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Abstract

Computers get faster every year, but the demand for
computing resources seems to grow at an even faster rate.
Depending on the problem domain, this demand for more
power can be satisfied by either, massively parallel com-
puters, or clusters of computers. Common for both ap-
proaches is the dependence on high performance intercon-
nect networks such as Myrinet, Infiniband, or 10 Giga-
bit Ethernet. While high throughput and low latency are
key features of interconnection networks, the issue of fault-
tolerance is now becoming increasingly important. As the
number of network components grows so does the probabil-
ity for failure, thus it becomes important to also consider
the fault-tolerance mechanism of interconnection networks.
The main challenge then lies in combining performance and
fault-tolerance, while still keeping cost and complexity low.

This paper proposes a new deterministic routing method-
ology for tori and meshes, which achieves high performance
without the use of virtual channels. Furthermore, it is topol-
ogy agnostic in nature, meaning it can handle any topol-
ogy derived from any combination of faults when combined
with static reconfiguration. The algorithm, referred to as
Segment-based Routing (SR), works by partitioning a topol-
ogy into subnets, and subnets into segments. This allows us
to place bidirectional turn restrictions locally within a seg-
ment. As segments are independent, we gain the freedom to
place turn restrictions within a segment independently from
other segments. This results in a larger degree of freedom
when placing turn restrictions compared to other routing
strategies.

In this paper a way to compute segment-based routing
tables is presented and applied to meshes and tori. Evalua-
tion results show that SR increases performance by a factor
of 1.8 over FX and up*/down* routing.

∗This work was supported by the Spanish CICYT under Grant
TIC2005-08154-C06.

1. Introduction

The demand for more computing resources steadily in-
creases, and this demand is currently met by building larger
massively parallel computers or by building computer clus-
ters. The latter approach is becoming more common, since
it can be built from commodity equipment, while the for-
mer requires a varying degree of custom made equipment.
Though similar, the two approaches fulfil slightly different
goals. Massively parallel computers are optimised for spe-
cial cases (typically certain scientific computations), while
clusters are optimised for a general set of applications. Of
the worlds 100 fastest computers 60 are massively parallel
computers, while 40 are clusters [4] At 5th place we find the
first cluster, the Thunderbird [3]. Even if they are all differ-
ent, their need for a high performance interconnection net-
work is very similar. Again, the interconnection technology
can be either commodity or custom made equipment. Clus-
ters usually use commodity equipment, while massively
parallel computers use custom made equipment. Some
common interconnects are Myrinet [15], InfiniBandTM [1],
Quadrics [5], Gigabit Ethernet [18, 2].

Routing on these networks is deterministic. That is, all
packets between a given source/destination pair will follow
the same path. One of the main benefits is that in-order ar-
rival of packets is preserved. However, deterministic rout-
ing usually makes an inefficient use of network resources.
The alternative is to use adaptive routing where packets may
take different paths depending on the current traffic condi-
tions, thus, avoiding contention in the network.

It is important to select the right routing algorithm as it
must be able to leverage the full potential of the topology.
If the topology is regular, it is wise, with regards to perfor-
mance, to use a topology dependent routing since it would
be able to exploit the regularity of the topology. Dimension-
Order Routing (DOR) is such an algorithm suitable for
meshes. Unfortunately, those algorithms are sensitive to
topology changes. A faulty switch or link will degrade the
topology into an irregular one and then the algorithms will
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fail. A simple way to achieve fault-tolerance is by the use of
a topology agnostic routing algorithm in combination with
static reconfiguration. In such a static fault-model the net-
work enters a reconfiguration phase when a fault is discov-
ered, the system is halted and drained of packets, then all
routing tables are recomputed. An alternative approach is
to use a dynamic fault-model, where there is no need to halt
the network. When a fault occurs, the faulty link or switch
will be marked and another path configured. Notice that the
technology needs to support the discovery of broken links
and switches, as well as any features required for dynamic
reconfiguration [16]. Furthermore, during reconfiguration
there will be a short period of time where some routing ta-
bles are in an inconsistent state. This must be handled prop-
erly to avoid possible packet loss, deadlock and livelock.
Unfortunately, such functionality is complex and not com-
monly available, thus static reconfiguration in combination
with a topology agnostic routing algorithm is simpler, and
currently the only practical approach in common intercon-
nects.

