
A Performance Model for Fine-Grain Accesses in UPC

Zhang Zhang and Steven R. Seidel

Michigan Technological University
Dept. of Computer Science

Houghton, MI 49931-1295 USA
zhazhang, steve@mtu.edu

Abstract

UPC’s implicit communication and fine-grain program-
ming style make application performance modeling a chal-
lenging task. The correspondence between remote refer-
ences and communication events depends on the internals
of the compiler and runtime system. This correspondence
is often hidden from application developers. Aggressive
optimizations allowed by the relaxed memory consistency
model further blur this correspondence by transforming
code structure. A modeling approach based on UPC plat-
form benchmarking and code analysis is proposed. This ap-
proach abstracts a UPC platform according to its potential
to apply a few common optimizations, then divides remote
references in the application code into groups, based on a
dependence analysis, that are amenable to each optimiza-
tion. Each group is associated with a cost, obtained via
benchmarking each potential optimization. The aggregated
cost of these groups is the predicted cost of the applica-
tion. Three simple UPC applications modeled using this ap-
proach usually yielded performance predictions within 15
percent of actual running times.

1 Introduction

Unified Parallel C (UPC) is an extension of ANSI C for
programming multiprocessors [8, 15, 14, 26]. UPC is a
member of a family of languages that provide the Parallel
Global Address Space (PGAS) programming model [10].
PGAS languages are of interest to the HPC community for
their potential of achieving high productivity and high per-
formance, which are essential to the HPCS.

While substantial efforts have gone into PGAS lan-
guages design and implementation, little work has been
done to model the performance of these languages. At the
first PGAS Programming Models Conference [25] and at
the 5th UPC Developers Workshop [1], both held at the end

of 2005, the need for a performance modeling methodology
for PGAS languages, especially for UPC, was expressed
many times by application developers and language devel-
opers.

Over the past decade many performance models for par-
allel computing have been proposed. Since MPI and clus-
ters are so widely used, the majority of these performance
models target point-to-point communication and are based
on network properties and message sizes. Models of this
kind include BSP [17] and LogP [11], and many varia-
tions [12, 18, 2, 20, 24, 7, 19]. The “check-in, check-
out” (CICO) performance model [22] has been proposed for
shared memory programming model but it is only applica-
ble to cache-coherent architectures. None of these mod-
els are suitable for UPC because mechanisms employed
by UPC, such as the global address space, fine-grain ref-
erences, and implicit communication, are not captured by
these models.

This paper is the first to address the demand for an appli-
cation level UPC performance model. This study focuses
on the performance of fine-grain shared memory accesses
in an execution environment with relaxed memory consis-
tency. We first investigate the UPC PGAS programming
model to isolate the inherent factors that complicate perfor-
mance modeling. Then an approach is proposed to describe
the interactions between a UPC platform and UPC applica-
tions. The UPC platform is abstracted into a small set of
features and then these features are mapped onto the shared
references in an application to give a performance predic-
tion. Microbenchmarks are given to quantify the set of UPC
platform features, and the principles of a dependence-based
algorithm to characterize shared references are also given.
Finally, the performance model is validated using three sim-
ple UPC programs.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the features of the UPC programming
model. Section 3 discusses platform abstraction and appli-
cation analysis. Microbenchmark design, the principles of

1-4244-0054-6/06/$20.00  ©2006 IEEE



relating applications to platform features, and the method
of characterizing shared references are also discussed. Sec-
tion 4 develops equations for run time and speedup predic-
tion. Section 5 reports the results of applying the perfor-
mance model to three UPC programs run on three differ-
ent compiler/architecture combinations. Section 7 is a sum-
mary of findings.

2 UPC programming model

This section discusses some conspicuous features of the
PGAS programming model that complicate performance
modeling. Communication in UPC is expressed implicitly
as references to shared memory. This can be implemented
in many ways, depending on the architecture. Although re-
mote references are often implemented by messages, it is
not realistic to model references using point-to-point com-
munication because a reference may correspond to multiple
messages and this correspondence varies from one imple-
mentation to another. The communication cost ultimately
depends on both hardware-specific factors such as memory
bandwidth, network bandwidth and latency, and program-
specific factors such as reference patterns and data affinity.

The UPC programming model encourages fine-grained
accesses. That is, references to scalar shared objects largely
dominate the communication. Given the increasing gap be-
tween local memory bandwidth and network bandwidth,
it is reasonable to expect compilers and runtime systems
to pursue aggressive latency avoidance and tolerance tech-
niques. These techniques typically involve code transfor-
mations that change the number, order, and form of the
shared references in the original program. Performance pre-
diction based only on nominal access latency and the num-
ber of references leaves too many alternatives for explana-
tion and is not accurate.

UPC has a memory consistency model in which refer-
ences may be either strict or relaxed. Strict references are
executed in program order and do not lend themselves to
aggressive optimizations, but relaxed references offer many
opportunities for optimizations. From a performance per-
spective, a practical UPC program should consist of a ma-
jority of relaxed references. Each compiler and runtime en-
vironment applies a different set of optimizations. Without
detailed information about a particular implementation, it is
difficult to model performance.

