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Abstract

Most programs are repetitive, where similar behavior can
be seen at different execution times. Algorithms have been
proposed that automatically group similar portions of a pro-
gram’s execution into phases, where samples of execution in
the same phase have homogeneous behavior and similar re-
source requirements.

In this paper, we examine applying these phase analysis
algorithms and how to adapt them to parallel applications
running on shared memory processors. Our approach relies
on a separate representation of each thread’s activity. We
first focus on showing its ability to identify similar intervals
of execution across threads for a single run. We then show
that it is effective at identifying similar behavior of a program
when the number of threads is varied between runs. This can
be used by developers to examine how different phases scale
across different number of threads. Finally, we examine using
the phase analysis to pick simulation points to guide multi-
threaded simulation.

1 Introduction
The behavior of a program is not random - as programs
execute, they exhibit cyclic behavior patterns. Recent re-
search [1, 2, 9, 10, 11, 24, 26, 28, 29], has shown that it is
possible to accurately identify and predict these phases in pro-
gram execution. Phase behavior can be exploited for accurate
architecture simulation [27, 28], to save energy by dynami-
cally reconfiguring caches and processor width [2, 9, 10, 29],
to guide compiler optimizations [3, 22] and finally to provide
feedback to the programmer to guide program optimization.
All of these techniques take advantage of the phase behavior
that exists in programs.

Prior work on phase classification [18, 26, 28, 29] divides
a program’s execution into non-overlapping fixed-length in-
tervals. An interval is a contiguous portion of execution (a
slice in time) of a program. A phase is a set of intervals within
a program’s execution that have similar behavior (e.g., CPI,
cache miss rates, branch miss rates, etc), regardless of tempo-
ral adjacency. This means that intervals that belong to a phase
may appear throughout the program’s execution. Some of the

prior work uses an off-line clustering algorithm to break a
program’s execution into phases to perform fast and accurate
architecture simulation by simulating a single representative
portion of each phase of execution [1, 24, 26, 28].

These prior techniques have focused on finding phase be-
havior in serial applications. In this paper we build upon
these prior techniques to find phase behavior in parallel ap-
plications. We focus on providing parallel phase analysis for
shared memory multi-processors and applications with data
parallelism [13, 23, 33]. In this paper, we focus on machines
with 2-4 processors because of the expected wide spread de-
ployment of small multi-core machines that will occur over
the coming years. There are two main goals with this work.
First we propose a parallel program analysis technique that
can analyze the phase behavior across different amounts of
parallelism (number of threads) for a program/input pair. The
primary goal is to enable a user to track how different phases
of a program’s execution scale across different number of
threads to see which phases benefit the most from the addi-
tional parallelism. A secondary goal is to exploit the phase
characterization for guiding the picking of simulation points
for deterministic multi-threaded simulators. This is an en-
hancement to the single threaded SimPoint [28] algorithm,
where we find representative samples across the threads of
a parallel program to accurately represent the entire parallel
execution to guide multi-threaded simulation.

2 Related Work
Program phase behavior can be detected by examining a pro-
gram’s working set [7], and several researchers have exam-
ined phase behavior in programs. In this section we give a
brief overview of this related work.

Balasubramonian et al. [2] proposed using hardware
counters to collect miss rates, CPI and branch frequency in-
formation for every hundred thousand instructions. They use
the miss rate and the total number of branches executed for
each interval to dynamically evaluate the program’s stability.
They used their approach to guide dynamic cache reconfigu-
ration to save energy without sacrificing performance.

Dhodapkar and Smith [8, 9, 10] found a relationship be-
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tween phases and instruction working sets, and that phase
changes occur when the working set changes. They proposed
dynamic reconfiguration of multi-configuration units in re-
sponse to phase changes indicated by working set changes.
They use working set analysis for reconfiguration of in-
struction cache, data cache and branch predictor to save en-
ergy [9, 10].

Hind et al. [14] provide a framework for defining and rea-
soning about program phase classification focusing on how
to appropriately define granularity and similarity to perform
phase analysis.

Georges et al. [12] propose an off-line method-level phase
analysis approach for Java workloads. Execution time for
each method invocation is used to generate a dynamic call-
graph which is then analyzed to identify method-level phases
for serial executions.

In [27, 28], Sherwood et al. proposed that periodic phase
behavior in programs can be automatically identified by pro-
filing the code executed. They used techniques from machine
learning to classify the execution of the program into phases
(clusters). They found that intervals of execution grouped
into the same phase had similar behavior across all archi-
tectural metrics examined. From this analysis, they created
a tool called SimPoint [28], which automatically identifies
a small set of intervals of execution (simulation points) in a
program for detailed architectural simulation. These simula-
tion points provide an accurate and efficient representation of
the complete execution of the program. They then extended
this approach to perform hardware phase classification and
prediction [19, 29]. Patil et al. [24] has been examining us-
ing SimPoint to pick simulation points to guide simulation at
Intel.

