
On the Effectiveness of Speculative and Selective Memory Fences

Oliver Trachsel, Christoph von Praun, and Thomas R. Gross

Department of Computer Science
ETH Zurich

8092 Zurich, Switzerland

Abstract

Memory fences inhibit the reordering of memory ac-
cesses in modern microprocessors; fences are useful to
implement synchronization and strong shared memory
semantics in multi-threaded programs. A naive imple-
mentation of memory fences can result in a significant
performance penalty for processors with deep pipelines
supporting multiple concurrent memory accesses.

The paper compares three techniques to reduce the
impact of memory fences: (1) Read-speculation allows
reads that follow a fence to be issued while the fence
is being processed; (2) Write-ahead additionally allows
writes following a fence to proceed early; (3) Selective
fences distinguish between memory accesses to thread-
local and shared memory and enforce ordering only
among accesses to shared memory.

We evaluate and compare the effectiveness of these
techniques with a simulator derived from the Pentium 4
architecture. We report data for a storage model that
uses memory fences to enforce the memory semantics
at monitor boundaries.

1. Introduction

Modern microprocessors overlap and reorder mem-
ory operations to smooth out the increasing delay of
transferring data between memory and CPU. Con-
straints on reordering are defined in a (shared) memory
model that addresses the visibility of memory actions
in a multiprocessor environment with respect to the
program order of statements. These rules, together
with data dependences among memory references on
the same processor, determine legal execution orders.

This research was supported, in part, by a gift from the Micro-
processor Research Lab (MRL) of Intel Corporation. Christoph
von Praun’s current address is: IBM T.J. Watson Research Cen-
ter, Yorktown Heights, NY

For current multiprocessor architectures, the memory
model is usually weaker than the intuitive model of se-
quential consistency [18], i.e., the architecture imposes
fewer constraints on ordering and hence provides more
leeway for reordering and overlap.

Common programming models for multi-threaded
applications require guarantees of memory consistency
that are stronger than those provided by modern ar-
chitectures. Most inter-thread synchronization models,
e.g., specify that the memory contents be consistent
across threads at each point where control flow is syn-
chronized. This combination of control flow and mem-
ory view synchronization has consequences for the com-
piler and/or runtime system; a point of flow synchro-
nization implies a barrier to the reordering of memory
accesses [11]. Memory models that are defined at the
programming language level [3, 7, 21] are another ex-
ample. Such models must control the access reordering
explicitly and often require a high number of memory
fences to achieve this goal.

Current processor architectures provide memory
fence instructions (aka serializing instructions or bar-
riers) to inhibit the internal reordering of memory ac-
cesses. According to [15, Volume 3, Chapter 7], “fence
instructions provide a performance-efficient way of en-
suring load and store memory ordering between rou-
tines that produce weakly-ordered results and routines
that consume data”. Memory fences are currently used
in the context of inter-thread synchronization and they
can significantly degrade execution performance [6].

Static compiler analysis and dynamic techniques
have been proposed to remove unnecessary synchro-
nization locks [1, 2, 4, 22, 26]. However, these tech-
niques are not successful in all contexts.

This paper studies three ideas to reduce the impact
of memory fences: (1) Read-speculation, as proposed
by Gharachorloo et al. [9], which allows reads that
follow a fence to be issued while the fence is being
processed; (2) Write-ahead, used in combination with

1-4244-0054-6/06/$20.00 ©2006 IEEE

read-speculation, which additionally allows writes fol-
lowing a fence to proceed early; similar techniques have
been addressed by Gharachorloo et al. [8], and Ham-
mond et al. [12]; and (3) Selective fences, which dis-
tinguish between memory accesses to thread-local and
shared memory and enforce ordering only between ac-
cesses to shared memory1. We compare these tech-
niques against a simple baseline model that does not
apply any of these optimizations.

