
Pipelined Broadcast on Ethernet Switched Clusters ∗

Pitch Patarasuk Ahmad Faraj Xin Yuan
Department of Computer Science, Florida State University, Tallahassee, FL 32306

{patarasu, faraj, xyuan}@cs.fsu.edu

Abstract

We consider unicast-based pipelined broadcast
schemes for clusters connected by multiple Ethernet
switches. By splitting a large broadcast message into
segments and broadcasting the segments in a pipelined
fashion, pipelined broadcast may achieve very high
performance. We develop algorithms for computing
various contention-free broadcast trees on Ethernet
switched clusters that are suitable for pipelined broad-
cast, and evaluate the schemes through experimen-
tation. The conclusions drawn from our theoretical
and experimental study include the following. First,
pipelined broadcast can be more effective than other
common broadcast schemes including the ones used in
the latest versions of MPICH and LAM/MPI when the
message size is sufficiently large. Second, contention-
free broadcast trees are essential for pipelined broadcast
to achieve high performance. Finally, while it is dif-
ficult to determine the optimal message segment size
for pipelined broadcast, finding one size that gives good
performance is relatively easy.

1 Introduction

Switched Ethernet is the most widely used local–
area–network (LAN) technology. Many Ethernet
switched clusters of workstations are used to perform
high performance computing. For such clusters to be
effective, communications must be carried out as effi-
ciently as possible.

Broadcast is one of the most common collective com-
munication operations. The broadcast operation re-
quires a message from the root machine (the sender) to
reach all other machines in the system at the end of
the operation. The Message Passing Interface routine
that realizes this operation is MPI Bcast [14]. Broad-
cast algorithms are typically classified as either atomic

∗This work is partially supported by NSF grants CCR-
0208892 and CCF-0342540.

broadcast algorithms or pipelined broadcast algorithms
[1]. Atomic broadcast algorithms distribute the broad-
cast message as a whole through the network. Such
algorithms apply to the cases when there is only one
broadcast operation and the broadcast message cannot
be split. When there are multiple broadcast operations
or when the broadcast message can be split into a num-
ber of segments, a pipelined broadcast algorithm can
be used, which distributes messages (segments) in a
pipelined fashion.

In this paper, we investigate the use of pipelined
broadcast to realize MPI Bcast on Ethernet switched
clusters when the message size is reasonably large. In
this case, broadcasting a large message is carried out
by a sequence of pipelined broadcasts with smaller mes-
sage segments. In the pipelined broadcasts, communi-
cations on different branches of the logical broadcast
tree can be active at the same time. To maximize
the performance, communications that can potentially
happen simultaneously should not share the same phys-
ical channel and cause network contention. Hence, the
logical broadcast trees for pipelined broadcast should
be contention-free. We develop algorithms for com-
puting various contention-free broadcast trees that are
suitable for pipelined broadcast on Ethernet switched
clusters. We theoretically analyze and empirically eval-
uate pipelined broadcast schemes by comparing their
performance with that of other commonly used broad-
cast algorithms. The results from our theoretical and
experimental study indicate the following.

• When the message size is large, pipelined broad-
cast can be more effective than other broadcast
schemes including the ones used in MPICH 2-1.0.1
(the latest MPICH release) [15] and LAM/MPI 7.1.1
(the latest LAM/MPI release) [12] to a large degree.
MPICH and LAM/MPI are two widely used open
source MPI implementations. Moreover, for large mes-
sages, the performance of pipelined broadcast on Eth-
ernet switched clusters using a contention-free linear
tree is close to the theoretical limit of the broadcast
operation.

1-4244-0054-6/06/$20.00 ©2006 IEEE

• Contention-free broadcast trees are essential for
pipelined broadcast to achieve high performance on
clusters with multiple switches. Pipelined broadcast
using topology unaware broadcast trees may result in
poor performance in such an environment.

• While it is difficult to determine the message seg-
ment size for pipelined broadcast to achieve the min-
imum communication time, finding one segment size
that gives good performance is relatively easy since a
wide range of message sizes can yield reasonably good
performance for a given pipelined broadcast algorithm.

The rest of the paper is organized as follows. The
related work is discussed in Section 2. The network
model is described and a number of commonly used
broadcast algorithms are analyzed in Section 3. Sec-
tion 4 details the algorithms for computing various
contention-free broadcast trees on Ethernet switched
clusters. Section 5 reports the results of our exper-
imental evaluation. Finally, Section 6 concludes the
paper.

2 Related Work

The broadcast operation in different environments
has been extensively studied and a very large num-
ber of broadcast algorithms have been proposed. Al-
gorithms developed for topologies used in parallel com-
puters such as meshes and hypercubes (see for example
[8, 11]) are specific to the targeted topologies and plat-
forms and cannot be applied to Ethernet switched clus-
ters with physical tree topologies. Many researchers
proposed to use logical binomial trees for the broad-
cast operation and developed algorithms for comput-
ing contention-free binomial trees under different con-
straints [6, 10, 13]. Using the binomial tree, the broad-
cast operation is partitioned into log2(P) phases, where
P is the number of machines in the system. The
contention-free binomial trees only require the com-
munications in each phase to be contention free. Thus,
such algorithms cannot be used to compute contention-
free trees for pipelined broadcast. Atomic broadcast
algorithms over physical tree topologies have also been
developed [3, 16]. Such algorithms are different from
pipelined broadcast algorithms.