In summary, modeling UPC performance is challenging
because its programming model is distant from the archi-
tectural model on which it is usually implemented. In addi-
tion, the connection between language constructs (e.g., re-
mote references) and data movements (e.g., messages) is
blurred by compiler and runtime optimizations. To tackle
this problem, we take an approach based on platform bench-
marking and dependence analysis. Platform benchmarking

uses microbenchmarks to quantify a UPC platform’s ability
to perform certain common optimizations and dependence
analysis determines which shared references in a code are
potentially optimizable.

3 Modeling UPC fine-grain access perfor-
mance

The performance of a UPC program is determined by
platform properties and application characteristics. A UPC
platform can be characterized by two aspects: How fast
the communication layer performs shared memory accesses
and synchronization and how aggressively the UPC com-
piler and the runtime system optimize shared references.
The baseline performance of a UPC platform, assuming
no optimizations are done to shared memory accesses, can
be characterized using parameters such as scalar access la-
tency, shared access overhead, and average barrier cost. To
characterize optimizations, inside knowledge about the par-
ticular UPC compiler and runtime system is needed but this
is not always available. We show that a small set of opti-
mizations that compilers and runtime systems might possi-
bly perform can be abstracted. Then a set of corresponding
microbenchmarks is used to test a particular platform’s abil-
ity to perform these optimizations.

On the other hand, application parameters capture the ef-
fect of fine-grain reference patterns on the performance of a
UPC computation. We show how to group shared memory
accesses into categories that are amenable to the set of opti-
mizations abstracted from studying UPC platforms. A UPC
computation is characterized by the occurrences of each cat-
egory. Combining this information with the platform mea-
surements produces a performance prediction.

This section describes how to abstract UPC platform
behaviors and the design of the microbenchmarks used
to capture this abstraction. This section also discusses a
dependence-based approach to parameterizing shared mem-
ory references in UPC applications.

3.1 Platform abstraction

Fine-grain access optimization is expected to be the fo-
cus of optimizations that a UPC platform conducts be-
cause fine-grain accesses tend to be the performance bot-
tleneck [5]. Although optimizations for private memory
accesses commonly seen on sequential compilers are also
expected to be performed by a UPC compiler, they are not
considered in this paper due to their insignificance relative
to the cost of remote accesses.

Latency avoidance and latency tolerance are the princi-
pal fine-grain access optimization techniques. The parti-
tioned shared memory layout and the fine-grain access pat-
tern determine that spatial locality and work overlapping are



the two areas that UPC compilers and runtime systems will
most likely exploit to achieve latency avoidance and latency
tolerance. We anticipate that the following optimizations
may be performed by current UPC platforms. These op-
timizations either exploit spatial locality or work overlap-
ping.

Access aggregation. Multiple writes (puts) to shared
memory locations that have affinity to a single UPC thread
and are close to each other can be postponed and then com-
bined into one put operation. Multiple reads (gets) from lo-
cations that have affinity to the same UPC thread and are
close to each other can also be coalesced by prefetching
them into local temporaries using one get operation before
they are used. For example, the two reads in the following
code segment are subject to coalescing:

shared [] double *p;
... = *(p-1);
... = *(p+1);

Vectorization. A special case of access aggregation is
vectorized get and put operations for subscripted variables
in a loop. Array accesses in a loop with fixed stride usually
exhibit spatial locality that can be exploited using vector-
like get and put operations. In the following simple exam-
ple, both the read and the write make stride-1 accesses to
remote locations. There are a total of N remote reads and N
remote writes in the loop.

shared [] double *SA, *SB;
// SA and SB point to blocks
// of memory on remote threads.
for (i = 0; i < N; i++) {
... = SA[i];
SB[i] = ...; }

If the reads and writes are performed using two vectors
of length L, then the number of remote accesses can be re-
duced to N/L for both reads and writes. The vectorized
code is shown below.

shared [] double *SA, *SB;
double tA[L], tB[L];
for (i = 0; i < N; i += L) {
vector_get(tA, SA, i);
for (ii = 0; ii < L; ii++) {

... = tA[ii];
tB[ii] = ...; }

vector_put(tB, SB, i); }

Remote access caching. Accesses made to remote
threads can be cached to exploit temporal and spatial reuse.
This is a runtime optimization that can achieve effects sim-
ilar to aggregation and vectorization but for shared memory
accesses with regular patterns. Coalescing and vectoriza-
tion, on the other hand, are compiler directed optimizations
that, if properly implemented, can be effective for a wider

range of access patterns.
Access pipelining. Dependence-free accesses that ap-

pear consecutively in code can be pipelined to overlap with
each other. Unlike the case of aggregation where multiple
accesses are completed using one operation, here the num-
ber of operations does not change, so latency saved this way
is limited. Accesses to locations with affinity to different
threads can also be pipelined to overlap with each other, but
this has the risk of jamming the communication network
when the diversity of affinity increases.

Overlapping with computation. Memory accesses can
be issued as early as possible (for reads), or completed as
late as possible (for writes), to hide the latency behind local
computation. The potential benefits of this approach de-
pend on both the freedom of moving read and write oper-
ations and the latency gap between shared memory access
and private memory access.

Multi-streaming. Remote accesses can be multi-
streamed on platforms that support it. This is beneficial in
situations where the memory system can handle multiple
streams of data and there are a sufficient number of inde-
pendent accesses that can be evenly divided into different
groups to be completed in parallel using multiple streams.