Several high performance topology agnostic routing al-
gorithms exist, such as LASH [20], TOR [8], LASH-TOR
[19], DL [14], and multiple virtual networks [9]. Common
for all these algorithms are that they require virtual chan-
nels, a feature that not all technologies support. Further-
more, if virtual channels happen to be supported the num-
ber of available channels is often limited, and often dedi-
cated to certain purposes such as quality of service. There
are, however, also topology agnostic routing algorithms that
do not rely on virtual channels. Prominent examples are
up*/down* [12], lturn [13], smart-routing [11], and FX [6].
These algorithms have in common that they are based on
turn prohibition, a methodology which avoids deadlock by
prohibiting a subset of all turns in the network. A problem
with this approach is that it is unable to guarantee short-
est path routing and unable to exploit any regularity in the
underlying topology.

2 Motivation

When designing a routing algorithm a key requirement
is that it should be deadlock free. This is guaranteed if the
channel dependency graph in question is devoid of cycles
and this can be achieved in several ways, such as through
the use of layered routing or through turn restrictions. The
former requires virtual channels whereas routing based on
turn restrictions does not have this requirement, thus it is
suitable for a larger range of network technologies.

Many algorithms based on turn restrictions exist, the
most well known being the up*/down* routing algorithm
[12]. In up*/down* we first create a breadth-first spanning
tree of the topology. Then we assign a direction to each link
(either up or down). Turns are restricted according to the
up*/down* rule [12]: “a packet may never traverse a link
in the up direction after having traversed one in the down
direction.” As an example, Figure 1.a shows a 3x4 mesh

with two faulty links, and up*/down* restrictions applied.
As up*/down* uses bidirectional turn restrictions it may
cause an uneven distribution of traffic by having many paths
crossing the same link, which results in lower performance.
The FX routing scheme avoids this problem and improves
performance by introducing unidirectional routing restric-
tions [6]. Common for both approaches is that, as soon as
the spanning tree has been calculated, the turn restrictions
are fixed. I.e. once the spanning tree root is selected, all
routing restrictions are fixed. Since there are twelve root
candidates, we have only twelve possible combinations of
routing restrictions.

In this paper we suggest a new way to apply turn restric-
tions called Segment-Based Routing (SR). SR Works by par-
titioning a topology into subnets, and subnets into segments.
Then we place bidirectional turn restrictions locally within
a segment. As segments are independent, we are free to
place turn restrictions within a segment independently from
other segments. This locality independence property adds a
new dimension to the placement of routing restrictions, and
allows us to disentangle ourselves from the restraints found
in current algorithms such as up*/down and FX. Consider
Figure 1.b, here we have partitioned our example topology
into four segments and labeled it with all possible turn re-
strictions. By placing only one such restriction within each
segment, we are able to guarantee deadlock-free routing and
a connected network. Figure 1.c shows a possible set of re-
strictions applied to our example topology. The main contri-
bution of SR is that we are able to choose among 48 differ-
ent combinations of routing restrictions. This new freedom
gives us the possibility to optimise our selection of routing
restrictions according to throughput, latency or other crite-
ria. If we want to optimise for latency, we choose the set of
restrictions maximising the number of shortest paths. While
we choose the set of restrictions giving best distribution of
traffic when we want to optimise for throughput.

To reckon for fault-tolerance we have designed a seg-
mentation algorithm optimised for meshes and tori, where
the algorithm is able to exploit the regularity of such topolo-
gies, while at the same time being insensitive to faults. This
is possible since the algorithm really is topology agnostic,
but a segmentation algorithm for totally random topologies
is a topic for further research. The rest of the paper is or-
ganised as follows. In Section 3 we present the SR algo-
rithm. Then, in Section 4 we evaluate SR in comparison
with up*/down* and FX. Finally in Section 5 we conclude.

3 Segment-based Routing

3.1 Informal Description

The key concept of the SR algorithm is the partition-
ing of a topology into subnets, and subnets into segments.
This allows us to place bidirectional turn restrictions locally
within a segment. As segments are independent, we gain the
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Figure 1. Possible set of routing restrictions.

freedom to place turn restrictions within a segment indepen-
dently from other segments.

A segment is de ned as a list of interconnected switches
and links, as shown in Figure 1.b. Here we have four
segments labeled 1 − 4, where segment 1 consists of the
switches {A,B,C,D} and the links {1, 2, 3, 4}. Seg-
ment 2 consists of switches {E,F,G,H} and the links
{5, 6, 7, 8, 9}, and so on for the rest of the segments. All
network links and switches belong to one and only one rout-
ing segment (i.e. segments are disjoint), and every routing
segment, except the initial segment, starts and ends on a
switch already part of a computed segment. Furthermore,
we will group segments into subnets. A subnet is a set of
switches and links (i.e. one or more segments) that is con-
nected to the rest of the network (other subnets) through
only one link. The use of subnets is motivated by some spe-
cial cases that will be described in section 3.4.