More related to this work are the studies of pipelined
broadcast in different environments [1, 2, 7, 17, 19,
20]. In [20], an algorithm was designed to compute
contention-free pipelined trees on the mesh topology.
In [1, 2], heuristics for pipelined communication on het-
erogeneous clusters were devised. These heuristics fo-
cus on the heterogeneity of links and nodes, but not the
network contention issue. The effectiveness of pipelined
broadcast in cluster environments was demonstrated in

[7, 17, 19]. It was shown that pipelined broadcast using
topology unaware trees can be very efficient for clusters
connected by a single switch. Our research extends the
work in [7, 17, 19] by considering clusters connected by
multiple switches. As shown in the performance study,
pipelined broadcast using topology unaware trees in
such an environment may yield extremely poor per-
formance. To the best of our knowledge, methods for
building contention-free trees for pipelined broadcast
over a physical tree topology have not been developed
and studied. The techniques described in this paper
fill this void.

3 Network Model

We consider Ethernet switched clusters where each
workstation is equipped with one Ethernet port and
links operate in the duplex mode that supports si-
multaneous communications on both directions of each
link with the full bandwidth. Communications in such
a system follow the 1-port model [2], that is, at one
time, a machine can send and receive one message. The
switches may be connected in an arbitrary way. How-
ever, a spanning tree algorithm is used by the switches
to determine forwarding paths that follow a tree struc-
ture [18]. As a result, the physical topology of the
network is always a tree with switches being the in-
ternal nodes and machines being leaves. While hard-
ware broadcast is supported in Ethernet, using such
a technology to realize MPI Bcast requires the imple-
mentation of a reliable multicast protocol [9], which
is complex. In this paper, we focus on unicast-based
pipelined broadcast.

The network is modeled as a directed graph G =
(V, E) with nodes V corresponding to switches and ma-
chines, and edges E corresponding to unidirectional
channels. Let S be the set of switches in the net-
work and M be the set of machines in the network.
V = S ∪M . Let u, v ∈ V , a directed edge (u, v) ∈ E if
and only if there is a link between node u and node v.
Since the network topology is a tree, the graph is also
a tree: there is a unique path between any two nodes.
Figure 1 shows an example cluster. We assume that all
links have the same bandwidth.

Notion u → v denotes a communication from node
u to node v. Path(u → v) denotes the set of di-
rected edges in the unique path from node u to node
v. For example, in Figure 1, path(n0 → n3) =
{(n0, s0), (s0, s1), (s1, s3), (s3, n3)}. Two communica-
tions, u1 → v1 and u2 → v2, are said to have con-
tention if they share a common edge, that is, there ex-
ists an edge (x, y) such that (x, y) ∈ path(u1 → v1) and
(x, y) ∈ path(u2 → v2). A pattern is a set of commu-

switches

machines

n5n0

s0

s2

s1

s3
n1

n2

n3 n4

Figure 1. An example Cluster

nications. A contention-free pattern is a pattern where
no two communications in the pattern have contention.
We will use the notion u → v → w → ... → x → y → z
to represent pattern {u → v, v → w, ..., x → y, y → z}.

3.1 Broadcast on Ethernet Switched Clus-
ters

Let the broadcast message size be msize and the
number of machines in the broadcast operation be P .
We will assume that the time taken to send a message
of size n between any two machines can be modeled as
T (n) = α+n×β, where α is the startup overhead and β
is the per byte transmission time. When an msize-byte
message is split into segments of sizes s1, s2, ..., and
sk, T (s1) + T (s2) + ... + T (sk) ≥ T (msize). Splitting
a large message into small segments will increase the
startup overheads and thus, the total communication
time. Under the assumption that the startup overhead
is insignificant in T (si), 1 ≤ i ≤ k, T (s1)+T (s2)+ ...+
T (sk) ≈ T (msize).

Let the communication completion time be the du-
ration between the time when the root starts sending
and the time when the last machine receives the whole
message. In the broadcast operation, each machine re-
ceives msize data and the lower bound of the comple-
tion time is at least T (msize). We will show later that
this lower bound is approached by pipelined broadcast
when msize is sufficiently large.

Figure 2 shows some common broadcast trees, in-
cluding linear tree, binary tree, k-ary tree, binomial
tree, and flat tree. Common atomic broadcast algo-
rithms include the flat tree and binomial tree algo-
rithms. In the flat tree algorithm, the root sequentially
sends the broadcast message to each of the receivers.
The completion time is thus (P −1)×T (msize). In the
binomial tree algorithm[6, 13], broadcast follows a hy-
percube communication pattern and the total number
of messages that the root sends is log(P). Hence, the
completion time is log(P) × T (msize). In both of the
flat tree and binomial tree algorithms, the root is busy
throughout the communication and pipelined commu-
nication cannot be used to improve performance. An-

other interesting non-pipelined broadcast algorithm is
the scatter followed by all-gather algorithm, which is
used in MPICH [15]. In this algorithm, the msize-
byte message is first distributed to the P machines by a
scatter operation (each machine gets msize

P -byte data).
After that, an all-gather operation is performed to com-
bine messages to all nodes. In the scatter operation,
P−1

P × msize data must be moved from the root to
other nodes, and the time is at least T (P−1

P × msize).
In the all-gather operation, each node must receive
P−1

P ×msize-byte data from other nodes and the time
is at least T (P−1

P ×msize). Hence, the completion time
for the whole algorithm is at least 2×T (P−1

P ×msize) ≈
2 × T (msize).