Note that the effects of these optimizations are not dis-
joint. For example, remote access caching can sometimes
provide the effect of coalescing multiple accesses to the
same remote thread. Vectorization can have an effect simi-
lar to caching accesses that exhibit spatial reuses. Pipelining
and aggregation are both effective for independent accesses
that appear in a sequence. In reality it is hard to tell ex-
actly which optimizations lead to an observed effect on an
application. But it is possible to use carefully designed mi-
crobenchmarks to determine which of these optimizations
a particular UPC compiler and runtime system might have
implemented.

3.2 Microbenchmarks design

Four microbenchmarks are proposed to capture a UPC
platform’s ability to optimize fine-grain shared memory ac-
cesses. They focus on capturing the effects of aggregation,
vectorization and pipelining for remote accesses, as well as
local shared access optimizations.

Baseline. This benchmark performs uniformly random
read and write operations to the shared memory. Remote
access caching (if available) is turned off. All UPC threads
have the same workload. Accesses are made to remote
shared memory. This benchmark measures the latency of
scalar remote accesses in an environment with a balanced
communication pattern. Since random fine-grain accesses
are generally not amenable to the optimizations listed in the
previous section, this benchmark measurement represents
the baseline performance of a UPC platform.



Vector. Each UPC thread accesses consecutive mem-
ory locations, a vector, starting from a random location in
a large shared array with indefinite block size. This bench-
mark determines if the platform exploits spatial locality by
issuing vectorized reads and writes or by caching remote
accesses.

Coalesce. In this case each UPC thread makes a se-
quence of accesses with irregular but small strides to a large
shared array with indefinite block size. The accesses appear
as a sequence in the microbenchmark code to allow pipelin-
ing, but if access aggregation is supported by the platform,
this access pattern is more amenable to aggregation. This
benchmark captures the effect of access pipelining and ag-
gregation.

Local vs. private. Each UPC thread accesses random
memory locations with which it has affinity. Then the same
operations are performed to private memory locations. The
cost difference between the two kinds of accesses represents
shared access overhead, i.e., the software overhead arising
from processing shared memory addresses.

These microbenchmarks represent four typical reference
patterns found in UPC programs. Each pattern results in an
effective memory access rate in terms of double words per
second. We define Sbaseline, Svector , Scoalesce and Slocal to be
the rates of the four patterns.

3.3 Application analysis

The whole purpose of UPC compiler and runtime opti-
mizations is to exploit concurrency so that multiple shared
memory operations can be scheduled in parallel. The
Bernstein conditions [6] established the constraints for
concurrent scheduling of memory operations. That is,
dependence-free accesses can be safely executed in paral-
lel. Following [3], we define dependence as: A dependence
exists between two memory references if (1) both references
access the same memory location and at least one reference
stores to it, and (2) there is a feasible execution path from
one reference to another. Based on this definition, depen-
dences can be categorized as true dependence, antidepen-
dence, and output dependence. In this study, we also use the
concept of input dependence, i.e., both references involved
in a dependence are reads.

The UPC memory model forces another constraint for
concurrent scheduling of memory accesses. It prohibits
reordering strict operations and reordering strict and re-
laxed operations. References separated by strict operations
must complete in program order even if they are indepen-
dent of each other. We define strict operations, including
strict memory accesses, barriers, fences, and library func-
tion calls such as collectives, to be sequence points. Ef-
fectively, there is a true dependence from every statement
before a sequence point to the sequence point, and a true de-

pendence from it to every statement after it. In other words,
sequence points divide a program into a series of intervals.

A dependence-based analysis of a UPC program can
identify candidate references for concurrent scheduling in
an interval. First, a dependence graph is constructed for all
references inside an interval. Then, references to a shared
array are partitioned into groups based on the four reference
patterns represented by the microbenchmarks described in
Section 3.2, under the assumption that their accesses are
amenable to the optimizations targeted by these patterns.
References in the same group are subject to concurrent
scheduling. Last, their collective effects are aggregated to
predict the performance of the program.

To precisely describe reference partitioning, we formally
define a partition as a 3-tuple (C, pattern,name), where C
is the set of references grouped in the partition. pattern is
one of the four patterns, baseline, vector, coalesce, or local,
and some simple combinations of them. Simple combina-
tions are allowed because accesses caused by a reference
may incur different costs at different times during an exe-
cution. For example, some accesses are local and others are
remote. name is the name of the shared object referenced by
C, which implies that all references in a partition access the
same shared object because references to different shared
objects are not amenable to aggregation.

The following sections discuss the principles of refer-
ence partitioning. To facilitate the analysis, user defined
functions are inlined to get a flat code structure. Recursive
routines are not considered in this study.

3.4 Reference partitioning

Reference partitioning can be reduced to a variation of
the typed fusion problem [3]. We thus define the reference
partitioning problem as the following.

Let G = (V,E) be a dependence graph of an interval,
where V is a set of vertices denoting shared references ap-
pearing in the interval (each vertex denotes a separate refer-
ence), and E is a set of edges denoting dependences among
the references. Let T be the set of names that label the
vertices in V . A name uniquely identifies the shared ob-
ject involved in the reference. Alias analysis must be done
such that aliases to the same object have the same name.
Let B ⊆ E be a set of edges denoting true dependences
and antidependences. Then the reference partitioning graph
G′ = (V ′,E ′) is a graph derived from G that has a minimum
number of edges by grouping vertices in V . Vertices are
grouped subject to the following constraints:

1. Vertices in a partition must have the same name t,
where t ∈ T .

2. At any time, the memory locations referenced by ver-
tices in a partition must have the same affinity.



3. No two vertices joined by an e ∈ B may be in the same
partition.

In the resulting graph G′, each vertex may contain more
than one reference. If multiple references in a partition are
accessing the same memory location, then they should be
counted only once because only one access is really needed.
Each reference in a partition incurs a uniform cost deter-
mined by the pattern of the partition. A partition has a cost
that is just the aggregated costs of its members.