When the complete topology is partitioned into seg-
ments we can add routing restrictions. In Figure 1.c we
have placed one routing restriction in each of the four seg-
ments from Figure 1.b, these routing restrictions guarantee
deadlock-free routing and preserve connectivity. In the rst
segment, the placement of a routing restriction in any one
of the four switches will result in a deadlock-free routing
algorithm for this segment. Furthermore, as the second seg-
ment starts and ends on switches already belonging to the

rst segment, connectivity among the switches is guaran-
teed through the rst segment. Thus, we can place a turn re-
striction in the second segment, breaking the cycles that can
be found through the segment, without worrying about con-
nectivity. The main challenge lies in nding the segments,
as this is critical to guarantee deadlock-freedom, preserve
connectivity, and gain performance.

3.2 Segment-Based Routing Algorithm

The complete algorithm1 is shown in Figure 2. It consists
of the procedure compute_segments, which searches

1The algorithm assumes that a packet will never enter and leave a
switch through the same link.

for all segments. And the procedure find, which tries to
nd a new segment starting in the switch received as an

argument. Throughout the execution of the algorithm, the
switches and links can be in the following states:

• not visited. Initially all the switches and links are in
the state not visited. This is denoted by the variable
.visited being false.

• visited . A switch or link becomes visited once it be-
longs to an already computed routing segment. This is
denoted by the variable .visited being true.

• tvisited. During the process of computing a routing
segment, a switch or link may change to the state tem-
porarily visited. Only switches and links not marked
as visited may be marked as tvisited. This is denoted
by the variable .tvisited being true.

• starting. A switch is marked as the starting switch if it
is the rst switch chosen to compute a segment within
a subnet. This is denoted by the variable .starting
being true.

• terminal. A switch is marked as terminal if, through at
least one of its links, no new segment is found. This is
denoted by the variable .terminal being true.

The compute_segments procedure (Figure 2)
searches for all segments. First, it chooses a random switch
as the starting point of the rst segment in the rst sub-
net2. Then the selected switch (sw) is marked as start-
ing and visited, and added to the rst subnet. Second, the
find procedure is used to nd a segment starting in switch
sw. Such a segment only exists if it is possible to arrive
back at sw through a set of switches and links not already
visited. On success, the find procedure updates all the
switches and links belonging to the new segment, i.e. all
of them are marked as visited and as belonging to the cur-
rent subnet. On fail, the find procedure leaves all links

2As any switch could be selected as the starting switch, the procedure
can end up with different solutions. Later, we will indicate a better criteria
for computing segments for 2D meshes.



procedure compute segments()
var

s : segment list
sw : switch
c,n : integer # current subnet and segment
end : boolean

begin
c = 0; n = 0
sw = random; sw.starting = true
sw.subnet = c; sw.visited = true
s[n] = empty; end = false
repeat

if ( nd(sw,s[n],c))
n++

else
sw.terminal = true; sw = next visited()

if (sw == nil)
begin

sw = next not visited()
c++; sw.starting = true
sw.subnet = c; sw.visited = true

end
if (sw == nil) end = true

until (end)
end procedure

procedure nd(sw, segm, snet) : bool
var

nsw : switch
begin

sw.tvisited = true; segm = segm + sw
links = suitable links(sw)
if (links==nil) begin

sw.tvisited = false; segm = segm - sw; return false
end
for each link ln in links begin

ln.tvisited = true
segm = segm + ln
nsw = aTop[sw,ln]
if ((nsw.visited and nsw.subnet = snet) or

nd(nsw, segm, snet)) begin
ln.visited = true; sw.visited = true
ln.tvisited = false; sw.tvisited = false
return true

end
else begin

ln.tvisited = false; segm = segm - ln
end

segm = segm - sw; sw.tvisited = false
return false

end procedure

Figure 2. Main procedure for searching segments.

and switches at their initial state. If the procedure fails, it
means that there are no new segments reachable from this
switch, and the switch is marked as terminal. Third, the
procedure next_visited is used to search for a switch
marked as visited, belonging to the current subnet, and with
at least one link not marked as visited. If such a switch
is found it is used to search for new segments as just de-
scribed. Otherwise, the procedure next_not_visited
is used to search for a switch that is not marked as visited,
not marked as terminal, and attached to a terminal switch.
If successful, a new subnet is started and a new segment is
searched for from this switch. On failure, we know that all
switches have been searched and that all switches and links
are part of a segment and subnet.