0

1

2

3

4

5

6

7

0

1 2

3 4 5 6

7

0

1 2 3

4 5 6 7

0

1

2
3

4
5

6
7

(a) linear tree (d) binomial tree

0

1 2 3 4 5 6 7

(b) binary tree (c) 3−ary tree

(e) flat tree

Figure 2. Examples of broadcast trees

Now, let us consider pipelined broadcast. Assume
that the msize-byte broadcast message is split into X
segments of size msize

X , broadcasting the msize-byte
message is realized by X pipelined broadcasts of seg-
ments of size msize

X . To achieve good performance,
the segment size, msize

X , should be small while keep-
ing the startup overhead insignificant in T (msize

X). For
example, in our experimental cluster, a segment size of
1KB results in good performance in most cases. Hence,
when msize is very large, X can be large.

The completion time for the X pipelined broadcasts
depends on the broadcast tree, which decides the size of
each pipeline stage and the number of pipelined stages.
For simplicity, we will assume in this section that there
is no network contention in pipelined broadcast. Under
the 1-port model, the size of a pipeline stage is equal
to the time to send the number of messages that a
machine must send in that stage, which is equal to
the nodal degree of the machine in the broadcast tree.
The number of pipelined stages is equal to the tree
height. Let the broadcast tree height be H and the
maximum nodal degree of the broadcast tree be D.
The largest pipeline stage is D × T (msize

X). The total

time to complete the communication is roughly
(X + H − 1) × (D × T (msize

X)).
When msize is very large, X will be much larger

than H −1. In this case, (X +H −1)(D×T (msize
X)) ≈

X × (D × T (msize
X)) ≈ D × T (msize). This simple

analysis shows that for large messages, trees with a
small nodal degree should be used. For example, using
a linear tree, shown in Figure 2 (a), H = P and D = 1.
The communication completion time is (X + P − 1)×
T (msize

X). When X is much larger than P , (X+P−1)×
T (msize

X) ≈ T (msize), which is the theoretical limit of
the broadcast operation.

Using the linear tree, the number of pipelined stages
is P , which results in a long time to drain the pipeline
when P is large. To reduce the number of pipelined
stages, a general k-ary tree, that is, a tree with a max-
imum nodal degree of k, can be used. When k = 2,
we call such trees binary trees. Assuming a complete
binary tree is used, H = log2(P) and D = 2. The com-
pletion time is (X+log2(P)−1)×2×T (msize

X) = (2X+
2log2(P)−2)×T (msize

X). When X is sufficiently large,
(2X + 2log2(P) − 2) × T (msize

X) ≈ 2T (msize). When
broadcasting a very large message, pipelined broadcast
with a binary tree is not as efficient as that with a lin-
ear tree. However, when 2X+2log2(P)−2 ≤ X+P −1
or X ≤ P − 2log2(P) + 1, the binary tree is more ef-
ficient. In other words, when broadcasting a medium
sized message, a binary tree may be more efficient than
a linear tree. Under the 1-port model, when using gen-
eral k-ary trees, k > 2, for pipelined broadcast, the
size of the pipelined stage increases linearly with k
while the tree height decreases proportionally to the
reciprocal of the logarithm of k, assuming that trees
are reasonably balanced such that the tree height is
O(logk(P)). Hence, under the 1-port model, it is un-
likely that a k-ary tree, k > 2, can offer much better
performance than a binary tree. For example, assum-
ing a complete k-ary tree, k > 2, is used for pipelined
broadcast, H = logk(P) and D = k. The completion
time is (X + logk(P) − 1) × (k × T (msize

X)), which is
larger than the time for the complete binary tree for
most practical values of X and P . Our empirical study
confirms this. Table 1 summarizes the performance of
broadcast algorithms when the broadcast message size
is very large.

4 Computing contention-free broad-
cast trees

As shown in Table 1, pipelined broadcast is likely to
achieve high performance when the broadcast message
is large. There are two obstacles that prevent this tech-

Algorithm performance
Flat tree (P − 1) × T (msize)
Binomial tree log2(P) × T (msize)
scatter/allgather 2 × T (msize)
Linear tree (pipelined) T (msize)
Binary tree (pipelined) 2 × T (msize)
k-ary tree (pipelined) k × T (msize)

Table 1. The performance of broadcast algo-
rithms for very large messages

nique from being widely deployed. First, for pipelined
broadcast to be effective, the logical broadcast tree
must be contention-free. Finding a contention-free
broadcast tree is a challenging task. Second, it is diffi-
cult to decide the optimal segment size for pipelined
broadcast. In this section, we will present algo-
rithms for computing contention-free broadcast trees
over physical tree topologies. In the next section, we
will show that while deciding the optimal segment size
may be difficult, it is relatively easy to find one size
that achieves good performance.

Under the 1-port model, communications originated
from the same machine cannot happen at the same
time. Thus, a contention-free tree for pipelined broad-
cast only requires communications originated from dif-
ferent machines to be contention-free. Since each com-
munication in a linear tree originates from a different
machine, all communications in the contention-free lin-
ear tree must be contention-free. In a contention-free
k-ary tree, communications from a machine to its (up
to k) children may have contention.