Isci and Martonosi [15, 16] have shown the ability to dy-
namically identify the power phase behavior using power vec-
tors. Deusterwald et al. [11] recently used hardware counters
and other phase prediction architectures to find phase behav-
ior.

In [6], Davies et al. used sampled information extracted
by the Intel TM VTune Performance Analyzer in order to
construct an approximate yet faithful representation of pro-
gram execution within a given interval. Such information
is collected at runtime on native hardware, but is not influ-
enced by the performance of the hardware itself. Perfor-
mance data is collected at the same time for subsequent val-
idation of results. Analogous methods to SimPoint [28] are
then employed to extract Simulation Points. Annavaram et
al. [1] used this VTune approach to examine phase behavior
for database applications. We use this VTune sampling ap-
proach to collect our code vectors, which is detailed in Sec-
tion 4.

Van Biesbrouck et al. [4] used phase behavior to guide
simulation for Simultaneous Multithreading [34]. A co-phase
matrix is generated to represent the per-thread performance
for each potential combination of the single-threaded phase
behaviors that can be found when multiple programs are run

together. The co-phase matrix is populated by collecting sam-
ples of the programs’ phase combinations, and is used to
guide fast forwarding between samples.

3 Methodology and Metrics
The data presented in this paper was collected on a 4-node
Itanium II. This platform has four Intel TM Itanium II proces-
sors at 1 GHz with a 256KB L2 cache and a 3MB L3 cache,
an 870 Intel TMchipset, and a 400MHz front side bus. This
is a multi-processor system, and each processor has its own
L2 and L3 cache, and only main memory is shared across the
processors. For this work we only run one thread per proces-
sor node.

Our data collection methodology utilizes the commer-
cially available Intel VTune Performance Analyzer [35]. Our
phase analysis framework processes the VTune output file (in
tb5 format) collected from the execution of a program on any
platform for which VTune is available.

The applications examined in this work are a selec-
tion from an extensive set of experiments we ran. We ex-
perimented with both OpenMP and p-thread, and on task-
parallel applications. We found the definition of phases
proved to be coherent even when different threads clearly
do not execute the same phase at the same time. To show
the range of parallel phase behavior found we provide re-
sults for the OpenMP C version of the NAS parallel Bench-
marks (NPB) [23], which are derived from computational
fluid dynamics (CFD) applications, consisting of five kernels
and three pseudo-applications, and two more benchmarks
OpenMP-parallelized:

• SNP (Single Nucleotide Polymorphism) is capable of de-
tecting structure around a single nucleotide polymorphism
in a DNA chain. This application has been coded by
using Intel’s Open Source Probabilistic Network Library
(PNL) [33]

• SVM RFE (Support Vector Machine Recursive Feature
Elimination [13]) is based on the state of the art Support
Vector Machine classification algorithm and is used for
eliminating gene redundancy in micro-array data analysis.

Both of these applications repeatedly access very large
databases, and apply general purpose machine learning and
data mining algorithms to bioinformatics applications.

3.1 Metrics for Evaluating Phase Classification
Phase Detection is performed in a completely performance-
independent fashion, solely based on code signatures as de-
scribed in Section 4. A major assumption underlying this and
most of the phase analysis related work is that similar code
execution intervals yield similar performance. To this end,
we decide to also collect performance data at runtime using
VTune while collecting the code signature. This allows us to
later verify the assumption and validate our work.

The metrics we examined from VTune are CPI, together
with L2 and L3 Hits and Hit-Rates. We have found that



these are the key metrics to analyze in order to understand the
performance of a multi-threaded application, which is often
bounded by issues such as data-reuse and con icts between
caches.

We measure the effectiveness of our phase classi cations
by examining the similarity of program metrics within each
phase. After classifying a program s intervals into phases, we
compute the phase based standard deviation for each metric
(e.g., CPI, data cache hit rates). This is computed by com-
bining the weighted standard deviation from each phase. We
weight each phase s standard deviation by the relative size the
phase represents from the entire execution, since phases can
have signi cantly different execution spans. We compare this
phase-based standard deviation to the standard deviation seen
when looking at all of the intervals of the program s execu-
tion. Better phase classi cations will exhibit lower per-phase
standard deviation for an architecture metric when compared
to the standard deviation of the complete execution. For ex-
ample, if all of the intervals in the same phase have exactly
the same CPI, then the per-phase standard deviation will be
zero.

4 Profiling Program Behavior
In this section we provide a description of the basic structure
we use in order to represent code execution in a given interval.

