
Supporting Self-Adaptation in Streaming Data Mining
Applications

Liang Chen Gagan Agrawal
Department of Computer Science and Engineering

Ohio State University, Columbus OH 43210�
chenlia,agrawal � @cse.ohio-state.edu

ABSTRACT
There are many application classes where the users are flexible with
respect to the output quality. At the same time, there are other con-
straints, such as the need for real-time or interactive response, which
are more crucial. This paper presents and evaluates a runtime algo-
rithm for supporting adaptive execution for such applications. The
particular domain we target is distributed data mining on streaming
data. This work has been done in the context of a middleware system
called GATES (Grid-based AdapTive Execution on Streams) that we
have been developing.

The self-adaptation algorithm we present and evaluate in this paper
has the following characteristics. First, it carefully evaluates the long-
term load at each processing stage. It considers different possibilities
for the load at a processing stage and its next stages, and decides if the
value of an adaptation parameter needs to be modified, and if so, in
which direction. To find the ideal new value of an adaptation parame-
ter, it performs a binary search on the specified range of the parameter.

To evaluate the self-adaptation algorithm in our middleware, we
have implemented two streaming data mining applications. The main
observations from our experiments are as follows. First, our algorithm
is able to quickly converge to stable values of the adaptation param-
eter, for different data arrival rates, and independent of the specified
initial value. Second, in a dynamic environment, the algorithm is able
to adapt the processing rapidly. Finally, in both static and dynamic en-
vironments, the algorithm clearly outperforms the algorithm described
in our earlier work and an obvious alternative, which is based on linear-
updates.

1. INTRODUCTION
In recent years, there has been much interest on adaptive or auto-

nomic computing. Adapting applications or programs has been stud-
ied by many, and a variety of solutions have been proposed, including
those through new algorithms [17], runtime/middleware [14, 5, 3, 27],
and language/compilers [12, 9, 11].

There are many application classes where the users are flexible with
respect to the output quality. At the same time, there are other con-
straints, such as the need for real-time response, or limit on the con-
sumption of certain resources, which are more crucial. For example,
while visualizing simulation data, the output can be viewed at different
granularity, i.e, the output image can be � � � � � � � , � � � � � � � � � , or

� � � � � � � � � , etc. While it is preferable to view the image at the finest
level, constraints such as the need for real-time response or interactiv-
ity could be more important. Examples of applications where the users
can have some flexibility in the output arise in multimedia (including
video/audio streaming applications), image processing, scientific visu-
alization, and data mining/analysis on simulation data.

This paper presents and evaluates a runtime algorithm for supporting
adaptive execution. The particular domain we target is distributed data
mining on streaming data. This work has been done in the context of
a middleware system called GATES (Grid-based AdapTive Execution
on Streams) that we have been developing [7]. GATES system has
been designed to support processing of distributed data streams in a
wide-area environment.

In the stream model of processing, data arrives continuously and
needs to be processed in real-time, i.e., the processing rate must match
the arrival rate. In view of this, an important goal of the GATES system
is to allow the most accurate analysis, while still meeting the real-time
constraint. To enable this, application developers can expose one or
more adaptation parameters, along with a range of their acceptable
values. A higher (or lower) value of the adaptation parameter results
in more accurate but slower processing. Thus, the goal of the system
is determine the highest (or the lowest) value of the parameter which
can still meet the real-time constraint. Moreover, the environment for
processing the data streams can be dynamic, i.e., data arrival rates,
and/or the available network bandwidth or CPU cycles can vary over
time. In such cases, the system should be able to adjust adaptation
parameters dynamically. Such functionality is achieved through a self-
adaptation algorithm.

The self-adaptation algorithm we present and evaluate in this paper
has the following characteristics. First, it carefully evaluates the long-
term load at each processing stage. It consider different possibilities
for the load at a processing stage and its next stages, and decides if the
value of an adaptation parameter needs to be modified, and if so, in
which direction. To find the ideal new value of an adaptation parame-
ter, it performs a binary search on the specified range of the parameter.

