs.
In this work, however, we have assumed that the frequency
and voltage can be scaled to any value between 0 and the
maximum. To show the impact of scaling in discrete steps,
we have also performed the experiments with the limitation
that the normalized supply voltage can only be scaled in
discrete steps of 0.05, similar to [6]. Because we base the
deadline on the length of the critical path, the frequency in
S&S is solely determined by the deadline. Therefore, the
increase in power consumption when using discrete scaling
in S&S is independent of the structure of the benchmark. In
this case, this increase is completely determined by the dis-
tance to the next higher supported frequency and the frac-
tion of time the processors are busy («). For deadlines of
1.5, 2, 4, and 8 times the length of the critical path, the
increases in power consumption for S&S are in the ranges
5.4—5.6%,0—0%, 5.6 —5.8%, and 3.3 —3.4% respectively.
Because one of the supported normalized frequencies is ex-
actly 0.5, there is no loss when the deadline is set at 2 times
the length of the critical path. With LAMPS on the other
hand, the operating frequency will vary across the differ-
ent benchmarks. As a result, the increase in power con-
sumption will be different for different benchmarks. Fig-
ure 5 depicts the improvements of LAMPS upon S&S, when
scaling the voltage in discrete steps. Because there is no
increase in power consumption for schedules produced by
S&S with a deadline of 2 times the length of the critical
path, the improvements by LAMPS for this deadline are
lower than when using continuous scaling. For the other
deadlines, the results depend on whether S&S or LAMPS
suffers more from having to use discrete steps. If LAMPS
has a higher increase in power consumption, the improve-
ments upon S&S compared to the continuous case will be
less. Examples of this are robot and proto003 for deadlines
of 4 times the length of the critical path. When S&S suf-
fers more from the discretization than LAMPS, on the other
hand, the improvements will be higher than in the continu-
ous case. This happens, for example, with all of the bench-
marks when deadlines of 1.5 times the length of the critical
path are used. In general, we can conclude that LAMPS
can also be used to effectively reduce the energy consump-
tion if voltage scaling is limited to discrete steps. It must be
noted, however, that these steps should be chosen carefully,
in order not to waste too much power.

70.00%
65.00% ——| [frppp
60.00% —— Il robot
55.00% —— [l sparse
50.00% —— [l proto001
45.00% ——{ Il proto003
40.00% -+ [proto279
35.00%
30.00%
25.00% |

Power reduction

1.5 2 4 8
deadline/CPL

Figure 5. Power reduction achieved by our
LAMPS scheduling algorithm over S&S,
when scaling the voltage in discrete steps.

6 Conclusions and Future Work

As feature sizes keep decreasing, the contribution of
leakage current to the total energy consumption is expected
to increase significantly. In this paper we have shown that
when the static power dissipation becomes more significant,
employing the maximum number of processors to maximize
the amount of slack that can be used to lower the supply
voltage is no longer beneficial from an energy perspective.

Depending on the amount of leakage current and the
amount of parallelism exhibited by the application, the pro-
posed LAMPS algorithm determines the number of proces-
sors, their clock frequency, and the corresponding supply
voltage that minimizes the total energy consumption. The
experimental results show that LAMPS reduces the total
amount of dissipated power/energy by up to 24% for tight
deadlines and by up to 67% for loose deadlines.

When voltage scaling is limited to discrete steps, the en-
ergy consumption of a schedule produced by LAMPS will
be slightly higher. However, since this is also the case with
S&S, the improvements made by LAMPS will be lower in
some cases, while they will be higher in other ones. In gen-
eral, the results for discrete voltage scaling are close to the
results for scaling on a continuous range.

Ultimately, the relative amount of energy dissipated by
leakage currents is expected to become much larger than the
amount of energy dissipated through switching activity. At
that point the lowest energy solution will be to perform as
much as possible sequentially on one processor, and to em-
ploy parallelism only if the required performance demands
to do so.

We have assumed that all processors operate at the same
frequency. By slowing down some processors more than
others, it could be possible to produce a more balanced
schedule that consumes less power than the schedule gen-
erated by LAMPS. Shutting down processors temporarily is
an option we also intend to pursue. Finally, we also intend
to investigate the influence of communication.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

[11]

[12]

[13]

A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. Al-Hashimi.
Overhead-Conscious Voltage Selection for Dynamic and
Leakage Energy Reduction of Time-Constrained Systems.
In Proc. Conf. on Design, Automation and Test in Europe,
pages 518-525, 2004.

K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy Caches: Simple Techniques for Reducing Leakage
Power. In Proc. Int. Symp. on Computer Architecture, pages
148-157, 2002.

R. Gonzalez, B. Gordon, and M. Horowitz. Supply and
Threshold Voltage Scaling for Low Power CMOS. [EEE
Journal of Solid-State Circuits, 32(8), 1997.

F. Gruian and K. Kuchcinski. LEneS: Task Scheduling for
Low-Energy Systems Using Variable Supply Voltage Pro-
cessors. In Proc. Conf. on Asia South Pacific Design Au-
tomation, pages 449-455, 2001.

H. Hofstee. Power Efficient Processor Architecture and the
Cell Processor. In Proc. Int. Symp. on High-Performance
Computer Architecture, pages 258 — 262, 2005.

R. Jejurikar, C. Pereira, and R. Gupta. Leakage Aware Dy-
namic Voltage Scaling for Real-Time Embedded Systems.
In Proc. Conf. on Design Automation, pages 275-280, 2004.
N. Jha. Low-Power System Scheduling, Synthesis and Dis-
plays. [IEE Proc. on Computers and Digital Techniques,
152(3):344- 352, 2005.

H. Kasahara, T. Tobita, T. Matsuzawa, and S. Sakaida. Stan-
dard Task Graph Set. http://www.kasahara.elec.
waseda.ac.jp/schedule/.

S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay: Ex-
ploiting Generational Behavior to Reduce Cache Leakage
Power. In Proc. Int. Symp. on Computer Architecture, pages
240-251, 2001.

N. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. Hu,
M. Irwin, M. Kandemir, and V. Narayanan. Leakage Cur-
rent: Moore’s Law Meets Static Power. [EEE Computer,
36(12):68-75, 2003.

S. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined
Dynamic Voltage Scaling and Adaptive Body Biasing for
Lower Power Microprocessors under Dynamic Workloads.
In Proc. Int. Conf. on Computer-Aided Design, pages 721—
725, 2002.

P. Stravers and J. Hoogerbrugge. Homogeneous Multipro-
cessing and the Future of Silicon Design Paradigms. In Proc.
Int. Symp. on VLSI Technology, Systems, and Applications,
2001.

G. Varatkar and R. Marculescu. Communication-Aware
Task Scheduling and Voltage Selection for Total Systems

[14]

[15]

[16]

Energy Minimization. In Proc. Int. Conf. on Computer-
Aided Design, page 510, 2003.

L. Yan, J. Luo, and N. Jha. Combined Dynamic Voltage
Scaling and Adaptive Body Biasing for Heterogeneous Dis-
tributed Real-time Embedded Systems. In Proc. Int. Conf.
on Computer-Aided Design, page 30, 2003.

Y. Zhang, X. Hu, and D. Chen. Task Scheduling and Volt-
age Selection for Energy Minimization. In Proc. Conf. on
Design Automation, pages 183—-188, 2002.

D. Zhu, R. Melhem, and B. Childers. Scheduling with Dy-
namic Voltage/Speed Adjustment Using Slack Reclamation
in Multiprocessor Real-Time Systems. [EEE Transactions
on Parallel and Distributed Systems, 14(7):686-700, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