4.1 Extended Instruction Pointers
Davies et al. [6] proposed using hardware sampling of in-
struction pointers to represent code signatures for nding
phase behavior, and such an approach was recently used by
Annavaram et al. [1] to try to nd phase behavior in database
workloads.

In this work, we also use Extended Instruction Pointers
(EIPs) to nd phase behavior [1]. An EIP is the memory
address of an instruction, analogous to PC. The EIPs are
extracted while running an application on native hardware.
VTune, a commercially available software performance an-
alyzer for IntelTM architectures [35] is used to collect the
EIPs. We focus on this approach, instead of instrumentation,
since VTune has the ability to non-intrusively analyze any
application running on native hardware with negligible over-
head. The underlying VTune driver monitors a large number
of performance/code execution attributes stored in the embed-
ded event counters of the Intel processors while a program is
being executed on real hardware. It collects information, such
as EIPs and CPI, which are then used to perform code clus-
tering, phase analysis, and validation.

VTune interrupts execution at regular intervals of instruc-
tions executed and records the EIP and event counter totals
(e.g. clock tick count, instruction count.) Sampling at a
high frequency can signi cantly increase execution overhead.
Conversely, too low a sampling frequency will lead to sparse
data that could compromise phase analysis. Based on our ex-
perimental data, we set the VTune sampling rate to be once
every hundred thousand instructions. It proved to be a good

trade-off between execution overhead and collecting adequate
sampling data. At this sampling rate, the typical overhead of
using VTune is not more than 2%.

Annavaram et al. [1] used the EIPs to create an Extended
Instruction Pointer Vector (EIPV), which is a one dimen-
sional array where each element in the array corresponds to
one Extended Instruction Pointer in the program execution.
The EIPV contains all zeroes at the beginning of each inter-
val of execution. During each interval, the number of times
each EIP occurs during sampling with VTune is recorded, and
each EIP s nal interval count is stored in the EIPV.

The intuition behind this is that the behavior of the pro-
gram at a given time is directly related to the code executed
during that interval [28]. The EIP vectors can be used as code
signatures for each interval of execution: each vector tells us
which portions of code are executed, and how frequently. For
a suitably chosen sampling frequency, the sampled informa-
tion gives a suf ciently accurate estimate of the frequency
of execution of signi cant EIPs within a given interval. By
comparing the EIPVs of two intervals, we can evaluate the
similarity of those two intervals. If the distance between the
EIPVs is small, then the two intervals spend about the same
amount of time in roughly the same code, and therefore the
performance of those two intervals should be similar.

4.2 Sampled Basic Block Vectors
The construction of EIPVs has been proposed in [6] as an
alternative to Basic Block Vectors (BBVs), rst introduced
in [27]. A basic block is a single-entry, single-exit section of
code with no internal control ow. Similarly to EIPVs, a Ba-
sic Block Vector (BBV) is a one dimensional array where each
element in the array corresponds to one static basic block in
the program. During each interval, the number of times each
basic block in the program has been entered is counted, and
the count is recorded in the BBV.

Lau et al. [17] mapped the EIPs of an EIPV back to
coarser program constructs, namely loops and procedures.
This improved phase classi cation when compared to EIPVs
for the SPEC CPU2000 suite on IA-32 Linux. This helped
reduce the arti cial noise between two EIPV code signatures
that were classi ed as different because there were different
counts between the two vectors for EIPs from the same ba-
sic block. To address this problem, Lau et al. [17] proposed
mapping the EIPs back to the static code constructs to create
Sampled Code Vectors for each interval where each dimen-
sion was the number of times each static loop, procedure, or
basic block was sampled.

In this paper, we examine mapping the EIPs down to basic
blocks to create sampled basic block vectors. The mappings
in [17] were produced by using Pin to instrument IA-64 bina-
ries. We implemented mapping EIPs to basic blocks using the
Itanium version of Pin. We statically process a binary, mark-
ing every instruction as a conditional branch, a conditional
branch target, both, or neither, and then use these markings
as boundaries in assigning a block ID to every instruction in
the binary. We then use this ID mapping (a dimension in the



sampled BBV) to coalesce all dimensions in the EIPV that
map to the same block-ID into a single dimension with weight
equal to the summation of the weights of the remapped EIP
dimensions, producing a sampled BBV. For the results in this
paper we use the sampled BBVs to nd the phase behavior in
parallel programs.

5 Discovering Phases for a Single Par-
allel Run

Parallel applications can have multiple threads executing dif-
ferent parts of the binary at the same time. This presents new
challenges in program characterization and phase analysis. In
this section we provide a detailed description of the algorithm
we use that characterizes parallel applications. In this section
we focus on analyzing a single parallel run, and in Section 6
we describe how to extend this to examine behavior varying
the number of threads.