The procedure find is responsible for nding, from a
given starting point, a segment ending on a visited switch
and made of switches and links not visited. During the
search the current switch is marked as tvisited and is added
to the current segment segm. Next, a set of links attached to
the current switch is built (suitable links). This set only in-
cludes links not marked as visited, nor as tvisited. If the set
is empty, then there are no suitable links and the nd pro-
cedure has failed in nding a new segment. Otherwise, the
links in the set are considered in the order found. Order is
important, since the segments found may be different if the
order of search is changed. When the links are searched,
they are rst marked as tvisited, then added to the current
segment segm. Then the switch at the other end of the link
is inspected. If this switch is marked as visited, or if a recur-
sive call of the find procedure from the neighbour switch
returns true (i.e. such a switch is found at a later stage), then

a new segment has been found. If we are unable to nd a
new segment we return with failure.

Figure 3 shows an example run of the algorithm. The
topology is made of 12 switches connected with 14 links.
We start by randomly selecting a switch, which yields
switch I . From switch I we nd segment ns1 consisting
of the following links and switches: {I, 8, E, 5, F, 9, J, 12}.
This is the only segment that can be found from I as a seg-
ment should always end in a visited switch. Next, we search
for a switch marked as visited, which includes {I, E, F, J},
and that has a link not visited, which reduces the candi-
dates to {F}. However, from F no new segment can be
found, and therefore, the switch is marked as terminal. All
switches belonging to the segments computed so far belong
to the rst subnet (SN0). Next, we search for a switch not
visited and attached to a terminal switch. The unique solu-
tion is switch G. At this step, a new subnet is started (SN1),
and G is marked as starting and visited. From G a new
segment is found: {G, 3, C, 2, D, 4,H, 11, L, 13,K, 10}.
Next, we search for a switch marked as visited and with
one or more attached links not visited, which results in
{G,C,H}. G is searched and a new segment containing
only link 7 is found. Next, from C no new segment is found
and the switch is marked as terminal.

We continue by inspecting B, as it is attached to a ter-
minal switch and not marked as visited, and decides that
no new segment is found. Thus, it is marked as terminal.
Finally we perform the same action on A. When nished,
three segments and four subnets are found, including four
starting switches and three terminal switches.
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Figure 3. Example of computing routing segments.

Through the previous steps we will nd three types of
routing segments:

• Starting segment. This type of routing segment will
start and end on the same switch, thus forming a cy-
cle. This routing segment will be found probably every
time a new subnet is initiated.

• Regular segment. This type of routing segment will
start on a link, will contain at least one switch, and
will end on a link.

• Unitary segment. This type of routing segment con-
sists of only one link.

In order to ensure deadlock-freedom and preserve con-
nectivity, the routing algorithm must place routing restric-
tions in each routing segment as shown in Figure 4.a. In
particular, for a starting segment, the cycle can be broken by
placing a bidirectional routing restriction on any switch ex-
cept the starting one (as it could introduce a cycle between
two subnets, refer to section 3.4). For regular segments, cy-
cles are broken by placing one bidirectional routing restric-
tion on any switch belonging to the segment. Finally, for
unitary segments, no traf c can be allowed to cross the link
in order to avoid deadlock. Thus, on one side of the link a
bidirectional routing restriction must be placed between this
link and every other link attached to switch.

3.3 Deadlock Freedom and Connectivity
within a Subnet

We will start by demonstrating deadlock-freedom and
connectivity for a single subnet. This means that only one
starting switch exists in the network, and that no terminal
switches are present. Later on we will extend this to cover
multiple subnets.

Definition 1 A cycle is defined as a set of n switches
and n channels, where channel ci connects switches
swi and swi+1 and channel cn connects switches swn

and sw1. Thus, a cycle can be represented as
sw1,c1,sw2,c2,sw3,c3,. . . ,swn,cn.

Lemma 1 Given a cycle in the network, there is at least one
complete segment included in the cycle.

Proof 1 Assume that there is a cycle
sw1,c1,sw2,c2,sw3,c3,. . . ,swn,cn.