What pattern a partition should assume, and conse-
quently its cost, is determined by what optimizations are
applicable to the references in the partition on a particular
UPC platform. Consider the following two examples:

In the example below references to A[i] and A[i-1] are
in one partition. If the platform supports access vectoriza-
tion then they are vectorizable because all accesses have
the same affinity and are unit-strided. This partition is as-
signed the vector pattern. On the other hand, if the platform
does not support access vectorization but supports coalesc-
ing then the two references can be coalesced into one access
on each iteration and the partition is assigned the coalesce
pattern. Finally, if the platform does not support vectoriza-
tion or coalescing then the partition is assigned the baseline
pattern.

shared [] float *A;
// A points to a block of
// memory on a remote thread
for (i = 1; i < N; i++)
{ ... = A[i];

... = A[i-1]; }

In example below the two references to B appear to be
similar to the two references to A in the previous example.
But B[i] and B[i-1] are in two separate partitions because
they access locations with different affinities on each iter-
ation. Neither of the two partitions are subject to vector-
ization because they both access locations with different
affinities across iterations. The two partitions can only be
assigned a mixed baseline-local pattern, because for every
THREADS accesses there is one local, no matter what opti-
mizations a platform supports. For example, if THREADS
= 4 then it will be a (75% baseline, 25% local) pattern.

shared float *B;
for (i = 1; i < N; i++)
{ ... = B[i];

... = B[i-1]; }

4 Performance prediction

Each reference partition within an interval identified
from dependence analysis is associated with a cost that ex-
presses the number of accesses in the group and the access

pattern of the group. The communication cost of the interval
is modeled by summing the costs of all reference partitions.
Specifically, the following equation defines the communi-
cation cost for any interval i to be the sum of the costs over
all reference groups in that interval:

T i
comm =

Groups

∑
j=1

(
Nj

r (Nj, pattern)

)
(1)

where Nj is the number of shared memory accesses in any
reference group j and r(Nj, pattern) gives the effective data
transfer rate (double words per second) of the pattern asso-
ciated with the group, which is a function of the number of
accesses and the pattern of accesses. In our experiments the
values of r(Nj, pattern) are obtained by benchmarking the
four patterns on a UPC platform with varying numbers of
accesses.

On the other hand, the computation cost of an interval
Tcomp can be modeled by simulating the computation using
only private memory accesses. The run time of an interval
is simply predicted to be Tcomm + Tcomp. The run time of a
thread is the sum of the costs of all intervals, plus the costs
of barriers, whose costs are also estimated by benchmark-
ing. When it is necessary to take control flow into consider-
ation, only the intervals on the critical path of execution are
considered. Finally, the thread with the highest predicted
cost is taken to be the cost of the whole program.

The gap between the speed of private memory access and
the speed of shared memory access gives an upper bound
on how much communication can overlap with computa-
tion. Let Sprivate be the private memory access speed, which
can be obtained using the existing microbenchmarks such as
STREAM [23], and let Sbaseline, Svector, Scoalesce, and Slocal

be as defined as in section 3.2. Then we define Gbaseline,
Gvector, Gcoalesce and Glocal to be the gaps between the
shared memory access speeds and the private memory ac-
cess speed:

Gbaseline = Sbaseline
Sprivate

, Gvector = Svector
Sprivate

,

Gcoalesce = Scoalesce
Sprivate

, Glocal = Slocal
Sprivate

.
(2)

Smaller gaps mean that the shared memory access speed is
relatively faster and a shared memory access can overlap
with less local computation. For example, if the gap is 4
then a shared access can overlap at most 2 floating point
operations (each with 2 operands).

Let Ns be the number of memory accesses in a sequential
code. Let Nc, Nl , and Nr be the average number of private
memory accesses, local shared memory accesses, and re-
mote shared memory accesses issued by any thread in the
parallelized code, respectively. Let Np be the normalized
average number of memory accesses issued by any thread
in the parallelized code. That is,

Np = Nc +(Nl ×Glocal)+ (Nr ×Gremote),



where Gremote is the weighted average of Gbaseline, Gvector,
and Gcoalesce. Then we can model the speedup achievable
by the parallelized code using the ratio Ns/Np:

S =
Ts

Tp
≈ Ns

Np
=

Ns

Nc +(Nl ×Glocal + Nr ×Gremote)
(3)

where Ts is the sequential run time and Tp is the parallel run
time prediction based on Equation (1). Oftentimes, private
memory accesses are orders of magnitude faster than shared
memory accesses because they are direct memory loads and
stores instead of being implemented using runtime function
calls. So Nc is negligible if it is not orders of magnitude
larger than (Nl + Nr). Note that this motivates an important
optimization desired by UPC applications: the privatization
of local shared memory accesses. When a compiler fails to
do this, it is always beneficial for a programmer to manually
cast pointers to local shared memory locations into pointers
to private (i.e., regular C pointers), whenever possible.