5.1 Phase Analysis Merging All Threads Together
The foundation of parallel application characterization relies
on preserving the parallel structure of execution during phase
analysis. The thread level behavior of the application is the
framework through which the parallel structure is perceived.
Hence, the representation of the thread level behavior is a crit-
ical component in the analysis.

One possible thread representation is an agglomerated
(combined) view of all the activity across the different threads
to create intervals of execution. This is achieved by agglomer-
ating the execution samples collected from individual threads
into a single execution trace and creating xed length inter-
vals from that. For this approach the different thread behav-
iors would be intermingled into one trace as they occur during
execution. This trace can be run through existing phase anal-
ysis techniques but has the following drawback: the phases
discovered in this trace do not apply to any individual threads,
but instead apply to the combination of behaviors from all
threads. This provides the following issues: (1) it is dif -
cult to interpret the behavior of individual threads and (2) it
is hard to validate the behavior of an agglomerated interval,
since it represents a combination of parts of several threads
of execution. If threads execute at different rates relative to
each other, then the phase representation will not be consis-
tent across the intervals formed. We tried the agglomerated
method, and it can provide a coarse parallel characterization,
but is not suf cient for low level understanding of the parallel
phase behavior.

5.2 Keeping the Thread Data Separate
Instead of agglomerating the behavior of the threads, we
found that representing each individual thread in the appli-
cation independently is the key to parallel phase analysis. For
this approach each thread has its own set of sampled BBVs
for its execution. In this manner each thread is an independent
entity. We do this, because we want to nd phase similarities
across threads.

5.3 General Algorithm
The parallel phase analysis algorithm is similar to the serial
SimPoint [28] algorithm at a high level. The execution of
the application is broken down into intervals which are then
clustered into a set of phases. It is different, however, in how
it handles the data from multiple threads at different stages
in the algorithm. Several modi cations are essential to en-
sure that the phases found between the threads are consistent
and can be compared across the threads. The algorithm is
described in the following steps:

1. We rst collect code execution frequencies of EIPs for
each thread in the application. This data is partitioned into
intervals of 100 million instructions, where each thread
has a unique set of intervals representing its own execu-
tion.

2. For each thread we have a trace of intervals that repre-
sents its execution. We then generate a large combined
trace for all the threads by concatenating the interval traces
from each thread. This step does not contaminate the per
thread execution behavior, since each thread occupies a
non-overlapping sub-section in the trace. The purpose of
this step is to nd intervals of execution that are similar
across the different threads.

3. We then cluster all the intervals into a set of phases. For
this step we use the k-means [21] algorithm of SimPoint.
SimPoint determines the number of phases by clustering
over a range of values, and then use the Bayesian Informa-
tion Criterion (BIC) [25] to quantify the goodness of each
clustering. In this work we considered a range of up to 10
phases, and a larger range can be used for attaining higher
accuracy.

This algorithm nds the phases in a parallel execution.
Each phase de nes a particular code behavior in the parallel
execution that is independent of the multi-thread interaction,
since we are only looking at the code signatures for the inter-
vals on a per thread basis.

We also nd similar execution across threads, since we
cluster all of the threads intervals together at the same time.
The vectors are formed on a per-thread basis, but the clus-
tering is performed looking at all of the intervals from all of
the threads at once. Therefore, the phases discovered are ap-
plicable across all threads, where similar behavior observed
across multiple threads will be captured and characterized as
one behavior. A method similar to this was independently
developed and brie y examined in [24].

5.4 Thread Execution Reconstruction
The phase analysis described above discovers the phase be-
havior across threads by clustering the BBVs collected in
all thread executions in terms of instruction count. We now
describe how to map the phase information found to the
threaded program s execution over time. In a parallel execu-
tion there may be synchronization points, where some threads
are waiting for other threads before continuing execution or
certain threads are spawned in the middle of execution. We



take this into consideration when forming the xed length in-
terval, so that an interval does not span across these types of
stalls. In addition, we need to take this into consideration
when mapping the phase classi cation back to a parallel exe-
cution trace.

The goal here is to identify visually for a user what phase
of execution each part of a thread s execution is in. VTune
outputs EIP samples in the order they were collected across
the multiple processors and threads. This provides a com-
plete sequential ordering and EIP trace among the threads of
execution. We use this trace to reconstruct a total count of in-
structions retired (global instruction count) across all threads
of execution. This allows us to correlate when a xed length
interval, which was assigned to a phase for a thread, occurs
during execution relative to the intervals from other threads.
We can then examine cross-thread phase behavior over time,
since intervals from different threads can be grouped into the
same phase. Note, since the intervals were formed using only
per-thread instruction counts, the start and end of the intervals
may not be synchronized across all threads. This leads us to
the step of reconstructing exactly when each interval starts
and stops in terms of the overall execution time.