To investigate these issues, we have developed a
model and simulator that are derived from the In-
tel Pentium 4 processor architecture. Specific em-
phasis is put on the aspects of the read/write queue
(RWQ), write buffer (WB), and the memory subsys-
tem. The simulation is based on execution traces of
multi-threaded Java programs. We report data for
a storage model that uses memory fences to enforce
the memory semantics at monitor boundaries. The de-
scribed optimizations reduce the cost per fence by up to
99%, with an average reduction of 83.2% for selective
fences.

2. Fence characterization

The execution of a memory operation is not an in-
stantaneous action; rather, it extends over a time in-
terval during which the processor and memory system
can carry out concurrent work (e.g., initiate further
memory operations). We say that the memory oper-
ation is issued at the beginning of that interval and
that the memory operation has performed at the end
of that interval [5]. During the interval, the result of a
read operation is determined, and the value of a write
operation is made available to other processors. There
are several features of microprocessors that cause re-
ordering of memory accesses:

• Write buffering allows read operations that follow
a write to be hoisted above the write;

• Write combining allows writes to bypass other
writes;

• Non-blocking reads allow reads and writes to be
hoisted above a pending read operation.

A fence sets a bound on the start and/or end of
the execution intervals of memory operations that sur-
round the fence. Fences control the behavior of the
processor on which they execute and do not influence
the ordering of memory operations that are executed by

1There is anecdotal evidence that this technique has been
considered before, but we are not aware of any publication on
this topic.

other processors. There are several variants of fences,
and they can be classified according to the types of
memory operations they affect [19].

• read-read fence (lfence): Reads following the lfence
are not issued before preceding reads have com-
pleted; an lfence disables reordering due to non-
blocking reads.

• write-write fence (sfence): An sfence ensures that
writes are performed in order; it disables reorder-
ing due to write combining.

• read-write fence: This fence disables an optimiza-
tion that allows a write operation to complete
earlier than a pending read. For performance
reasons, processors typically try to execute reads
early and delay the completion of writes; hence
most common processor architectures (including
SPARC and IA-32) obey this ordering without
mention of a fence.

• write-read fence: A write-read fence ensures that
reads following writes obtain values that are ob-
served after the writes become visible to other pro-
cessors. In particular, such a fence ensures that
reads that follow a write to the same location can
observe a value that is loaded from memory, not
from the WB. This fence disables write buffering.

• memory fence (mfence): All memory operations
that precede an mfence must have performed.
Memory operations that follow an mfence must
not be issued before the mfence; the mfence com-
bines the reordering constraints of all other fence
types.

3. Processor and fence model

We use a simulator to evaluate the performance of
fences and the effect of the optimizations that we study.
This section explains the underlying processor model
with a detailed discussion of the memory hierarchy. We
also describe the four implementation variants of fences
(one baseline model, three optimizations).

The model abstracts from the details of the execu-
tion unit as follows. The execution cost of operations
other than memory accesses is estimated using approx-
imate throughput information. We use the initiation
interval as provided by [14, Appendix C] as an esti-
mate of the throughput capacity.

3.1. Execution path of memory operations

The execution of a memory operation involves sev-
eral architectural components that are illustrated in

Figure 1. The execution proceeds along the following
steps. We use the terms issued and performed as de-
fined by Dubois et al. [5].

1. Memory operations are fetched from the instruc-
tion stream and entered into the RWQ, which
keeps track of all currently performing memory
accesses; there can be several memory operations
per instruction. If the RWQ is full, the execution
stalls. Operations enter the RWQ in the order
of their occurrence in the instruction stream at a
maximal rate of one operation per cycle.

2. Write operations are given to the memory system,
i.e., issued, in order. A read operation in the RWQ
is issued as soon as all register- or address depen-
dences with earlier memory accesses are met.

3. When issued, reads and writes are handed over to
the L1 subsystem; writes are, in addition, entered
into the WB. If a read does not hit in L1, the
data request is handed over to the L2 subunit and
subsequently (in case of an L2 miss) to the main
memory system.