5 Applications of the performance modeling
method

In this section we provide some validation of the perfor-
mance modeling method using three simple UPC applica-
tions: a histogramming program, naı̈ve matrix multiply, and
Sobel edge detection. The three applications feature three
memory access patterns encountered in many real-world ap-
plications. The histogramming code contains a large num-
ber of random, fine-grain shared memory updates and is
communication intensive. The matrix multiply code ac-
cesses memory in a regular pattern and all remote accesses
are reads. This program is also communication intensive.
The Sobel edge detection code is computation intensive and
most accesses are made to local shared memory.

We use the performance model to predict the run times
of the three programs running on three different UPC plat-
forms with fixed problem sizes. The prediction is validated
by comparing the actual run time and the predicted run time.
The precision of prediction is defined to be:

δ =
predicted cost −actual cost

actual cost
×100% (4)

The experiments were done using
MuPC V1.1.2 beta [29, 30, 27], Berkeley UPC V2.2 [4, 9],
and GCC UPC V3.4.4 compilers [21]. MuPC and Berkeley
UPC are run on a 16-node Intel 2.0 GHz x86 Linux cluster
with a Myrinet interconnect. GCC UPC is run on a 48-PE
300MHz Cray T3E.

MuPC and Berkeley UPC take a similar approach in
providing a compilation and execution environment for
UPC programs. UPC code is first translated into C code
with UPC constructs being replaced with corresponding

C constructs and runtime function calls. The translated
C code is then compiled using a regular C compiler and
linked to a runtime library to produce an executable. The
MuPC runtime incorporates a software cache for remote
shared memory accesses as a latency tolerance mecha-
nism. Berkeley UPC provides some source-level optimiza-
tions as experimental features, including more efficient lo-
cal shared pointer arithmetic, remote access coalescing,
communication-computation overlapping, and redundancy
elimination for share address computation. On the other
hand, GCC UPC directly extends the GNU GCC compiler
by implementing UPC as a C language dialect. GCC UPC
currently provides no optimizations beyond sequential code
optimizations.

Table 1 contains measurements of the four microbench-
marks for the platforms above. Measurements are reported
for 2 and 12 threads in units of 103 (K) or 16 (M) double
word accesses per microsecond, so larger is better. The
access rates decrease as the number of threads increase.
Caching improves MuPC performance for the vector and
coalesce benchmarks and it reduces performance for the
baseline write benchmark. Berkeley UPC successfully coa-
lesces reads. GCC UPC performs local writes surprisingly
slowly. This was also noted in [30].

5.1 Histogramming

In this application a cyclically distributed shared array
serves as a histogramming table. Each UPC thread repeat-
edly chooses a random element and increments it as shown
in the following code segment:

shared int array[N];
for (i = 0; i < N*percentage; i++) {

// loc is a pre-computed random number
array[loc]++; }

upc_barrier;

The parameter percentage determines how many trips
the loop iterates, thus how big a portion of the table will be
updated. In this simple setting, collisions obviously occur.
The probability of collisions increases as percentage in-
creases. We model the run times while varying percentage
from 10% to 90% with a 10% interval.

This code cannot be optimized by coalescing or vec-
torization because the table element accessed in each step
is randomly chosen. Assume the elements chosen by
each thread are uniformly and randomly distributed, then
1/THREADS of the updates are made to locations within a
thread’s affinity and (THREADS− 1)/THREADS of the up-
dates are made to remote locations. The only reference
partition contains only array[loc], which fits a mixed
baseline-local pattern. Run time prediction is thus based on
the number of local shared accesses, the number of remote



Microbenchmark MuPC w/o cache MuPC w/ cache Berkeley UPC GCC UPC
(threads) read write read write read write read write

baseline (2) 14.0K 35.6K 23.3K 11.4K 21.0K 46.5K 0.45M 1.3M
(12) 12.0K 30.8K 10.8K 7.3K 15.1K 43.3K 0.4M 1.1M

vector (2) 16.4K 45.4K 1.0M 1.0M 21.1K 47.2K 0.5M 1.7M
(12) 14.0K 34.6K 0.77M 0.71M 14.6K 44.8K 0.45M 1.7M

coalesce (2) 16.7K 43.9K 82.0K 69.9K 172K 46.9K 0.5M 1.6M
(12) 12.9K 39.5K 64.1K 46.3K 122K 44.4K 0.4M 1.5M

local (2) 8.3M 8.3M 8.3M 8.3M 8.3M 6.7M 1.2M 0.7M
(12) 8.3M 8.3M 8.3M 8.3M 6.7M 5.0M 1.0M 0.62M

Table 1. Microbenchmark measurements for 2 and 12 threads (double words/microsecond).

accesses, and the effective data transfer rates obtained using
the baseline and the local microbenchmarks. The results in
Table 2 show that the model very accurately predicted the
run time for all three platforms. The largest relative error is
less than 10% and in most cases it is less than 5%.

δ (%)
Percentage MuPC Berkeley UPC GCC UPC

10% −2.2 −0.38 −3.6
20% −4.8 −0.25 −3.5
30% −0.4 0.15 −3.5
40% −4.0 0.32 −3.5
50% 1.6 0.45 −3.5
60% −9.8 0.36 −3.6
70% −4.6 0.39 −3.5
80% −3.3 0.35 −3.5
90% −9.7 0.54 −3.5

Table 2. Prediction precision for histogram-
ming. The size of the histogram table is 1M,
THREADS = 12. The results are averages of at
least 10 test runs.