If all the switches swi and channels ci in the cycle belong to
the same segment, then, the segment is a starting segment.

Otherwise, if there are some switches or channels belong-
ing to different segments we must distinguish between two
general cases.

In the first case all the switches belong to the same seg-
ment NSa, but at least a channel belongs to another seg-
ment NSb. This means that there is a link belonging to NSb

attached to two switches belonging to NSa. Thus, this link
forms a unitary segment and there is a complete segment in
the cycle.

In the second case there are two neighbour switches in the
cycle that belong to different segments NSa and NSb.

If the link connecting both switches belongs to a different
segment (NSc), then it forms a unitary segment and, there-
fore, the cycle includes one complete segment.

If the link belongs to the same segment as one of the
switches (i.e. NSb), the link is the last element of the seg-
ment and, therefore, NSb has been computed after NSa (as
it departs from another segment). In this situation, the NSb

segment will have consecutive elements (taking the direc-
tion contrary to NSa in the cycle) and the last element will
be a link or a switch. If the last element of NSb in the cy-
cle is a link, then NSb is a regular segment included in the
cycle. Therefore, there is a complete segment in the cycle.

Otherwise, if the segment NSb ends in a switch, then
this switch will be attached to another segment in the cycle
(lets say this new segment is NSc) and it follows that NSc

is computed after NSb. As NSb was computed after NSa,
NSc also has been computed after NSa. This deductive
process is repeated until the cycle is closed.

At the end, a complete segment is found within the cy-
cle (based on the previous deductions) or a contradiction is
reached. In the extreme case, a switch belonging to a net-
work segment (NSx) is attached through a link to a switch
belonging to NSa (closing the cycle). In this situation, the
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link belongs to a different segment (a unitary segment is
found), or it belongs to NSx (NSx is a regular segment
and is completely included in the cycle), or it belongs to
NSa. In the latter case, NSa should be computed after
NSx. However, NSa was computed before NSb, which
was computed before NSx. Thus, we have a contradiction.
Figure 5.a shows a summary of all the possibilities.

Lemma 2 Given any topology, the SR algorithm will al-
ways find a deadlock-free solution.

Proof 2 The way routing restrictions are placed in seg-
ments ensures that no cycle can be formed through an entire
segment. In order to introduce a deadlock, a cycle must be
present in the network. From the previous lemma it is de-
duced that a cycle includes at least one complete segment.
Thus, as no cycle can be formed across segments and a cy-
cle contains at least one segment, it is deduced that no cycle
can be formed.

Lemma 3 Given any topology, the SR routing will always
keep connectivity among all switches.

Proof 3 At the starting segment computed by the SR algo-
rithm, connectivity among all the switches of the segment
is ensured. Since, as channels are bidirectional, the seg-
ment starts and ends at the same switch and only one rout-
ing restriction is placed in the segment, all switches can be
reached from all other switches within the segment.

The next segment starts and ends at switches belonging
to the initial segment. For a regular segment (contains at
least one switch), a routing restriction is placed within the
segment. This ensures that all switches on one side of the
routing restriction can reach all switches on the other side
of the routing restriction through the initial segment. Thus,
connectivity is guaranteed among all switches belonging to
the initial and second segment. For a unitary segment, the
connectivity is ensured as no switch is included in a unitary
segment. For each added segment the connectivity among
switches in the new segment is ensured as described above.
Thus, in the end, all switches are connected.

3.4 Deadlock Freedom and Connectivity
among Subnets

Now, we extend the above to networks where SR detects
different subnets. Whenever a terminal switch is present in
a subnet, it will be attached to the starting switch of another
subnet and the corresponding link will not belong to any
subnet nor any segment. This link will be referred to as a
bridge. Figure 4.b shows an example.

Lemma 4 From a starting switch of a subnet, the same
switch can not be reached within its subnet.

Proof 4 The starting switch is used as the starting point
to find the first routing segment for the subnet (a starting
segment). As the first routing segment ends in the starting
switch, and a routing restriction is placed in a switch differ-
ent from the starting switch, the starting switch can not be
reached from itself within the routing segment.

For every new segment (regular or unitary) computed
within the same subnet, restrictions will be added in such a
way that the switches attached to endpoints of the segment
will be unconnected through the new segment. Therefore,
the starting switch can not reach itself by using any new seg-
ment. Furthermore, the starting switch can not reach itself
through any of the switches and links of its subnet.