To evaluate the self-adaptation algorithm in our middleware, we
have implemented two streaming data mining applications. These are,
clustering evolving data streams [1], and finding frequent items in dis-
tributed data streams [18]. GATES’ support for specifying and de-
ploying the processing as a series of stages simplifies the development
of these streaming data mining applications. Moreover, we also show
how each of these applications naturally has an adaptation parameter,
which allows a trade-off between accuracy and processing rate.

We have evaluated our self-adaptation algorithm extensively using
these two applications. The main observations from our experiments
are as follows. First, our algorithm is able to quickly converge to stable
values of the adaptation parameter, for different data arrival rates, and
independent of the initial value that is specified. Second, in a dynamic
environment, the algorithm is able to adapt the processing rapidly. Fi-
nally, in both static and dynamic environments, the algorithm clearly
outperforms the algorithm described in our earlier work [7], and an
obvious alternative, which is based on linear-updates.

1-4244-0054-6/06/$20.00  ©2006 IEEE



2. OVERVIEW OF THE GATES SYSTEM
This section describes the motivation and the major design aspects

of the GATES system.

2.1 Motivation
Increasingly, a number of applications across computer sciences and

other science and engineering disciplines rely on, or can potentially
benefit from, analysis and monitoring of data streams. In the stream
model of processing, data arrives continuously and needs to be pro-
cessed in real-time, i.e., the processing rate must match the arrival rate.
There are two trends contributing to the emergence of this model. First,
scientific simulations and increasing numbers of high precision data
collection instruments (e.g. sensors attached to satellites and medical
imaging modalities) are generating data continuously, and at a high
rate. The second is the rapid improvements in the technologies for
Wide Area Networking (WAN), as evidenced, for example, by the Na-
tional Lambda Rail (NLR) effort and the interconnectivity between the
TeraGrid and Extensible Terascale Facility (ETF) sites. As a result, of-
ten the data can be transmitted faster than it can be stored or accessed
from disks within a cluster.

The important characteristics that apply across a number of stream-
based applications are: 1) the data arrives continuously, 24 hours a day
and 7 days a week, 2) the volume of data is enormous, typically tens
or hundreds of gigabytes a day, and the desired analysis could also
require large computations, 3) often, this data arrives at a distributed
set of locations, and all data cannot be communicated to a single site,
4) it is often not feasible to store all data for processing at a later time,
thereby, requiring analysis in real-time.

We briefly describe two representative examples. The first applica-
tion we consider is online network intrusion detection, which is a crit-
ical step for cyber-security. Online analysis of streams of connection
request logs and identifying unusual patterns is considered useful for
network intrusion detection [10]. To be really effective, it is desirable
that this analysis be performed in a distributed fashion, and connection
request logs at a number of sites be analyzed. Large volumes of data
and the need for real-time response make such analysis challenging.
The second example is computer vision based surveillance. Multiple
cameras shooting images from different perspectives can capture more
information about a scene or a set of scenes. This can enable tracking
of people and monitoring of critical infrastructure [4]. A recent report
indicated that real-time analysis of the capture of more than three dig-
ital cameras is not possible on current desktops, as the typical analysis
requires large computations. Distributed and grid-based processing
can enable such analysis, especially when the cameras are physically
distributed and/or high bandwidth networking is available.

We view the problem of flexible and adaptive processing of dis-
tributed data streams as a grid computing problem. We believe that
a distributed and networked collection of computing resources can be
used for analysis or processing of these data streams. Computing re-
sources close to the source of a data stream can be used for initial
processing of the data stream, thereby reducing the volume of data that
needs to be communicated. Other computing resources can be used for
more expensive and/or centralized processing of data from all sources.
Because of the real-time requirements, there is a need for adapting the
processing in such a distributed environment, and achieving the best
accuracy of the results within the real-time constraint.

2.2 Key Goals
There are three main goals behind the design of the system.

1. Enable the application to achieve the best accuracy, while main-

taining the real-time constraint. For this, the middleware allows
the application developers to expose one or more adaptation pa-
rameters at each stage. An adaptation parameter is a tunable pa-
rameter whose value can be modified to increase the processing
rate, and in most cases, reduce the accuracy of the processing.
Examples of such adaptation parameters are, rate of sampling,
i.e., what fraction of data-items are actually processed, and size
of summary structure at an intermediate stage, which means how
much information is retained after a processing stage. The mid-
dleware automatically adjusts the values of these parameters to
meet the real-time constraint on processing. This is achieved
through a self-adaptation algorithm, which is also the focus of
this paper.