4. A read operation has performed if its value is avail-
able. A write operation has performed as soon as
it appears in the write buffer. Accesses that are
issued and have not performed are said to be pend-
ing.

5. Operations that have performed are removed from
the RWQ in the order of their occurrence in the

Figure 1. Architectural components of the
processor and memory system.

Unit Parameters
L1 cache 2/6 cycles integer/float latency,

1 new access per cycle, hits with
probability p1

L2 cache 7 cycles latency, 1 new access ev-
ery other cycle, hits with proba-
bility p2

Memory 50 cycles latency, new access ev-
ery 12 cycles

Write buffer(s) one 24-entry buffer or two sepa-
rate 12-entry buffers for thread-
local and shared data, each en-
try 64 bytes wide, retire-at-20
(one buffer) or retire-at-8 (two
buffers), 50000 cycles maximal
reside time, full entries retire in
bursts, partials in 8 bytes chunks

Table 1. Summary of the cache, memory, and
write buffer configuration. The cache and
memory access times and the buffer geom-
etry are similar to those of Pentium 4 proces-
sors.

instruction stream. An operation that is removed
from the RWQ is said to retire.

3.2. Caches and write buffer

We use a two-level cache hierarchy, as shown in Fig-
ure 1. The parameters of caches and WB are summa-
rized in Table 1. L1 and L2 are statistically modeled;
the benchmark-specific hit rates are measured on a real
machine. The access latency to L1 is 2 cycles for inte-
ger data and 6 cycles for floating point data, following
[13]. A new access can be issued every cycle. L2 has
an access latency of 7 cycles, and a new access can be
issued every other cycle. The memory latency is 50
CPU cycles and a new memory access can be issued
every 12 cycles (bus transaction time). These numbers
are taken as an average from [14, Chapter 1]. If a write
misses, no data is fetched from the next cache level or
from memory.

L1 has write-through semantics, i.e., every write is
propagated to L2. The WB is responsible for passing
on the writes to L2: The WB avoids the blocking of
the execution unit when writes are issued faster than
L2 is able to handle them; moreover, the WB reduces
the internal bus traffic by combining writes to the same
cache block. Many writes are word-sized (4 bytes), so
writes to the same block address are combined into the
same WB entry, which has the same width as an L1

cache block (64 bytes).
Blocks are transferred from the WB to L2 according

to a retirement strategy that we formulate according
to Skadron and Clark [23]: In our model, the entry
with the oldest data is retired if there are 20 or more
valid entries in the buffer (retire-at-20), or if the entry
contains data older than 50,000 cycles.

To retire an entry, the WB arbitrates for access to
L2 and writes the valid data. If every byte of the entry
is dirty, then all 64 bytes are written out in one burst
access. If some bytes have not been written to, then
the data is retired in 8 byte chunks. Both transfers,
a burst- or a chunk-write, to L2 take 7 cycles. When
the WB is full, it can cause processor stalls because
no more writes can be issued until the buffer has writ-
ten an old entry to L2. New writes can be combined
with all entries except those currently being retired or
marked for retirement.

An important characteristic of a combining WB is
that it may reorder writes when combining a write with
an existing entry in the buffer [23]. Our model allows
for this reordering and is therefore somewhat more gen-
eral than common IA-32 implementations, which do
not reorder writes. In addition, our model allows reads
to bypass writes that reside in the WB. Due to this
reordering, the WB plays a crucial role for memory
fences. The buffer needs to be flushed when strict or-
dering of reads and writes is mandated.

Our processor model supports two separate WBs
(both having the same size) to separate writes to
thread-local memory from those to shared memory. On
a fence, it is only necessary to flush the buffer with
shared data. The duration of a flush may thereby be
reduced.

3.3. Implementation of fences

This section presents four implementation alterna-
tives of fences, a baseline model and three variants
(read-speculation, write-ahead, and selective fences).
Each model is discussed in detail in the following sec-
tions.