If there is at least one bridge in the cycle, then that bridge
must appear in the cycle twice. This is because there is
only one connection between different subnets, as shown in
Figure 4.b.

At least one of the switches attached to the bridge is a
starting switch. In order to get such a cycle, the starting
switch must be able to reach itself from within its subnet.
As has been demonstrated, this is not possible and therefore,
no cycle can be formed when using bridge links. Addition-
ally, terminal switches and bridge links ensure connectivity
as no routing restriction is added to those components.



3.5 SR Algorithm Applied to 2D Meshes

It is obvious that the way segments are computed and
routing restrictions are placed, will have a great impact on
performance. A random search for segments may result
in performance worse than what could be achieved with
up*/down*. Therefore, segments and routing restrictions
must be computed with care, taking into account some pa-
rameters from the topology. As a first effort, we will show
an example of applying SR on 2D meshes.

Figure 5.b shows a 5 × 5 mesh already partitioned into
segments. These segments are computed by searching from
top to bottom, each row in a different direction. The first
row from left to right, the second row from right to left and
so on. Each segment will be made as short as possible by
exploring links closer to already visited switches first. The
routing restrictions are then placed in such a way that all
routing restrictions on the same row will be located in the
same relative position (Figure 5.b).

This way of searching for segments and placing routing
restrictions also works when the topology has link failures,
as shown in Figure 5.c. Here the method is applied to a 5×5
mesh with three failures. When dealing with the failures the
algorithm will obtain different segments, but all segments
will still be kept as short as possible.

3.6 Computational Cost

SR can be viewed as an algorithm executed in three
phases. In the first phase segments are computed. The
way segments are computed will influence the computa-
tional cost of the algorithm. E.g. a random search with a
recursive function may exhibit an excessive computational
cost however the search algorithm proposed in the previous
section will lower the cost as links are only visited once.
Thus, for a 2D mesh, the cost for this phase becomes O(m),
where m is the number of links in the network.

In the second phase routing restrictions are placed. As
proposed above, the computational cost of this phase will be
O(s), where s is the total number of segments. Finally, in
the third phase, paths are computed according to the routing
restrictions. The complexity of this phase may vary greatly
depending on the desired final performance. A straightfor-
ward random path selection will have a computational cost
of O(n2) where n is the number of switches. However,
more sophisticated methods have been proposed in order to
get the best set of paths. FX, for instance, uses an algorithm
that searches for a set of paths that minimises the maximum
number of paths that cross any link (minimising the cross-
ing path metric). If an optimisation like this is applied, then
the cost will be driven by the complexity of such algorithm.
As stated in [7] the best case scenario for the computational
cost of FX is O(n3) not considering the selection of the best
DFS tree.

4 Performance Evaluation

In this section we will compare the SR algorithm, both
analytically and through simulations, with the UD and FX
schemes. Analytical studies are performed by looking at
path and routing statistics of the three algorithms, while em-
pirical performance numbers are obtained through packet
level simulations.

4.1 Simulation Tool and Network Model

Our simulator aims to model arbitrary switch-based net-
works with point-to-point links. Each switch has a non-
blocking crossbar connecting input and output ports, which
allows multiple packets to be simultaneously transmitted.
The crossbar arbiter is based on FIFO request queues, with
one queue per output port, and buffers of 1 KB at both the
input and output side. The crossbar is able to transmit one
byte per connection, per cycle. A routing decision is made
at every switch, by accessing the local routing table. This
table maps destinations to output ports, with one mapping
for each possible destination. When the routing decision
is complete the packet is forwarded to the output buffer if
there is sufficient buffer capacity. Otherwise, the packet will
remain in the input buffer until the buffers became avail-
able, modelling an input-output buffered switch. The rout-
ing time at each switch is set to 100 ns. This includes
the time to access the routing table, the crossbar arbitration
time, and the time to set up the crossbar connections.

Our switch uses virtual cut-through switching [17] and
credit-based flow control. In our simulations we use a con-
stant packet size of 32 bytes, and a credit size of 64 bytes.
We also model the fly time,which depends on the link length
and the propagation delay of the cable. We model 12 meter
copper cables with a propagation delay of 5 ns/m, leading
to 60 ns of fly time. For each simulation run, we assume
the same constant packet rate for each end-node. Once the
network has reached steady state, the packet generation rate
will be equal to the packet reception rate. We will evaluate
a range of loads, from low load to saturation, with uniform,
bit reversal, and hotspot traffic patterns. For hotspot traffic,
4% of all sources will inject packets with the same desti-
nation, while the rest will inject packets to random destina-
tions. We have evaluated meshes and tori of sizes 4×4, 8×4
and 8 × 8. Additionally, we have modeled these topologies
with 5% of randomly-injected link failures.