Figure 1 graphically shows the phase classi cation for the
NAS benchmark ft.B when using 4 threads with respect to
instructions retired over time. The top most sub- gure shows
the phases color coded across the entire execution. In this
plot, the x-axis shows the total number of instructions (global
instruction count) retired for all the threads. The global in-
struction count, which is across all threads being executed,
was also gathered along with the EIPs during VTune sam-
pling. The global instruction count was not used to perform
the phase classi cation, we just use it to map the per-thread
phase intervals to execution time (represented by global in-
struction count). The y-axis is partitioned into 4 sections, 1
per thread. Each phase has a particular color (or shade). If a
thread has an interval of white it means that no instructions
were retired during that interval. The lower sub- gures are
showing L3 cache references, and L3 cache hit rates. The x-
axis in these sub- gures are showing the number of instruc-
tions retired, and are equivalent to the x-axis in the top sub-

gure for phases.

When mapping a per-thread s intervals to the global in-
struction count, if there is a large gap (greater than an interval
size) in a per-thread s execution with respect to the global
instruction count, then a blank (white) interval is shown rep-
resenting that the thread was stalled or context switched out
during that part of execution. It is interesting to see how the
phase analysis, performed ignoring any time or similarity in-
formation among threads, does indeed automatically detect
phases coherently with the execution ow across threads. The
benchmark ft.B represented in Figure 1 is a data-parallel
application, and the phase analysis correctly places all threads
in the same phases at the same time for the majority of the ex-
ecution. However, occasionally different roles for the differ-
ent threads are also seen; this occurs in the gure whenever

one thread is in charge of initialization or collecting results.
When this occurred the code signature formed clearly identi-

ed that execution as different.
White intervals visible in the picture represent intervals

of execution where one or more threads are stalled because
a portion of the code is not parallelized or requires a smaller
number of threads than the available thread-count. It can also
happen for other synchronization issues, or OS activity; note
that this naturally happens at the beginning or end of a short
serial phase.

5.5 Single Parallel Run Results
We now examine the performance of our parallel phase anal-
ysis on the NAS benchmark suite and two data mining bench-
marks. The programs and methodology used are described in
Section 3.

5.5.1 Reduction of Variance
The goal of parallel phase analysis is to group together pro-
gram execution across the different threads by only looking at
code signatures. If the phase classi cation worked well, then
the variance in CPI, L2 and L3 cache hit rates should decrease
between all of the intervals within a phase when compared to
the variance seen across the complete execution of the pro-
gram. For all of the results an interval size of 100 million
instructions and a maximum limit of 10 phases (clusters) was
used when performing the phase analysis.

Table 1 shows the mean and standard deviation for CPI
(cycles per instruction), and L2 and L3 caches hit rates for
the full execution. The number in parenthesis is the standard
deviation. Results are shown for each program for a 2-thread
parallel run and a 4-thread run. The last column is the number
of phases chosen by our analysis for that run. Note, all of the
CPI and hit rate results are the average and standard deviation
seen across all of the intervals of execution. For example,
svm 2-thread has a CPI of 0.87 with a standard deviation of
0.32 over all of the intervals of execution, its L3 hit rate is
48% with a standard deviation of 21%, and its execution was
clustered into 6 phases.

The NAS benchmark suite shows several different poten-
tial program behaviors, where ep.B and is.B are at the two
extremes. In Table 1, the program is.B has a huge standard
deviation in CPI (+/- 10) for 4-threads because there are inter-
vals of execution that have a spike greater than 10 CPI. The
serial part of the code for is.B covers approximately 80% of
the execution (instructions retired), and this makes it a very
peculiar one among the NAS benchmarks. In comparison, the
results for ep.B show that across all of execution there is a
low standard deviation across all of the metrics.

Table 1 shows that the CPI can be stable or increase when
going from 2-threads to 4-threads. This happens whenever
the speedup obtained by executing the benchmark in parallel
does not scale linearly with the thread count, and the paral-
lelization introduces overhead. The CPI shown is calculated
on a per-thread basis, and does not represent a measure of
speed of execution of the overall program on the machine,
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Figure 1: Phase classifications and L3 performance metrics for a four-threaded run of ft.B. Phase classifications are applied
to each thread independently.