Fences affect the operation of two architectural com-
ponents that implement the reordering of memory ac-
cesses: (1) the RWQ that allows for processing multiple
concurrent memory operations, and (2) the WB. The
presentation focuses on a memory fence (mfence) be-
cause all issues arise here; other fence variants (Section
2) can be optimized accordingly.

(a) Baseline. On a memory fence, the processor
unwinds the processor pipeline to make sure that all
preceding memory operations have performed at the
memory system; at the memory interface, all pending

Figure 2. Execution scenario under the base-
line model.

memory operations are drained from the RWQ; then
the WB is flushed to memory. Operations that follow
the fence are not issued until the fence has completed.

Figure 2 shows the execution of the instruction se-
quence (read, write, mfence, read, write) in the
baseline model.

Read and write operations enter the RWQ in
program-order; at most one operation is entered per
clock tick; several operations may be removed at a
time. The gray bars specify the period during which an
operation is pending, i.e., active in the memory system.
The fence execution happens in two phases: During the
first phase, all operations are drained from the RWQ.
During the second phase, writes are flushed from the
WB to L2. The phases may overlap; the second phase
starts as soon as there are no more writes in the RWQ.
The read and write operations succeeding the fence are
issued only once the two phases have completed.

(b) Read-speculation. The read-speculation
model aggressively issues reads that follow a fence while
the fence is active. Such reads are marked speculative
and must be redone if L2 coherence traffic for the con-
cerned address is observed before the fence finishes. As
the speculation period is typically small, i.e., at most
the duration of a fence, the complexity of auxiliary
hardware structures to track the speculative execution
is moderate. Speculative execution was first introduced
by Gharachorloo et al. [9].

In the scenario of Figure 3(a), the read instruction
following the fence is issued speculatively while the
write is delayed.

(c) Write-ahead. At the occurrence of a fence,
subsequent writes can proceed and may even be en-
tered into the WB as long as they are not combined
with writes issued before the fence. Similar techniques
have been addressed by Gharachorloo et al. [8], and
Hammond et al. [12].

b

Figure 3. Execution scenario under the read-
speculation and write-ahead models.

In Figure 3(b), both memory operations that follow
the fence enter the RWQ; provided that there are no
data dependences between the read and the write, the
write can proceed early, while the read is not issued to
the memory system until the fence is performed.

Write-ahead and read-speculation can be combined.
In this case, writes that depend on speculative reads
may need to be undone if a mis-speculation on that
read is detected. This is, however, not a problem,
since writes that occur during the activity of a fence
remain in the WB and can be simply undone during
rollback. For the evaluation, we consider only this com-
bined model, because write-ahead reveals no significant
improvement of fence performance when applied on its
own.

(d) Selective fences. Selective fences affect only
a subset of memory operations: operations that tar-
get shared memory follow the rules of the fence; op-
erations that operate on thread-local memory remain
unaffected.

In Figure 4, local memory operations that follow
the fence proceed while the fence is active. We assume
that there is no data dependence between the read and
the subsequent write operations. Note that operations
that target shared data enter the RWQ but are delayed,
i.e., not issued to the memory system, until the fence

Figure 4. Execution scenario with selective
fences.

completes.
There are two factors that make the selective fence

model more efficient than the baseline model:

1. When flushing the WB, only entries to shared
memory are evicted. Entries that involve shared
memory can either be kept in a separate buffer (as
in our model) or can be marked in a single buffer.
The benefit is a reduction of the flush time.

2. When executing a fence, memory accesses to
thread-local memory can proceed during the ex-
ecution of the fence. This refinement re-enables
ILP to a certain degree, as operations that de-
pend only on thread-local data need no longer be
blocked during a fence.

4. Methodology

Our experimental setup consists of a compiler, a
trace collector, and the simulator.

We extended an ahead-of-time Java compiler [17] by
a code instrumenter to enable trace collection during
execution of the compiled programs. The generated
traces contain all necessary information about mem-
ory accesses, fences, and non-memory instructions. We
simulate these traces with an event-based processor
simulator that implements the processor model from
Section 3.