5.2 Matrix multiply

The matrix multiply program is a naı̈ve version of the
O(N3) sequential algorithm. The product of two square ma-
trices (C = A×B) is computed as follows [16]:

upc_forall(i=0; i<N; i++; &A[i][0]) {
for(j=0; j<N; j++) {

C[i][j] = 0;
for (k=0; k<N; k++)

C[i][j] += A[i][k]*B[k][j]; }
}
upc_barrier;

To facilitate this computation the rows of A and C are dis-
tributed across threads, while columns of B are distributed
across threads. Both row distribution and column distribu-
tion can be either cyclic striped or block striped, that is,
matrices are declared in either of the following two ways
(In these experiments N is always divisible by THREADS):

// cyclic striped
shared [N] double A[N][N];
shared double B[N][N];
shared [N] double C[N][N];

// block striped
#define M1 (N*N/THREADS)
#define M2 (N/THREADS)
shared [M1] double A[N][N];
shared [M2] double B[N][N];
shared [M1] double C[N][N];

Memory access patterns are similar in both distributions.
Accesses to A are all local reads. The majority of accesses
to B are remote reads, with a portion being local reads. Ac-
cesses to C involve both local reads and local writes. The
numbers of all types of accesses made by each thread can
be easily counted, and these numbers are the same for both
distribution schemes.

Reference partitioning identifies the following partitions:
(1) A partition containing a reference writing to C[i][j].
There are two references of this type but they always access
the same location in each iteration of the j-loop, so they are
included only once. This partition fits the local pattern. (2)
A partition containing a reference reading from C[i][j] as
implied by the + = operation. This partition also fits the
local pattern. (3) A partition containing a reference reading
from A[i][j] that fits the local pattern. (4) A partition
containing a reference to B[k][j] that fits a mixed vector-
local pattern.

This analysis shows that a majority of accesses by the
references in partition (4) are subject to remote access vec-
torization. Currently, none of the three UPC implementa-



tions detect this opportunity for optimization, but remote
access caching by MuPC can achieve effects similar to vec-
torization in this case because spatial locality can be ex-
ploited.

The modeling results are shown in Table 3. The negative
errors in the cases of Berkeley UPC and GCC UPC show
an underestimation of run times for these two platforms.
We suspect that there are some non-UPC related factors
that lead to increased costs. The relatively larger error for
MuPC with cache when running with more than two threads
represents an overestimation of run times. This is because
the cache also exploited temporal locality (i.e., many cache
lines are reused) and led to extra savings. However, the
model did not capture this because the model regarded the
cache only as a simulated vectorization mechanism. It was
also noted that GCC UPC array references with two sub-
scripts are 20− 60% more expensive than array references
with one subscript. We believe this is a performance bug.
The corresponding measurements shown in Tables 3 and 4
take this into consideration.

5.3 Sobel edge detection

In this classical image transforming algorithm, each
pixel is computed using information of its direct neighbors.
An image of size N ×N is distributed across threads so that
each thread has N/THREADS contiguous rows. Communica-
tion is needed for the border rows only. Local shared mem-
ory references are the predominant performance factor. The
kernel of this code [16] is shown in the next page.

Reference partitioning results in the following partitions:
(1) A partition containing the reference E[i][j] that in-
volves only local shared writes. This partition fits the local
pattern. (2) A partition containing references to the i-th
row of O. This partition also fits the local pattern because all
accesses are local shared reads. (3) A partition containing
references to the (i-1)-th row of O. (4) A partition contain-
ing references to the (i+1)-th row of O. Partitions (3) and
(4) fit a mixed local-vector pattern on the MuPC platform
due to the exploitation of spatial locality by MuPC’s cache,
but they fit a mixed local-coalesce pattern on the Berke-
ley UPC platform because the coalescing optimization en-
abled by Berkeley’s compiler is applicable. They fit a mixed
local-baseline pattern on the GCC UPC platform because
no optimizations are performed by this platform.

The modeling results are shown in Table 4. A large error
(−21.6%) occurs in the case of MuPC with cache enabled
when running with two threads. This implies unaccounted
for cache overhead. With only two threads the communica-
tion is minimal and the benefit of caching is not big enough
to offset the overhead. Again, simulating access vectoriza-
tion using a remote reference cache partially accounts for
other errors in the case of MuPC with cache.

#define B (N*N/THREADS)
shared [B] int O[N][N], E[N][N];
upc_forall(i=1; i<N-1; i++; &E[i][0]){

for (j=1; j<N-1; j++) {
d1 = O[i-1][j+1] - O[i-1][j-1];
d1 += (O[i][j+1] - O[i][j-1])<<1;
d1 += O[i+1][j+1] - O[i+1][j-1];

d2 = O[i-1][j-1] - O[i+1][j-1];
d2 += (O[i-1][j] - O[i+1][j])<<1;
d2 += O[i-1][j+1] - O[i+1][j+1];

m = sqrt((double)(d1*d1+d2*d2));
E[i][j] = m > 255 ?