BM #T CPI L2 HR L3 HR #P

bt.A 2 0.9 (+/- 0.40) 0.98 (+/- 0.02) 0.51 (+/- 0.10) 6
4 1.1 (+/- 0.44) 0.98 (+/- 0.01) 0.53 (+/- 0.10) 5

cg.B 2 1.4 (+/- 0.60) 0.65 (+/- 0.02) 0.87 (+/- 0.03) 7
4 1.5 (+/- 1.05) 0.66 (+/- 0.02) 0.87 (+/- 0.02) 5

ep.B 2 1.0 (+/- 0.01) 0.99 (+/- 0.00) 0.98 (+/- 0.04) 5
4 1.0 (+/- 0.01) 0.99 (+/- 0.00) 1.00 (+/- 0.01) 5

ft.B 2 0.7 (+/- 1.58) 0.95 (+/- 0.04) 0.87 (+/- 0.14) 6
4 0.8 (+/- 2.60) 0.97 (+/- 0.05) 0.75 (+/- 0.25) 9

is.B 2 3.0 (+/- 5.77) 0.83 (+/- 0.13) 0.75 (+/- 0.33) 8
4 4.2 (+/- 10.0) 0.82 (+/- 0.12) 0.74 (+/- 0.33) 4

lu.B 2 1.1 (+/- 0.24) 0.95 (+/- 0.02) 0.49 (+/- 0.10) 4
4 1.0 (+/- 0.20) 0.95 (+/- 0.01) 0.69 (+/- 0.11) 4

mg.B 2 0.8 (+/- 1.27) 0.99 (+/- 0.01) 0.49 (+/- 0.08) 6
4 0.9 (+/- 1.90) 0.99 (+/- 0.01) 0.46 (+/- 0.08) 8

sp.A 2 1.6 (+/- 0.25) 0.96 (+/- 0.00) 0.47 (+/- 0.05) 9
4 2.2 (+/- 0.34) 0.96 (+/- 0.00) 0.46 (+/- 0.02) 7

snp 2 1.0 (+/- 0.09) 0.95 (+/- 0.02) 0.06 (+/- 0.07) 8
4 0.9 (+/- 0.05) 0.94 (+/- 0.03) 0.36 (+/- 0.21) 6

svm 2 0.9 (+/- 0.32) 0.91 (+/- 0.05) 0.48 (+/- 0.21) 6
4 1.4 (+/- 0.41) 0.90 (+/- 0.04) 0.48 (+/- 0.18) 5

Avg 1.4 (+/- 1.38) 0.92 (+/- 0.03) 0.61 (+/- 0.12) 6

Table 1: Full execution CPI, L2 and L3 hit rates with stan-
dard deviation across all intervals of execution for each
benchmark with 2 and 4 threads (#T). The number of phases
(#P) is equivalent to the number of simulation points.

but rather a measure of speed of execution of instructions on
each single thread.

We now examine how well the phase classi cation, based
on code, worked in terms of the underlying architecture met-
rics. If the phase analysis groups the intervals correctly, then
we should see reductions in the standard deviation of these ar-
chitecture metrics, when examining them across all of the in-
tervals within a phase. Figures 2, 3 and 4 show the reduction
in the standard deviation of CPI, L2 and L3 hit rates over the
baseline values shown in Table 1 for the 2-thread and 4-thread
runs. This is computed by rst computing the difference be-
tween the standard deviation of the baseline and the weighted
standard deviation of the phases, and then dividing it by the
baseline standard deviation. A large reduction in standard
deviation means that the phase analysis succeeds in break-
ing varying program behavior into homogeneous phases. The
results show that when looking at the program s execution
in terms of phases that on average the standard deviation for
CPI is reduced by 50%, the L2 hit rate by 60% and the L3 hit
rate by 45%. The reason why there is little reduction in the
standard deviation for ep.B for L2 and L3 hit rates is that
there was little standard deviation to begin with as shown in
Table 1.
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Figure 2: Percent reduction in standard deviation for CPI
with phase analysis for 2 and 4 threads (T)
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Figure 3: Percent reduction in standard deviation for L2 hit
rate with phase analysis for 2 and 4 threads (T)
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Figure 4: Percent reduction in standard deviation for L3 hit
rate with phase analysis for 2 and 4 threads (T)

6 Discovering Phases Across Parallel
Runs

One of the motivations for us to perform phase analysis for
parallel programs it to be able to examine the same behavior
and performance when using a different number of threads.
This can be used by programmers and scientists to study
where they should tune their code and to better understand
the implications of increasing the number of processors to
run an application on. For example, to analyze the benefit of
parallelizing a program we would like to take a representa-
tive slice of the program’s execution when using 2 threads,
and that same exact slice for 3 threads, 4 threads, etc... and
compare how the program’s CPI or cache hit rates change as

we vary the number of threads. Prior work on the scalabil-
ity of parallel applications [5, 31, 32] has focused on how
the overall execution of the program scales as the number of
threads varies. In comparison, we are instead focusing on the
scalability of the program in terms of how each of its phases
scales as the number of threads varies.