5. Evaluation

The first part of this section discusses one applica-
tion scenario of fences. We then present the bench-
marks used for evaluation along with statistics about
memory access and fence usage. The succeeding sub-
section discusses the improvements that can be ob-
tained by the optimized fence models. Finally, we make
some general comments on memory access disambigua-
tion.

5.1. Application scenario

An important application of fences is to implement
monitors; monitors are the predominant synchroniza-
tion mechanism in Java and C#, and hence an efficient
handling of fences is important to obtain good perfor-
mance.

A common model for inter-thread synchronization
is to synchronize both the execution and memory
view simultaneously. In Java, for example, the ba-
sic monitor semantics are, besides the effect on the
progress of the calling process, to provide an acquire
semantics at monitorenter and release semantics at
monitorexit [20]. This combination means that ac-
cesses to shared variables inside a monitor must be
performed after the acquire and before the release.

We compare four models for bidirectional fences.
The four models differ in the kind of operations that are
constrained by the fence. In the simulation, acquire-
release semantics are established though the use of
mfence (Section 2) at monitor boundaries.

5.2. Benchmark characterization

The following benchmarks are used for the evalua-
tion:

• sor and sparse from the Java Grande Forum multi-
threaded benchmark suite [16]. The data sizes
of the benchmarks have been reduced to shorten
their execution time.

• mtrt: A multi-threaded raytracer from the SPEC
JVM98 suite [24].

• tsp: A TSP solver ported from C.

• jigsaw: The web-server of the W3 consortium in
version 1.0 [27].

• specjbb: The SPEC JBB2000 Java business bench-
mark [25].

L1 hit rate L2 hit rate
sor 97.7% 95.3%
sparse 90.1% 98.2%
mtrt 96.8% 88.3%
tsp 99.5% 60.8%
jigsaw 96.0% 82.9%
specjbb 96.9% 77.0%

Table 2. Cache hit rates measured on the real
CPU (Intel Xeon with a 256KB L2).

total stack R/W- accesses
[106] ratio per fence

sor 537 79.4% 4.5 1,491
sparse 165 72.1% 3.2 1,865
mtrt 282 80.3% 1.5 140
tsp 166 62.6% 3.5 152,782
jigsaw 234 85.4% 1.5 656
specjbb 2604 82.8% 1.3 84

Table 3. Memory access statistics of the
benchmarks. Accesses to the stack are
thread-local. All heap accesses are assumed
to go to shared memory.

The L1 and L2 hit rates are shown in Table 2. They
are measured on the real CPU and used as input pa-
rameters for the simulations.

Table 3 shows the memory access and fence statistics
of the benchmarks. tsp has almost no thread synchro-
nization. This fact is indicated by the high number of
memory accesses per fence. Benchmarks sor and sparse
use moderate synchronization, and the remaining three
benchmarks have high synchronization density. All ac-
cesses to the stack are thread-local (over 70% for all
benchmarks); all heap accesses are assumed to go to
shared memory.

5.3. Fence performance

We evaluate the fence performance and compare the
different fence models. Table 4 shows for the baseline
model how cycles during which a fence is active are
partitioned among the main phases (draining of the
RWQ and draining of the WB).

For most benchmarks, the draining of the RWQ cor-
responds to about 30% of the fence time. An exception
to this is tsp, for which the WB draining takes longer
(but for which the total fence time corresponds to less
than 0.1% of total execution time).