We present results for UD, FX/DOR3 and SR, and we
plot the average packet latency4 versus the average accepted
traffic 5 measured in bytes/ns/switch. SR segments are com-
puted as described in section 3.5 and source/destination
paths are computed using the path balancing algorithm de-
veloped in [10]. This method minimises the deviation of

3For regular topologies FX equals DOR.
4Latency is the elapsed time between the injection of a packet at the

source host until it is delivered at the destination host.
5Accepted traffic is the amount of information delivered by the network

per time unit.



?

NSy −> unitary segment (NSy included)

NSx −> regular segment (NSx included)

NSa −> NSa after/before NSx−> contradiction

. . .NSx NSe NSd

NSd
NSc

NSb

NSb NSc

NSe NSdNSa NSx

(a) deadlock-freedom
(b) 5 × 5 mesh (c) irregular network

Figure 5. Example of (a) deadlock-freedom and (b) SR applied to a different topologies.

SR UD FX
APL ALW APL ALW APL ALW

Topology #Segm #Rest Avg Avg STD #Rest Avg Avg STD #Rest Avg Avg STD
Mesh 4x4 9 18 2.50 13.33 3.10 20 2.50 13.33 4.80 36 2.50 13.33 1.91
Mesh 8x4 21 42 3.87 38.15 15.49 42 3.87 38.15 20.09 84 3.87 38.15 15.01
Mesh 8x8 49 98 5.25 96.00 31.31 98 5.25 96.00 43.40 196 5.25 96.00 27.77

SR UD FX
APL ALW APL ALW APL ALW

Topology #Segm #Rest Avg Avg STD #Rest Avg Avg STD #Rest Avg Avg STD
Torus 4x4 25 64 2.10 8.43 2.02 62 2.00 8.00 3.96 96 2.00 8.00 0.00
Torus 8x8 65 194 4.58 73.50 28.07 160 4.50 72.00 50.35 288 4.50 72.00 28.06

SR UD FX
APL ALW APL ALW APL ALW

Topo-Seed #Segm #Rest Avg Avg STD #Rest Avg Avg STD #Rest Avg Avg STD
Irreg - 1 45 90 5.39 98.53 45.37 86 5.67 109.55 63.16 170 5.54 106.96 60.32
Irreg - 2 43 86 5.34 103.34 49.95 86 5.39 104.19 66.96 176 5.55 107.29 71.29
Irreg - 3 43 86 5.33 103.26 43.19 86 5.46 105.66 63.19 171 5.43 104.92 59.06
Irreg - 4 43 86 5.38 104.06 40.99 86 5.45 105.40 63.50 170 5.43 104.93 48.79
Irreg - 5 43 86 5.39 104.23 40.84 86 5.62 108.58 60.39 176 5.63 108.72 50.55

Table 1. Analytical results for different network topologies. APL stands for Average Path Lenght
whereas ALW stands for Average Link Weight. Irreg - x is derived from a 8 × 8 mesh with 5% of link
failures

link weight. Therefore, it is similar to the one used in FX.
Due to lack of space we only present results for a subset of
all simulations6.

4.2 Analytical Results

We have compared three properties of SR, UD and FX
algorithms: average path length, average link weight (i.e.
average number of paths crossing a link), and the total num-
ber of unidirectional turn restrictions applied. For SR, we
also included the number of segments computed. These
statistics are shown in Table 1 for every scenario consid-
ered.

For meshes without faults, both the average path length
and the average link weight for all algorithms are the same,
since all algorithms always use minimal paths. The standard
deviation, however, is higher in SR compared to FX. It is
reasonable, thus, to assume that FX will perform better than
SR when using a uniform traffic pattern (see Section 4.3).
Also UD has a standard deviation higher than SR, thus we

6Similar results have been obtained for all the topologies.

expect SR to outperform UD for uniform traffic. The high
standard deviation observed for UD is due to UD’s tendency
to concentrate traffic around the root of the UD tree.