4.1 Contention-free linear trees

Let the machines in the system be n0, n1, ..., nP−1.
Let F : {0, 1, ..., P − 1} → {0, 1, ..., P − 1} be any one-
to-one mapping function such that nF (0) is the root of
the broadcast operation. nF (0), nF (1), ..., nF (P−1) is a
permutation of n0, n1, ..., nP−1 and nF (0) → nF (1) →
nF (2) → ... → nF (P−1) is a logical linear tree. The
task is to find an F such that the communications in
the logical linear tree do not have contention.

Let G = (S ∪ M, E) be a tree graph with S being
the switches, M being the machines, and E being the
edges. P = |M |. Let nr be the root machine of the
broadcast. Let G′ = (S, E′) be a subgraph of G that
only contains switches and links between switches. A
contention-free linear tree can be computed in the fol-
lowing two steps.

• Step 1: Starting from the switch that nr is directly
connected to, perform Depth First Search (DFS)

on G′. Number the switches based on the DFS ar-
rival order. An example numbering of the switches
in the DFS order is shown in Figure 3. We will de-
note the switches as s0, s1, ..., s|S|−1, where si is
the ith switch arrived in the DFS traversal of G′.
The switch that nr attaches to is s0.

• Step 2: Let the Xi machines connecting to switch
si, 0 ≤ i ≤ |S| − 1, be numbered as ni,0, ni,1,
..., ni,Xi−1. nr = n0,0. Xi = 0 when there is no
machine attaching to si. The following logical lin-
ear tree is contention-free (we will formally prove
this): n0,0(nr) → ... → n0,X0−1 → n1,0 → ... →
n1,X1−1 → ... → n|S|−1,0 → ... → n|S|−1,X|S|−1−1.

We will refer to this algorithm as Algorithm 1. There
exist many contention-free logical linear trees for a
physical tree topology. We will prove that Algorithm 1
computes one of the contention-free logical linear trees.
Lemma 1: Let G′ = (S,E′) be the subgraph of G that
contains only switches and links between switches. Let
s0, s1, ..., s|S|−1 be the DFS ordering of the switches,
where si is the ith switch arrived in DFS traversal of
G′. Communications in {s0 → s1, s1 → s2, ..., s|S|−2 →
s|S|−1, s|S|−1 → s0} are contention free. �

0

1

2

3

4 5

Figure 3. DFS numbering

The proof of Lemma 1 can be found in [5]. Figure 3
shows an example. Clearly, communications in {s0 →
s1, s1 → s2, s2 → s3, s3 → s4, s4 → s5, s5 → s0} are
contention-free.
Lemma 2: Let s0, s1, ..., s|S|−1 be the DFS ordering
of the switches. Let 0 ≤ i < j ≤ k < l ≤ |S| − 1,
si → sj does not have contention with sk → sl.
Proof: From Lemma 1, path(si → si+1), path(si+1 →
si+2), ..., path(sj−1 → sj), path(sk → sk+1),
path(sk+1 → sk+2), ..., path(sl−1 → sl) do not share
any edge. It follows that path(si → si+1)∪path(si+1 →
si+2) ∪ ... ∪ path(sj−1 → sj) does not share any edge
with path(sk → sk+1) ∪ path(sk+1 → sk+2) ∪ ... ∪
path(sl−1 → sl). Since the graph is a tree, path(si →
sj) ⊆ path(si → si+1) ∪ path(si+1 → si+2) ∪ ... ∪
path(sj−1 → sj) and path(sk → sl) ⊆ path(sk →
sk+1)∪path(sk+1 → sk+2)∪...∪path(sl−1 → sl). Thus,
si → sj does not have contention with sk → sl. �

Theorem 1: The logical linear tree obtained from Al-
gorithm 1 is contention free.

Proof: The linear tree is formed by grouping all ma-
chines attached to each switch together and ordering
the switches based on the DFS order. Since each ma-
chine occurs in the linear tree exactly once, the link
to and from each machine is used at most once in the
linear tree. Thus, the intra-switch communications do
not have contention. Since the switches are ordered
based on DFS, from Lemma 2, the inter-switch com-
munications do not have any contention. Hence, the
linear tree is a contention-free linear tree. �

4.2 Contention-free binary trees

As discussed earlier, since the tree height directly
affects the time to complete the operation, the ideal bi-
nary tree for pipelined broadcast is one with the small-
est tree height. Unfortunately, the problem of find-
ing a contention-free binary tree with the smallest tree
height is difficult to solve. In this section, we propose
a heuristic that computes contention-free binary trees
while trying to minimize the tree heights. Although
this heuristic may not find trees with the smallest tree
heights, our simulation study indicates that the trees
found by this heuristic are close to optimal. The heuris-
tic is based on the contention-free linear tree obtained
from Algorithm 1. The following lemma is the founda-
tion of this heuristic.
Lemma 3: Let us re-number the logical linear tree ob-
tained from Algorithm 1 (n0,0(nr) → ... → n0,X0−1 →
n1,0 → ... → n1,X1−1 → ... → n|S|−1,0 → ... →
n|S|−1,X|S|−1−1) as m0(nr) → m1 → ... → mP−1.
Let 0 ≤ i < j ≤ k < l ≤ P − 1, communication
mi → mj does not have contention with communica-
tion mk → ml.
Proof: Let mi = na,w, mj = nb,x, mk = nc,y, and
ml = nd,z. Since i < j ≤ k < l, a ≤ b ≤
c ≤ d. Path(mi → mj) has three components:
(mi, sa), path(sa → sb), and (sb, mj). Path(mk → ml)
has three components: (mk, sc), path(sc → sd), and
(sd, ml). When a = b, communication mi → mj does
not have contention with communication mk → ml

since (mi, sa) and (sb, mj) are not in path(sc → sd).
Similarly, when c = d, communication mi → mj does
not have contention with communication mk → ml.
When a < b ≤ c < d, from Lemma 2, path(sa → sb)
does not share edges with path(sc → sd). Hence, com-
munication mi → mj does not have contention with
communication mk → ml in all cases. �

Let m0 → m1 → ... → mP−1 be the linear tree ob-
tained from Algorithm 1. For 0 ≤ i ≤ j ≤ P − 1, let
us denote sub-array S(i, j) = {mi, mi+1, ...,mj}. The
heuristic constructs contention-free binary trees for all
sub-arrays S(i, j), 0 ≤ i ≤ j ≤ P − 1. Notice that

for a sub-array S(i, j), there always exists at least one
contention-free binary tree since the linear tree is a spe-
cial binary tree. Let tree(i, j) represent the contention-
free binary tree computed for S(i, j). Tree(0, P − 1) is
the binary tree that covers all machines. The heuris-
tic builds tree(i, j) with communications ma → mb,
i ≤ a < b ≤ j. Let 0 ≤ i ≤ j < k ≤ l ≤ P − 1,
from Lemma 3, tree(i, j) does not have contention with
tree(k, l).

(1) Let m0 → m1 → ... → mP−1 be the linear tree
obtained from Algorithm 1.

(2) for (i = 0; i < P ; i + +) do
(3) best[i][i] = 0; tree[i][i] = {};
(4) enddo
(5) for (i = 0; i < P − 1; i + +) do
(6) best[i][i + 1] = 1;
(7) tree[i][i + 1] = {mi → mi+1};
(8) enddo
(9) for (i = 0; i < P − 2; i + +) do
(10) best[i][i + 2] = 1;
(11) tree[i][i + 2] = {mi → mi+1, mi → mi+2};
(12) enddo
(13) for (j = 3; j < P ; j + +) do
(14) for (i = 0; i < P − j; i + +) do
(15) best[i, i + j] = ∞;
(16) for (k = i + 2; k ≤ i + j; k + +) do
(17) if (mi → mk does not have contention

with tree[i + 1][k − 1]) then
(18) if (best[i][i + j] > max(best[i + 1][k − 1],

best[k][i + j]) + 1) then
(19) best[i][i + j] = max(best[i + 1][k − 1],

best[k][i + j]) + 1;
(20) index = k;
(21) endif
(22) endif
(23) enddo
(24) tree[i][i + j] = tree[i + 1][index − 1]∪

tree[index][i + j] ∪ {mi → mi+1, mi → index};
(25) enddo
(26) enddo
(27) tree[0][P − 1] stores the final result.

Figure 4. Heuristic to compute contention-
free binary trees (Algorithm 2)

Figure 4 shows the heuristic (Algorithm 2). In
this algorithm, tree[i][j] stores tree(i, j), and best[i][j]
stores the height of tree(i, j). Lines (2) to (12) are
the base cases for binary trees with 1, 2, and 3 nodes.
Note that under the 1-port model, mi → mi+1 and
mi → mi+2 cannot happen at the same time. Hence,
tree {mi → mi+1,mi → mi+2} is the contention free
binary tree for machines mi, mi+1, and mi+2. Lines
(13) to (26) iteratively compute trees that cover 4 to P

machines. To compute tree(i, j), j > i + 2, the heuris-
tic decides a k, i + 1 < k ≤ j, so that tree(i, j) is
formed by having mi as the root, tree(i + 1, k − 1) as
the left child, and tree(k, j) as the right child. Line
(17) makes sure that mi → mk does not have con-
tention with communications in tree(i+1, k−1), which
is crucial to ensure that the binary tree is contention-
free. The heuristic chooses a k with the smallest
max(best[i + 1][k − 1], best[k][j]) + 1 (lines (18) to
(21)), which minimizes the tree height. At the end,
tree[0][P − 1] stores the contention-free binary tree.
Assume that the number of switches is less than P ,
the complexity of this algorithm is O(P 4).
Theorem 2: The logical binary tree computed by Al-
gorithm 2 is contention-free.
Proof: We will prove that, for all i and j, 0 ≤ i ≤
j ≤ P − 1, (1) tree[i][j] only consists of communica-
tions ma → mb, i ≤ a < b ≤ j; and (2) tree[i][j] is
contention free.

Base case: It is trivial to show that trees with 1,
2, or 3 nodes satisfy the two conditions. For exam-
ple, the 2-node tree rooted at node mi contains nodes
{mi, mi+1} and one edge mi → mi+1 (from lines (5) -
(8) in Figure 4). This tree satisfies condition (1) since
it only consists of communications mi → mi+1. This
tree is contention free since there is only one commu-
nication in the tree.

Induction case: Since tree[i][j] = tree[i + 1][k − 1]∪
tree[k][j] ∪ {mi → mi+1, mi → mk}, i + 2 < j and
i+1 < k ≤ j, tree[i][j] only consists of communications
ma → mb, i ≤ a < b ≤ j.