Table 5 shows the runtime overhead due to the

fence RWQ- WB-
time drain drain

sor 1.5% 32.4% 67.6%
sparse 1.4% 31.1% 68.9%
mtrt 15.0% 29.7% 70.3%
tsp <0.1% 15.8% 84.2%
jigsaw 4.1% 27.7% 72.3%
specjbb 31.1% 30.7% 69.3%

Table 4. The time relative to the total exe-
cution time during which a fence was ac-
tive and the partition between RWQ-drain and
WB-drain of that time.

base- selective read- read-spec.+
line fences spec. write-ahead

sor 0.8% <0.1% 0.2% <0.1%
sparse 0.8% <0.1% 0.1% 0.1%
mtrt 13.5% 3.8% 7.9% 6.1%
tsp <0.1% <0.1% <0.1% <0.1%
jigsaw 3.1% 0.7% 1.9% 1.4%
specjbb 21.5% 2.3% 8.7% 4.3%

Table 5. Runtime overhead due to the pres-
ence of fences under the different models.

baseline selective read-spec. read-spec.+
fences write-ahead

sor 21.1 3.2 84.9% 5.2 75.1% 1.0 95.3%
sparse 26.3 0.1 99.8% 8.0 69.4% 4.7 82.3%
mtrt 28.9 8.1 71.9% 16.9 41.7% 13.0 55.2%
tsp 38.5 9.1 76.4% 26.1 32.0% 17.4 54.9%
jigsaw 29.3 6.8 76.8% 17.5 40.1% 12.9 55.9%
specjbb 29.5 3.1 89.3% 11.9 59.7% 5.9 80.1%

Table 6. Average cost of a fence in clock cycles and the fence cost reduction relative to the baseline
model.

presence of fences under four different fence models.
The overhead is calculated as the increase in execu-
tion time relative to a hypothetical model where fences
would cost nothing. Table 6 shows the average cost per
fence in number of clock cycles. We assume that read-
speculation never fails and hence do not account for
rollback cost. Gniady et al. [10] showed that misspecu-
lations are indeed very infrequent in well-synchronized
applications.

We can group the results into three classes: A first
class is formed by tsp, sor and sparse, for which the
impact of fences on the execution is below 1%. We re-
port these benchmarks, even though the absolute per-
formance gain through optimized fences is small, be-
cause we are interested in the reduction of the cost
per fence. If the cost of a fence can be significantly
reduced by the improved fence models for different ap-
plications and memory access patterns around fences,
it is of course most beneficial for applications which
make frequent use of fences.

A second class is formed by jigsaw, for which 3% of
the total execution time is attributed to fences.

mtrt and specjbb form the third class with the most
significant overhead due to fence instructions: more
than 10% of the total execution time is due to memory

fences under the baseline model.
The results in Table 6 show that, compared to the

other models, selective fences achieve the highest re-
duction of fence cost for all benchmarks except sor.
The relative improvement lies between 71.9% for mtrt
and more than 99% for sparse with an average of 83.2%.

The speculative-read model also results in a remark-
able improvement of fence performance, although less
than with selective fences. The improvement varies
from 32.0% for tsp to 75.1% for sor with an average
of 53.0%. There are two limiting bottlenecks for this
model: (1) The maximal refill rate of the RWQ which is
one access (read or write) per clock cycle in our model,
and (2) reads that miss in L1 must wait for the WB
drain to finish because eviction accesses are prioritized
at L2.

The first bottleneck can partly be avoided by com-
bining write-ahead and read-speculation. The corre-
sponding numbers are given in the last column of Table
6. The reduction of the mean cost per fence increases
to 54.9%–95.3% (tsp and sor, respectively), with an av-
erage of 70.6%;

An important metric for selective fences is the num-
ber of thread-local accesses that surround a fence. If
there are no, or only very few, accesses to non-shared

Local acc. Cost red.
per fence

tsp 103186 76.4%
sparse 1408 99.8%
sor 1217 84.9%
jigsaw 648 76.8%
mtrt 139 71.9%
specjbb 80 89.3%

Table 7. Thread-local accesses per fence vs.
fence cost reduction for the selective fence
model.

R/W- Cost red.
ratio

sor 4.5 75.1%
tsp 3.5 32.0%
sparse 3.2 69.4%
jigsaw 1.5 40.1%
mtrt 1.5 41.7%
specjbb 1.3 59.7%

Table 8. Ratio between reads and writes vs.
fence cost reduction for the model with read-
speculation.

memory before and after a fence, then the performance
gain with the selective fence model is small. If, on the
other hand, most accesses go to thread-local memory
and accesses to shared memory are sporadic, then the
full potential of selective fences can be exploited. Ta-
ble 7 provides another view of this issue; it shows the
average number of local accesses per fence as well as
the relative fence cost reduction.