In this section, we describe how we achieve this “thread-
varying” phase analysis by extending the parallel phase anal-
ysis described in Section 5.

6.1 Phase Analysis Varying the Number of Threads
The prior section described how to find phases in a single
parallel run of a program. The goal of this analysis is to
find similar intervals of execution between different runs as
the number of threads is varied. We call this thread-varying
phase analysis.

We want to perform this analysis on a parallel program
running a specific input varying the number of threads. We
start by combining all of the sampled BBVs for each thread
for a given run as described in Section 5. We then concate-
nate each of these run’s sampled BBVs together, where the
number of threads has been varied, for a specific parallel bi-
nary/input. SimPoint phase analysis is then run over this vec-
tor trace. This results in a clustering that successfully groups
together not only intervals from separate threads of the same
run, as shown in the prior section, but also intervals from dif-
ferent runs, where the number of threads were varied.

6.2 Thread-Varying Phase Analysis Results
In this work we applied our thread-varying phase analysis
on four separate runs for each program: serial, 2 threads, 3
threads, and 4 threads. We combined the runs as described,
and computed the phases across the threads and runs. In do-
ing this thread-varying phase analysis, we verified that the
intervals grouped within the same phase from the same run
had similar architecture metrics as found in the previous sec-
tion. But intervals from different runs (different number of
threads) grouped into the same phase will not have the same
architecture metrics. This is exactly what we want to analyze.
We use this thread-varying analysis to see for similar code re-
gions how the architecture metrics varied for a phase as the
number of threads was varied.

To show this, we will examine the execution of snp run-
ning with a single thread (serial execution), as well as 2, 3,
and 4 threads. We then combine the threads in each of the
parallel runs and perform our thread-varying phase analysis.
Note that the number of phases chosen is different from Sec-
tion 5 since we are performing the thread-varying clustering.

Figure 5 shows the phases discovered across four different
parallel executions for snp. The top most sub-figure displays
the phases in a single threaded run of snp. The next two sub-
figures below show phases in a two threaded run. The next
three sub-figures are for a three threaded run, and the last
four sub-figures are a four threaded run. The x-axis shows
the phase classification results over the global count of all in-
structions executed across all threads. Each phase is denoted
by a different color or gray-scale (as shown on the right side
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Figure 5: Phases discovered across 4 different parallel executions of snp: serial, 2, 3, and 4 threads. The x-axis shows the
phase classi cation results over the global count of all instructions executed across all threads.

of the Figure), and the same phase colors are used across the
different runs. White means that no instructions are executed
during that interval due to synchronization or serialization.

Figure 5 shows that even though each run has a different
number of threads, we are able to identify the same regions
of execution across the different runs. The initialization phase
for snp is the shade of the rst phase in the single threaded
execution. Exactly one thread has that color and all other
threads are inactive during that part of execution for the multi-
threaded runs. It is also worth noting that the phases also line
up along the x-axis. In this gure the x-axis is the number of
instructions retired across all threads in a run, and this means
that the phases found between different runs execute a similar
number of instructions.

Figure 6 shows the number of cycles per phase across 4
different parallel executions of sp.A. The y-axis is the num-
ber of cycles and x-axis is the different runs varying the num-
ber of threads 1, 2, 3 and 4. In this Figure, the number of
cycles (y-axis) is the actual time spent executing the bench-
mark. Cycles are not accounted for on a per-thread basis, as it
was in the CPI computation of Section 5, but actually repre-
sent the time elapsed while one or more threads is in a speci c
phase. If two or more threads are in two different phases dur-
ing a part of execution, the time elapsed is split among them

with appropriate weights. For example, Phase 2 (the top line)
accounts for 11 billion cycles of execution with one thread,
and only 3.8 billion cycles when four threads are used.

This Figure is an example of the coherency of our phase
de nition. Increasing thread-count improves the performance
of each phase for this application. An intuitive downward
trend is visible for each phase, however the trend varies from
phase to phase. One can see that Phase 2 and Phase 4 (the top
2 lines) bene t the most from the parallelization, and one can
go back to the code to analyze why this is the case. It also
shows that more signi cant speedups can be achieved by par-
allelizing Phase 2 and 4 up to four threads, whereas Phase 5
has diminishing returns from parallelization once two threads
are used. This is a con rmation that it is worthwhile to per-
form phase analysis on parallel benchmarks, as each phase
exhibits different parallelization potential and performance.