From Lemma 3, communications in tree[i + 1][k −
1] do not have contention with communications in
tree[k][j]; mi → mi+1 does not have contention with
communications in tree[k][j] and tree[i+1][k− 1]; and
mi → mk does not have contention with tree[k][j].
Thus, only mi → mk can potentially cause contention
with communications in tree[i + 1][k − 1]. Since the
algorithm makes sure that mi → mk does not cause
contention with communications in tree[i + 1][k − 1]
(line (17)), there is no contention in tree[i][j]. �

Algorithm 2 can easily be extended to compute gen-
eral k-ary trees. S(i, j) can basically be partitioned
into k sub-arrays which form the k subtrees. Precau-
tions must be taken to prevent the communications
from root to a subtree from causing contention with
communications in the subtrees.

We evaluate the trees computed by Algorithm 2
through simulation. Figure 5 shows the results when
applying Algorithm 2 to clusters with different sizes
(up to 1024 machines). We consider two cases, on av-
erage 16 machines per switch and on average 8 ma-
chines per switch. For the 8 machines/switch case,

a 1024-machine cluster has 128 switches. The clus-
ter topologies are generated as follows. First, the size
of the clusters to be studied is decided and the ran-
dom tree topologies for the switches are generated by
repeatedly adding random links between switches un-
til a tree that connects all nodes is formed (links that
violate the tree property are not added). After that,
machines are randomly distributed to each switch with
a uniform probability. For each size, 20 random topolo-
gies are generated and the average height of the 20 trees
computed using Algorithm 2 is reported. For compar-
ison, we also show the tree heights of complete binary
trees for all the sizes. As can be seen from the figure,
the trees computed using Algorithm 2 are not much
taller than the complete binary tree, which indicates
that the tree computed using Algorithm 2 is close to
optimal. Notice that the height of the complete binary
tree is the lower bound of the height of the optimal
contention-free binary tree. In most cases, contention-
free complete binary trees do not exist.

 0

 5

 10

 15

 20

 25

 30

 1024 512 256 128 32

T
re

e
he

ig
ht

Number of Machines

Alg. 2(8 machines/switch)
Alg. 2(16 machines/switch)

complete binary tree

Figure 5. Performance of Algorithm 2

5 Experiments

In this section, we evaluate the performance of
pipelined broadcast with different types of broadcast
trees on different physical topologies. The physical
topologies used in the evaluation are shown in Figure 6.
We will refer to the topologies in Figure 6 as topolo-
gies (1), (2), (3), (4), and (5). Topology (1) contains 16
machines connected by a single switch. Topologies (2),
(3), (4), and (5) are 32-machine clusters with different
network connectivity. Topologies (4) and (5) have ex-
actly the same physical topology, but different node as-
signments. The machines are Dell Dimension 2400 with
a 2.8 GHz P4 processor, 128MB of memory, and 40GB
of disk space. All machines run Linux (Fedora) with
2.6.5-1.358 kernel. The Ethernet card in each machine
is Broadcom BCM 5705 with the driver from Broad-
com. The switches of the clusters are Dell Powercon-
nect 2224 (24-port 100Mbps Ethernet switches).

To evaluate the pipelined broadcast schemes, we
implement automatic routine generators that take

n0 n1 n15 n0 n1 n15 n16 n17 n31 n0 n1 n7 n8 n9 n16n15 n17 n23 n24 n25 n31

S0 S0 S1 S0 S3S2S1

(1) (2) (3)

n11n8 n9n10 n18 n19n16 n17n0 n1n2 n3

n4

S0

n5n6 n7 n12 n13 n14 n15

S1 S2

n23n20 n21 n22

n30S3

n27n26 n29n28

n25

n24 n31

S0 S1 S2

S3n6

n23n15n7

n14 n22

n30

n31

n5 n13 n21 n29

n28n4 n12 n20

n27n19n11

n26n2 n10 n18

n1 n9 n17 n25 n3

n8n0 n16 n24

(5)(4)

Figure 6. Topologies used in the evaluation

the topology information as input and automatically
generate customized MPI Bcast routines that em-
ploy pipelined broadcast with different contention-free
broadcast trees. The generated routines are written in
C. They use MPICH point-to-point primitives and are
compiled with the mpicc compiler in MPICH with no
additional flags in the evaluation.

We compare these routines with the original
MPI Bcast in LAM/MPI 7.1.1 [12] and MPICH 2-
1.0.1 [15]. The code segment for performance mea-
surement is shown in Figure 7. Multiple iterations of
MPI Bcast are measured. Within each iteration, a bar-
rier is added to prevent pipelined communication be-
tween iterations. Since we only consider broadcasts
with msize ≥ 8KB, the barrier overhead is insignifi-
cant to the total communication time. When report-
ing the performance of pipelined broadcast, by default,
we only report the results with optimal segment sizes,
which are determined by an automatic tuning system
[4] using an empirical approach. Note that, as shown
in Figure 12, while the optimal segment sizes are diffi-
cult to obtain, a wide range of segment sizes can yield
performance close to the optimal.

MPI Barrier(MPI COMM WORLD);
start = MPI Wtime();
for (count = 0; count < ITER NUM; count ++) {

MPI Bcast(...);
MPI Barrier(...);

}
elapsed time = MPI Wtime() - start;

Figure 7. Code segment for measuring
MPI Bcast performance.