The ratio between reads and writes is a similar
metric to indicate the effectiveness of the model with
speculative-reads. Generally, the more reads per write,
the higher the potential for speculative-reads. Table 8
contains the corresponding data.

5.4. Discussion

Although the compiler we use has already imple-
mented a more advanced shared/local disambiguation
scheme, we do not take advantage of it in our tests;
instead, the complete heap of an application is as-
sumed to be thread-shared. The performance improve-
ment could be even higher if the differentiation between
thread-local and thread-shared for heap accesses that
is determined by the compiler were taken into account.

Today’s microprocessors already contain mecha-
nisms to declare different properties for distinct mem-

ory regions (e.g., memory type range registers [15,
Volume 3]) which could provide the foundation for
address-based memory disambiguation.

The implementation of sequential consistency
through a compiler at the programming language
level [6, 7] requires the selective insertion of memory
fences at ordinary memory access operations (in ad-
dition to fences accompanying synchronization opera-
tions). These additional fences can result in an even
higher performance degradation than the application
scenario we consider in this paper.

6. Concluding remarks

The efficient implementation of fences will become
more important in future generations of microproces-
sors as the gap between processor cycle time and mem-
ory access time widens. In current application scenar-
ios, e.g., thread synchronization with fences at monitor
boundaries, fences can occur frequently and hence their
optimization is important to the overall execution per-
formance of a parallel (multi-threaded) program. On
today’s processors, fences can be expensive, with the
corresponding negative impact on the execution time
of parallel programs.

However, memory fences need not be expensive: this
paper studies three practical optimizations that do not
require expensive hardware extensions and that reduce
the execution time of fences by up to 99% compared
to a non-optimized implementation. The optimizations
pursue two principal strategies: First, write-ahead and
read-speculation aim at advancing the execution win-
dow past a fence while the fence is active; they are very
effective and reduce fence cycle time by an average of
70.6%. Second, selective fences differentiate thread-
local and shared data and constrain only the execution
order among operations on shared data; even using the
most rudimentary heuristic for disambiguation yields
an average reduction of 83.2%, making this the most
effective technique we studied.

Multi-threaded programs are likely to increase in im-
portance as new languages include appropriate abstrac-
tions; in addition, the spread of multiprocessor and
multicore machines will further encourage the develop-
ment of multi-threaded programs. Since fences are a
key component of many synchronization constructs and
language-level memory consistency models, improving
their efficiency is crucial to providing a suitable plat-
form for the execution of parallel programs.

Acknowledgments We thank Niko Matsakis and
the anonymous reviewers for their detailed and insight-
ful comments.

References

[1] J. Aldrich, C. Chambers, E. Sirer, and S. Eggers.
Static analyses for eliminating unnecessary
synchronization from Java programs. In Proc. of
Static Analysis Symposium (SAS’99), pages 19–38,
Sept. 1999.

[2] J. Bogda and U. Hölzle. Removing unnecessary
synchronization in Java. In Proc. Conf.
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’99), pages 35–46, Nov.
1999.

[3] A. Chien, U. Reddy, J. Plevyak, and J. Dolby.
ICC++ — A C++ dialect for high performance
parallel computing. In 2nd Intl. Symp. on Object
Technologies for Advanced Software (ISOTAS), pages
190–205, Mar. 1996.

[4] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and
S. Midkiff. Escape analysis for Java. In Proc.
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’99), pages 1–19, Nov.
1999.

[5] M. Dubois, C. Scheurich, and F. Briggs. Memory
access buffering in multiprocessors. In Proc. of the
13th Intl. Symp. on Computer Architecture
(ISCA’86), pages 434–442, 1986.