Figure 7 shows the number of instructions retired that are
classi ed into each of the phases across 4 different parallel
runs (again, 1, 2, 3, and 4 threaded executions). This shows
that across the different runs, each phase occupies a similar
number of executed instructions. For example, for Phase 2
(the top line), the total number of instructions executed is 80
billion with one thread, and about 85 billion for 4 threads.

The important observation here is that the proportion of
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Figure 6: Number of cycles per phase across 4 different par-
allel executions of sp.A: serial, 2, 3, and 4 threads.

0

1E+10

2E+10

3E+10

4E+10

5E+10

6E+10

7E+10

8E+10

9E+10

1E+11

1 2 3 4

Thread Count

In
st

ru
ct

io
n

s
R

et
ir

ed

Phase1 Phase2 Phase3 Phase4 Phase5

Figure 7: Number of instructions per phase across 4 different
parallel executions of sp.A: serial, 2, 3, and 4 threads.

intervals assigned to each phase is the same across the dif-
ferent runs when varying the threads. This shows that phase
behaviors coherently correspond to the execution of differ-
ent paths in the code. The thread-count increase changes the
distribution of the execution of these paths among different
threads, but does not significantly alter their nature nor the
amount of executed instructions in each phase. It is there-
fore to be expected and required for a good definition of
phases that a given phase behavior occupies approximately
the same number of instructions retired, independently from
the thread-count, as the number of threads is varied.

7 Parallel SimPoint
We now examine using the phase groupings described in Sec-
tion 5 for Parallel SimPoint. The goal is to choose a small set
of simulation points (on a per thread basis) that when simu-
lated on a deterministic multi-thread simulator [20, 30] pro-
vide an accurate representation of the complete parallel run.

For Parallel SimPoint, we use the phase clustering algo-
rithm described in Section 5. A simulation point is chosen
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Figure 8: SimPoint relative error rates for CPI, L2 and L3 hit
rates

for each phase, which is the interval for a specific thread with
its sampled basic block vector closest to the centroid of the
phase. Remember for our approach, phases can represent in-
tervals from different threads after clustering. Each simula-
tion point is assigned a weight equal to the percent of the
program’s execution (in terms of intervals) its phase repre-
sents (no matter what thread the interval came from). The
architecture metrics for these simulation points are then gath-
ered during simulation, and the results are combined with the
weights to create an overall estimate of the program’s execu-
tion in terms of architecture metrics. See [28] for a complete
description of SimPoint.

Figure 8 shows the relative error rates for CPI and L2 hit
rate for the 2-thread and 4-thread runs when comparing the
parallel SimPoint estimated metric to the overall program’s
baseline metric. The number of simulation points used for
each program is shown in Table 1. The results show that the
CPI error is 15% or less, with an average of 3% for the 2-
thread runs, and similar results are seen for the cache hit rate.
Lower error rates are seen for the 4-thread runs. Programs
like is.B have higher error rates due to the huge deviation
in program behavior between the parallel and sequential part
of execution. Even so, the error rate is small (less than 4%)
for 4-threads. This result, along with the reduction in stan-
dard deviation as shown in Section 5, shows that our approach
groups similar parts of execution together based only on the
sampled code signatures.

It is important to note that the absolute error of a pro-
gram/input run on one hardware configuration is not as im-
portant as tracking the change in metrics across different ar-
chitecture configurations. When using simulation points for
an architecture design space exploration the CPI error com-
pared to the baseline is not as important as making sure that
this error is consistent between the different architectures be-
ing examined. What is important is that a consistent relative
error is seen across the design space exploration, and Sim-
Point has this consistent bias as shown in [26]. Therefore,
even though a program/input using SimPoint might have 10%
error when compared to the complete execution, we have
found that when aggressively varying the design space we see
this same relative error in the same direction. This allows the
designer, when using SimPoint, to make the correct design
space exploration trade-offs, since we have found that the rel-
ative error is consistent and biased in the same direction.



8 Summary
In this paper we focus on discovering phases in parallel appli-
cations running on shared memory systems. We start by de-
scribing how to recognize similar activities performed by dif-
ferent threads for a program’s execution. The results showed
that this can be used with SimPoint to accurately represent the
program’s parallel behavior with an average error less than
4% for CPI, and L2 and L3 hit rates, as well as significantly
reduce the standard deviation of these metrics within a phase.

We also showed that we can perform thread-varying phase
analysis across different runs of a program as the number of
threads used varies from 1 to 4 threads. We found that thread-
varying phase analysis can be used to examine the effect on
specific parts of the program’s execution as the number of
threads are varied. This can be used by researchers to better
understand a parallel program’s execution for different num-
ber of threads/processors. Finally we showed that using the
parallel phase analysis can be used to accurately pick simula-
tion points to guide multi-threaded simulation.
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