Figure 8 shows the performance of pipelined broad-
cast using different contention-free trees on topology
(1). The performance of pipelined broadcast on topolo-
gies (2), (3), (4), and (5) has a similar trend. As can
be seen from the figure, when the message size is large
(≥ 32KB), the linear tree offers the best performance.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

32K16K8K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

3-ary tree
Binary tree
Linear tree

Pingpong/2

(a) Medium sized messages

 0

 100

 200

 300

 400

 500

 600

2M1M512K256K128K64K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

3-ary tree
Binary tree
Linear tree

Pingpong/2

(b) Large sized messages

Figure 8. Performance of pipelined broadcast
with different broadcast trees on Topology (1)

For medium sized messages (8KB to 16KB), the bi-
nary tree offers the best performance. In all the experi-
mental settings, the 3-ary tree is always worse than the
binary tree, which confirms that k-ary trees, k > 2, are
not effective. In the rest of the section, we will only
show the performance of the linear tree and the binary
tree. The line titled “pingpong/2” in Figure 8 shows
the time to send a single message of a given size be-
tween two machines, that is, T (msize). When the mes-
sage size is large (≥ 256KB), the communication com-
pletion time for linear trees is very close to T (msize),
which indicates that pipelined broadcast with the lin-
ear tree is clearly a good choice for Ethernet switched
clusters when the message is large. The time for binary
trees is about twice the time to send a single message.

Figures 9 and 10 compare the performance of
pipelined broadcast using contention-free trees with the
algorithms used in LAM/MPI and MPICH on topolo-
gies (1), (4), and (5). The results for topologies (2)
and (3) are similar to those for topology (4). Since
all algorithms run over MPICH except LAM, we also
include a binomial tree implementation (the algorithm
used in LAM) over MPICH in the comparison. MPICH
uses the scatter followed by all-gather algorithm for
large messages (> 12KB) and the binomial tree for
small messages. When the message size is reasonably
large (≥ 8KB), the pipelined broadcast routines signif-

icantly out-perform the none-pipelined broadcast algo-
rithms used in LAM and MPICH. For topology (1) and
(4), when the message size is large (≥ 512KB), MPICH
has similar performance to the pipelined broadcast us-
ing binary trees. This is compatible with our analysis
in Section 3.1 that both should have a completion time
of around 2 × T (msize). However, pipelined broad-
cast with linear trees is about twice as fast as MPICH
when msize ≥ 512KB. For topology (5), MPICH per-
forms much worse than pipelined broadcast with binary
trees. This is because the MPICH all-gather routine
uses topology unaware algorithms and its performance
is sensitive to the physical topology [5]. Note that the
MPICH all-gather routine changes algorithms when the
broadcast message size is 512KB. Hence, the perfor-
mance curve for MPICH is non-continuous at this point
(512KB) for some topologies.

 2

 4

 6

 8

 10

 12

 14

32K16K8K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

Binomial tree
MPICH

LAM
Linear tree
Binary tree

(a) topology (1)

 0

 10

 20

 30

 40

 50

 60

32K16K8K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

Binomial tree
MPICH

LAM
Linear tree
Binary tree

(b) topology (4)

 0

 5

 10

 15

 20

 25

 30

 35

32K16K8K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

Binomial tree
MPICH

LAM
Linear tree
Binary tree

(c) topology (5)

Figure 9. Performance of different broadcast
algorithms (medium sized messages)

 0

 100

 200

 300

 400

 500

 600

 700

 800

2M1M512K256K128K64K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

Binomial tree
MPICH

LAM
Linear tree
Binary tree

(a) topology (1)

 0

 100

 200

 300

 400

 500

 600

 700

 800

2M1M512K256K128K64K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

Binomial tree
MPICH

LAM
Linear tree
Binary tree

(b) topology (4)

 0

 100

 200

 300

 400

 500

 600

 700

 800

2M1M512K256K128K64K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

Binomial tree
MPICH

LAM
Linear tree
Binary tree

(c) topology (5)

Figure 10. Performance of different broadcast
algorithms (large sized messages)

Figure 11 compares pipelined broadcast using
contention-free trees with that using topology unaware
trees. In the comparison, we use the topology unaware
linear tree in [7, 19]: n0 → n1 → ... → nP−1 (n0 is the
root). For topology unaware binary trees, we assume
the complete binary tree, where node nk has children
n2k+1 and n2k+2 and parent n k−1

2
. For topology (2),

the topology unaware linear tree happens to be con-
tention free. As a result, its performance is exactly the
same as the contention-free linear tree. However, for
topology (5), this is not the case, the topology unaware
linear tree incurs significant network contention and
its performance is much worse than the contention-free
linear tree. For example, for broadcasting 1MB data
on topology (5), the communication completion time is
107.3ms for the contention-free linear tree and 409.7ms
for the topology unaware linear tree. The contention-

 0

 100

 200

 300

 400

 500

512K256K128K64K32K16K8K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

binary (topology unaware)
binary (contention free)

linear (topology unaware)
linear (contention free)

(a) Topology (2)

 0

 50

 100

 150

 200

 250

 300

 350

512K256K128K64K32K16K8K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

binary (topology unaware)
linear (topology unaware)

binary (contention free)
linear (contention free)

(b) Topology (5)

Figure 11. Contention-free broadcast trees
versus topology unaware broadcast trees

free tree is 300% faster than the topology unaware
tree. Topology unaware binary trees cause contention
in all the topologies except topology (1) in the experi-
ments and their performance is significantly worse than
the contention-free binary trees. These results indi-
cate that to achieve high performance, contention-free
broadcast trees must be used.