For tori without faults, Table 1 shows that SR achieves
a slightly higher average path length compared to UD and
FX. This indicates that not all paths are minimal, and this
is due to a weakness in SR. In its current form the segmen-
tation algorithm is unable to exploit the wraparound links
present in tori, while UD and FX are able to use these links.
Still, we should expect SR to outperfrom UD when using
uniform traffic, since the observed standard deviation for
UD is almost twice that of SR. Looking at the number of
segments and turn restrictions for SR, we observe that we
prohibit more turns than the number of segments. This re-
veals that there exist many unitary segments. These unitary
segments are formed from the wraparound links.

In our last set of results we consider 8 × 8 meshes with
faults, In this situation SR really shows its benefits. The
SR algorithm performs better than both UD and FX for all
metrics. It has the shortest average path length, lowest av-
erage weight, and the lowest standard deviation. This is
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(d) 8 × 8 mesh bit-reversal pattern
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(e) 8 × 8 torus bit-reversal pattern
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(f) 8 × 8 torus with 4% hot-spot traffic

Figure 6. Average packet latency vs throughput for different topology/traffic patterns.

due to the use of segments, which makes it possible for SR
to retain the regularity of the topology in the areas where
there are no faults. A feature that makes SR a very good
alternative for semi-regular (regular networks with failures)
topologies, as will be shown in section 4.3.

When comparing FX with SR, one should remember that
the use of unidirectional routing restrictions in FX plays
a key role in balancing traffic in regular topologies. FX
achieves perfect balancing for a 4 × 4 torus. However, the
gap between SR and FX, for regular topologies, narrows
as the number of switches increases. This happens even if
SR only uses bidirectional routing restrictions, which leaves
room for future improvement. When considering regular
topologies with faults, FX looses much of its advantage over
SR, which can be seen from the values in Table 1.

4.3 Simulation Results

Figure 6 shows the performance achieved by UD, FX,
and SR for meshes of size 4 × 4, 8 × 8 and for a 8 × 8
torus, all with uniform traffic. We see that the standard de-
viation of the average link weight shown in Table 1 dictates
the performance achieved by each algorithm. In particu-
lar, FX beats SR with a factor of 1.075 on the 4 × 4 mesh,
and a factor of 1.11 on the 8 × 8 mesh7, while SR outper-
forms UD by a factor of 1.14 in a 4 × 4 mesh and 1.25
in a 8 × 8 mesh. In this scenario FX performance is out-
standing, since FX is identical to dimension order routing
(DOR). It is known that DOR behaves well with uniform

7Similar results are also achieved in 8 × 8 torus

traffic, even better than adaptive routing in meshes, but per-
formance drops with other traffic patterns. Let us therefore
analyse the bit reversal and hotspot case shown in Figure 6.
We see that for bit reversal traffic, SR shows an increase in
throughput, compared to FX, by a factor of 1.42 for a 8× 8
mesh, and a factor of 1.8 for a 8×8 torus. For hotspot traffic
both algorithms exhibit similar performance. These results
underline the potential of SR in regular networks.

When considering regular topologies with faults, the per-
formance of SR is further strengthened. Figure 7 shows
the results for three different meshes with 5% of randomly-
injected link faults and uniform traffic. For the 4 × 4 mesh
SR and FX are equal, but as the network size grows so does
the performance advantage of SR. For the 8 × 8 mesh, SR
achieves an increase in throughput by a factor of 1.4 com-
pared to FX. Altogether, this shows that the SR algorithm
performs well as a fault-tolerant routing algorithm for reg-
ular topologies. With the main strength lying in the locality
independence property for the placement of routing restric-
tions, and its ability to exploit semi-regular topologies. Fur-
thermore, it indicates that SR has the potential of becoming
a topology agnostic routing methodology.

5 Conclusions

We have proposed a segment-based routing algorithm,
where the novelty resides in the introduction of a locality in-
dependence property. This property adds a new dimension
to the placement of routing restrictions, and allows us to dis-
entangle ourselves from the restraints found in current algo-
rithms such as up*/down and FX. The SR algorithm’s use
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(c) 8 × 8 mesh with 5% of link failures
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(e) 8 × 8 mesh with 5% of link failures
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Figure 7. Average packet latency vs throughput. Uniform distribution of packet destinations.

of segments, makes it possible to exploit the semi-regularity
found in irregular topologies, such as meshes and tori with
faults. Results show that SR performance is similar to the
one obtained by FX when used in regular topologies, while
it supersedes FX when we introduce link failures.

As future work we plan to improve the segmentation al-
gorithm to give better results with tori, as well as for highly
irregular topologies. As an optimisation we will use unidi-
rectional routing restrictions as used in FX.
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