[6] X. Fang. Inserting fences to guarantee sequential
consistency. Technical Report MSU-CSE-02-27,
Department of Computer Science, Michigan State
University, East Lansing, Michigan, December 2002.

[7] X. Fang, J. Lee, and S. P. Midkiff. Automatic fence
insertion for shared memory multiprocessing. In
Proc. of the 17th Intl. Conf. on Supercomputing
(ICS’03), pages 285–294, 2003.

[8] K. Gharachorloo, A. Gupta, and J. Hennessy.
Performance evaluation of memory consistency
models for shared-memory multiprocessors. In Proc.
of the 4th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS’91), pages 245–257, 1991.

[9] K. Gharachorloo, A. Gupta, and J. Hennessy. Two
techniques to enhance the performance of memory
consistency models. In Proc. of the 1991 Intl. Conf.
on Parallel Processing (ICPP’91), pages 355–364,
1991.

[10] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC
+ ILP = RC? In Proc. of the 26th Intl. Symp. on
Computer Architecture (ISCA’99), pages 162–171,
1999.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
Java Language Specification, 2nd Edition.
Addison-Wesley, 2000.

[12] L. Hammond, M. Willey, and K. Olukotun. Data
speculation support for a chip multiprocessor. In
Proc. of the 8th Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS’98), pages 58–69, 1998.

[13] G. Hinton, D. Sager, M. Upton, D. Boggs,
D. Carmean, A. Kyker, and P. Roussel. The
Microarchitecture of the Pentium 4 Processor. Intel
Technology Journal, (1), Feb. 2001.

[14] Intel Corporation. IA-32 Intel Architecture
Optimization Reference Manual.
http://www.intel.com/products/processor/pentium4,
June 2005.

[15] Intel Corporation. IA-32 Intel Architecture Software
Developer’s Manual, Volumes 1-3.
http://www.intel.com/products/processor/pentium4,
Jan. 2006.

[16] Java Grande Forum. Multi-threaded benchmark
suite. http://www.epcc.ed.ac.uk/javagrande/, 1999.

[17] Laboratory for Software Technology (LST), ETH
Zurich. ERCO – ETH Research Compiler
Framework, 2004.

[18] L. Lamport. How to make a correct multiprocess
program execute correctly on a multiprocessor. IEEE
Trans. on Computers, 46(7):779–782, July 1997.

[19] D. Lea. The JSR-133 cookbook for compiler writers.
http://gee.cs.oswego.edu/dl/jmm/cookbook.html,
2005.

[20] J. Manson, W. Pugh, and S. V. Adve. The Java
memory model. In POPL ’05: Proceedings of the
32nd Symp. on Principles of Programming
Languages, pages 378–391, 2005.

[21] S. Midkiff, J. Lee, and D. Padua. A compiler for
multiple memory models. In Rec. Workshop
Compilers for Parallel Computers (CPC’01), June
2001.

[22] R. Rajwar and J. R. Goodman. Speculative lock
elision: Enabling highly concurrent multithreaded
execution. In Proc. of the 34th Intl. Symp. on
Microarchitecture (MICRO’01), pages 294–305, 2001.

[23] K. Skadron and D. Clark. Design issues and tradeoffs
for write buffers. In Proc. 3rd Intl. Symp. on
High-Performance Computer Architecture
(HPCA’97), pages 144–155, Feb. 1997.

[24] The Standard Performance Evaluation Corporation.
SPEC JVM98 Benchmarks.
http://www.spec.org/osg/jvm98, 1998.

[25] The Standard Performance Evaluation Corporation.
SPEC JBB2000 Benchmark.
http://www.spec.org/osg/jbb2000, 2000.

[26] J. Whaley and M. Rinard. Compositional pointer
and escape analysis for Java programs. In Proc.
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’99), pages 187–206, Nov.
1999.

[27] World Wide Web Consortium (W3C). Jigsaw
Webserver. http://www.w3c.org/Jigsaw/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