One of the important issues in pipelined broadcast
is how to find a segment size that can achieve good
performance. Figure 12 shows the impacts of segment
sizes on the performance of pipelined broadcast with
contention-free linear trees. The results for pipelined
broadcast with binary trees have a similar trend. These
figures indicate that pipelined broadcast is not very
sensitive to the segment size. Changing from a segment
size of 512B to 2048B does not significantly affect the
performance, especially in comparison to using a dif-
ferent algorithm as shown in Figure 12. While finding
the optimal segment size may be hard, deciding one
size that can achieve good performance should not be
very difficult since a wide range of segment sizes can
result in near optimal performance.

6 Conclusion

In this paper, we consider pipelined broadcast on
Ethernet switched clusters with multiple switches. Al-

 0

 50

 100

 150

 200

 250

1M512K256K128K64K32K16K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

MPICH
segment size=512

segment size=1024
segment size=2048

optimal

(a) Topology (1)

 0

 50

 100

 150

 200

 250

 300

1M512K256K128K64K32K16K

C
om

pl
et

io
n

tim
e

(m
s)

Message size (bytes)

MPICH
segment size=512

segment size=1024
segment size=2048

optimal

(b) Topology (3)

Figure 12. Pipelined broadcast using linear
trees with different segment sizes

gorithms for computing different kinds of contention-
free broadcast trees on Ethernet switched clusters are
developed. Pipelined broadcast is compared with other
commonly used broadcast algorithms and is shown
to have higher performance when the message size is
large. While our techniques are developed for Ether-
net switched clusters with physical tree topologies, the
techniques can be applied to other types of clusters
since the tree topology can be embedded on most con-
nected networks.

References

[1] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert,
“Pipelined Broadcasts on Heterogeneous Platforms.”
IEEE Trans. on Parallel and Distributed Systems,
16(4):300-313, 2005.

[2] O. Beaumont, L. Marchal, and Y. Robert, “Broadcast
Trees for Heterogeneous Platforms.” IEEE IPDPS,
2005.

[3] J. Cohen, P. Fraigniaud, and M. Mitjana, “Schedul-
ing Calls for Multicasting in Tree Networks.” In 10th
ACM-SIAM Symp. on Discrete Algorithms (SODA
’99), pages 881-882, 1999.

[4] A. Faraj and X. Yuan, “Automatic Generation and
Tuning of MPI Collective Communication Routines,”
the 19th ACM ICS, pages 393-402, June 20-22, 2005.

[5] A. Faraj, P. Patarasuk and X. Yuan, “Bandwidth Effi-
cient All-to-all Broadcast on Switched Clusters,” The
2005 IEEE Cluster 2005, Sept. 27-30, 2005.

[6] S. M. Figueira, “Improving Binomial Trees for Broad-
casting in Local Networks of Workstations.” VEC-
PAR’02, June 2002.

[7] J.Pjesivac-Grbovic, T. Angskun, G. Bosilca, G.
E. Fagg, E. Gabriel, and J. Dongarra, “Perfor-
mance Analysis of MPI Collective Operations,” IEEE
IPDPS, 2005.

[8] S. L. Johnsson and C. T. Ho, “Optimum Broadcast-
ing and Personalized Communication in Hypercube.”
IEEE Trans. on Computers, 38(9):1249-1268, 1989.

[9] A. Karwande, X. Yuan, and D. K. Lowenthal, “CC-
MPI: A Compiled Communication Capable MPI Pro-
totype for Ethernet Switched Clusters.” ACM SIG-
PLAN PPoPP, pages 95-106, 2003.

[10] R. Kesavan, K. Bondalapati, and D.K. Panda, “Multi-
cast on Irregular Switch-based Networks with Worm-
hole Routing.” IEEE HPCA, Feb. 1997.

[11] H. Ko, S. Latifi, and P. Srimani, “Near-Optimal
Broadcast in All-port Wormhole-routed Hyper-
cubes using Error Correcting Codes.” IEEE TPDS,
11(3):247-260, 2000.

[12] LAM/MPI Parallel Computing. http://www.lam-
mpi.org/.

[13] P.K. McKinley, H. Xu, A. Esfahanian and L.M.
Ni, “Unicast-Based Multicast Communication
in Wormhole-Routed Networks.” IEEE TPDS,
5(12):1252-1264, Dec. 1994.

[14] The MPI Forum. The MPI-2: Extensions to the
Message Passing Interface, July 1997. Available at
http://www.mpi-forum.org/docs/mpi-20-html/ mpi2-
report.html.

[15] MPICH - A Portable Implementation of MPI.
http://www.mcs.anl.gov/mpi/mpich.

[16] A Proskurowski, “Minimum Broadcast Trees.” IEEE
TC, c-30, pp. 363-366, 1981.

[17] SCI-MPICH: MPI for SCI-connected Clus-
ters. Available at: www.lfbs.rwth-aachen.de/
users/joachim/SCI-MPICH/pcast.html.

[18] Andrew Tanenbaum, “Computer Networks”, 4th Edi-
tion, 2004.

[19] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra, “Auto-
matically Tuned Collective Communications,” In Pro-
ceedings of SC’00: High Performance Networking and
Computing, 2000.

[20] J. Watts and R. Van De Gejin, “A Pipelined Broad-
cast for Multidimentional Meshes.” Parallel Process-
ing Letters, 5(2)281-292, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