255 : (unsigned char)m; }
}

6 Discussion and future work

This model can be improved in several ways. First, it
should be expanded to model the performance of coarse-
grain shared memory operations such as upc memcpy(),
upc memput(), and upc memget(). Second, interactions
between memory operations and computation should be
more thoroughly studied. Currently, the model predicts run
time based on information about memory operations only.
Advances in UPC systems will increase overlap between
memory accesses and computation. The model should in-
clude elements to account for this overlap. Third, mem-
ory bandwidth contention, especially for remote accesses,
needs to be considered. This is important in analyzing
applications with unbalanced communication patterns. Fi-
nally, the model should be applied to more complex applica-
tions and to systems that support larger numbers of threads.
This will give greater weight to the validity and utility of
the model for real-world applications.

At some point in the future compilers are expected to
identify patterns that are not currently in this model. How-
ever, even the patterns discussed here are not all considered
by current compilers. Table 1 shows that Berkeley’s UPC
successfully takes advantage of coalesced reads but no other
patterns are exploited, MuPC’s runtime cache exploits co-
alesced and vector accesses, and GCC UPC exploits none
of the patterns. Future work will include consideration of
the Cray X1 compiler [13] and the HP UPC compiler and
runtime system [28] which has a trainable prefetcher and
runtime cache.

There are several other metrics that can be considered
for inclusion in the model. For example, in systems that
support remote access caching, a miss penalty (a platform
metric) and a miss rate (an application metric) could be
used to investigate cache effects. For compilers that per-
form prefetching, the prefetch depth can be a useful plat-



δ (%)
THREADS MuPC w/o cache MuPC w/ cache Berkeley UPC GCC UPC

cyclic block cyclic block cyclic block cyclic block
striped striped striped striped striped striped striped striped

2 −12.2 0.7 7.9 −2.1 −1.2 −1.9 −4.0 −14.0
4 −4.5 0.3 15.3 19.5 −7.4 −14.7 −8.8 −10.5
6 3.6 −0.7 15.8 11.8 −4.5 −8.9 7.6 −2.0
8 2.2 −4.4 9.8 13.0 −7.0 −12.0 10.6 9.6

10 −0.4 −2.2 3.9 2.0 −7.4 −15.2 6.2 −3.2
12 2.9 0.9 9.8 8.8 −5.4 4.4 3.1 −5.7

Table 3. Prediction precision for matrix multiply. The size of matrices are 240×240 (doubles). The
results are averages of at least 10 test runs.

δ (%)
THREADS MuPC w/o cache MuPC w/ cache Berkeley UPC GCC UPC

2 4.8 −21.6 7.3 −10.3
4 1.4 15.8 8.3 −10.8
6 11.8 16.3 1.1 −6.3
8 9.9 16.8 −1.3 7.5

10 7.0 17.5 −4.3 −1.0
12 −0.5 14.3 5.0 −3.5

Table 4. Prediction precision for Sobel edge detection. The image size is 2000×2000 (integers). The
results are averages of at least 10 test runs.

form metric. The number of outstanding shared memory
operations supported by a platform can help to evaluate the
platform’s scalability. These metrics are likely to improve
the accuracy of the model but they are not easy to measure
and require a more thorough understanding of a platform’s
internals.

Other issues include the effects of load imbalance and
hot spots. Load imbalance may lead to two types of ef-
fects in a UPC computation. A computational load imbal-
ance need not necessarily cause hot spots in shared memory.
Some threads may have larger work loads while the access
pattern across the whole address space remains uniform.
This type of load imbalance can be modeled by assigning
a weighted computational cost to each thread proportional
to its work load if that load is predictable. The other type
of load imbalance causes hot spots in memory. In this case,
the hot spot can be modeled with a queue where contending
threads wait for their memory requests to be served. Adding
a queuing model to the performance model may be what is
needed to predict the cost in this case. For both types, the
difficult task is to identify where and when the imbalance
will occur.

7 Summary

This paper proposed an approach to model the per-
formance of UPC programs that have implicit, fine-grain
shared memory accesses. This is the first performance mod-
eling methodology proposed for UPC. This approach rec-
ognizes four basic reference patterns and accordingly uses
four simple microbenchmarks to measure a UPC platform’s
ability in optimizing fine-grain shared memory accesses.
Next, a dependence-based analysis is used to partition refer-
ences in an application into groups and associate each group
with a certain pattern or a simple combination of patterns.
The cost of each group is determined by the pattern asso-
ciated with the group and the number of shared memory
accesses made by the group. The run time of an applica-
tion is determined by the aggregated costs of all reference
groups.

The model predicted the run times of three applications
running on three different UPC platforms. The prediction
has a maximum error of ±15% in most cases. This is a good
accuracy for an analytical performance model. Factors that
led to inaccuracy were also discussed.



References

[1] 5th UPC Developers Workshop, George Washington Uni-
versity. Sept. 2005.
http://www.gwu.edu/˜upc/upcworkshop05/agenda.

[2] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman. LogGP: incorporating long messages into the
LogP model: one step closer towards a realistic model for
parallel computation. In SPAA ’95: Proc. of the seventh
annual ACM symposium on Parallel algorithms and archi-
tectures, pages 95–105. ACM Press, 1995.

[3] R. Allen and K. Kennedy. Optimizing Compilers for Modern
Architectures. Morgan Kaufmann, 2002.

[4] Berkeley Unified Parallel C Home Page. UC Berkeley.
http://upc.nersc.gov.

[5] K. Berlin, J. Huan, M. Jacob, G. Kochhar, J. Prins, W. Pugh,
P. Sadayappan, J. Spacco, and C.-W. Tseng. Evaluating the
Impact of Programming Language Features on the Perfor-
mance of Parallel Applications on Cluster Architectures. In
Languages and Compilers for Parallel Computing (LCPC),
2003.

[6] A. Bernstein. Analysis of Programs for Parallel Processing.
IEEE Transactions on Electronic Computers, 15:757–763,
1966.

[7] K. W. Cameron and X.-H. Sun. Quantifying Locality Ef-
fect in Data Access Delay: Memory logP. In IPDPS ’03:
Proc. of the 17th International Symposium on Parallel and
Distributed Processing, page 48.2. IEEE Computer Society,
2003.

[8] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and
K. Warren. Introduction to UPC and Language Specifica-
tion. Technical Report CCS-TR-99-157, IDA Center for
Computing Sciences, May 1999.

[9] W. Chen, D. Bonachea, J. Duell, P. Husbands, C. Iancu, and
K. Yelick. A Performance Analysis of the Berkeley UPC
Compiler. In Proc. of 17th Annual International Conference
on Supercomputing (ICS), 2003.

[10] W. Chen, C. Iancu, and K. Yelick. Communication Opti-
mizations for Fine-grained UPC Applications. In Proc. of
14th International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2005.

[11] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. LogP: to-
wards a realistic model of parallel computation. In PPOPP
’93: Proc. of the fourth ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pages 1–12.
ACM Press, 1993.

[12] F. Dehne, W. Dittrich, and D. Hutchinson. Efficient External
Memory Algorithms by Simulating Coarse-Grained Parallel
Algorithms. In Proc. of ACM Symp. on Parallel Algorithms
and Architectures, pages 106–115, 1997.

[13] T. El-Ghazawi, F. Cantonnet, Y. Yao, and J. Vetter. Evalua-
tion of UPC on the Cray X1. In Cray User Group Proceed-
ings, 2005.

[14] T. El-Ghazawi, W. Carlson, and J. Draper. UPC Language
Specifications, May 2005.
http://www.gwu.edu/˜upc/docs/upc\_spec\_1.2.pdf.

[15] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. UPC:
Distributed Shared Memory Programming. John Wiley &
Sons, 2005.

[16] T. El-Ghazawi and S. Chauvin. UPC Benchmarking Issues.
In Proc. of ICPP, 2001.

[17] A. Gerbessiotis and L. Valiant. Direct Bulk-Synchronous
Parallel Algorithms. J. of Parallel and Distributed Comput-
ing, 22:251–267, 1994.

[18] S. Hambrusch and A. Khokhar. C3, An Architecture-
independent Model for Coarse-grained Parallel Machines.
Journal of Parallel and Distributed Computing, 32, 1996.

[19] C. Holt, M. Heinrich, J. P. Singh, E. Rothberg, and J. Hen-
nessy. The Effects of Latency, Occupancy, and Bandwidth
in Distributed Shared Memory Multiprocessors. Technical
report, 1995.

[20] F. Ino, N. Fujimoto, and K. Hagihara. LogGPS: a paral-
lel computational model for synchronization analysis. In
PPoPP ’01: Proc. of the eighth ACM SIGPLAN symposium
on Principles and practices of parallel programming, pages
133–142. ACM Press, 2001.

[21] Intrepid Technology. Intrepid UPC Home Page, 2004.
http://www.intrepid.com/upc.

[22] J. R. Larus, S. Chandra, and D. A. Wood. CICO: A Prac-
tical Shared-Memory Programming Performance Model. In
Ferrante and Hey, editors, Workshop on Portability and Per-
formance for Parallel Processing, Southampton University,
England, July 13 – 15, 1993. John Wiley & Sons.

[23] J. McCalpin. STREAM: Sustainable Memory Bandwidth in
High Performance Computers.
http://www.cs.virginia.edu/stream/.

[24] C. A. Moritz and M. I. Frank. LoGPC: Modeling Network
Contention in Message-Passing Programs. In SIGMETRICS
’98/PERFORMANCE ’98: Proc. of the 1998 ACM SIGMET-
RICS joint international conference on Measurement and
modeling of computer systems, pages 254–263. ACM Press,
1998.

[25] PGAS Programming Models Conference, Army High Per-
formance Computing Research Center. Sept. 2005.
http://www.ahpcrc.org/conferences/PGAS/.

[26] Unified Parallel C Home Page. George Washington Univer-
sity. http://hpc.gwu.edu/˜upc.

[27] UPC Projects at MTU. Michigan Technological University.
http://www.upc.mtu.edu.

[28] UPC Version 2.4, Hewlett-Packard Company. 2006.
http://www.hp.com/go.upc.

[29] Z. Zhang, J. Savant, and S. Seidel. A UPC Runtime System
based on MPI and POSIX Threads. In Proc. of 14th Euromi-
cro Conference on Parallel, Distributed and Network-based
Processing (to appear), 2006.

[30] Z. Zhang and S. Seidel. Benchmark Measurements for
Current UPC Platforms. In Proc. of IPDPS’05 (PMEO-
PDS Workshop), 19th IEEE International Parallel and Dis-
tributed Processing Symposium, Apr. 2005.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