2. Support distributed processing of one or more data streams, by
facilitating applications that comprise a set of stages. For an-
alyzing more than one data stream, at least two stages are re-
quired. Each stage accepts data from one or more input streams
and outputs zero or more streams. The first stage is applied near
sources of individual streams, and the second stage is used for
computing the final results. However, based upon the number
and types of streams and the available resources, more than two
steps could also be required. All intermediate stages take one
or more intermediate streams as input and produce one or more
output streams. GATES’s APIs are designed to facilitate speci-
fication of such stages.

3. Enable easy deployment of the application. This is done by sup-
porting a Launcher and a Deployer. The system is responsible
for initiating the different stages of the computation at different
resources. The system also allows the use of existing grid infras-
tructure. Particularly, the current implementation is built on top
of the Open Grid Services Infrastructure (OGSI) [13], and uses
its reference implementation, Globus Toolkit (GT) 3.0.

3. SELF-ADAPTATION ALGORITHM
This section describes the self-adaptation algorithm we have imple-

mented and evaluated in the GATES system. As we stated in the pre-
vious section, the goal of this algorithm is to modify the value(s) of
adaptation parameter(s) at runtime, so as to achieve highest level of
accuracy while still meeting the real-time constraint. While the basic
framework and some of the metrics used are identical to the adaptation
algorithm presented in our earlier work [7], the algorithm presented
here is distinct in the following ways. First, it systematically considers
different possibilities at a particular stage and its successor. Second,
this algorithm does not require that certain functions and parameters
be tuned for a particular application. Finally, it is able to converge to a
stable value of the adaptation parameter faster.

3.1 Background
An application built on the GATES middleware comprises a set of

pipelined stages. By modeling every stage as a server and viewing the
input buffer of a stage as a queue of the server, we can get a queu-
ing network model of the system. As an example, the model of an
application with three stages is shown in Figure 2.

GATES applications are required to use a specific API to expose



Symbols Definition
Variables�

Current length of the queue��
Average of the

�
values in recent times��

Long-term average queue size factor� �
The number of times system was over-loaded� �
The number of times system was under-loaded� The difference in the number of times system was
recently under/over-loaded	 �
Functions reflecting queue’s long-term load	 � � 	 
Functions reflecting queue’s recent load�
Adaptation parameter for a server

Constants�
Learning rate for

���
Window size�
Expected length of the queue�
Capacity of the queue� � � � � � � 
Weights to

	 � � 	 � � 	 
, respectively� �

Maximum (Minimum) threshold for the load

Figure 1: Summary of Symbols Used

:Servers              

A

:Queues                

Qc   Qb   

CB

Figure 2: A Queuing model of an Application with Three Stages

adaptation parameters. Specifically, the function

specifyPara(init value, max value,min value, incre or decre)

is used to specify an initial value and a range of acceptable values of an
adaptation parameter, and also state whether increasing the parameter
value results in faster or slower processing.

Assume that the data arrives at a server in fixed-size packets. Let the
average data arrival rate be denoted by � . The rate at which the server
is able to consume the packets is denoted by � . If we have flexibility
in controlling the accuracy of the analysis, our goal is to adjust the
parameters to maintain a good balance between � and � . Clearly, if� � � , the queue will saturate, and real-time constraint on processing
cannot be met. In this case, we need to slow-down the processing
that is performed by the sending server, i.e., make the processing more
accurate. Alternatively, we can increase the rate of processing at the
current server, possibly losing some accuracy. If � is much lower than� , we are under-utilizing the current server. In this case, we can speed
up the processing at the sending server.

As � and � cannot be determined at any given instance, we focus on
the current length of the queue, which is indicative of the ratio between
the two. Our objective is to keep the average queue size within an
interval between the two pre-defined thresholds. This goal could be
achieved by dynamically adjusting the processing rates of the current
and the preceding server. This, in turn, can be done by properly tuning
the value of adaptation parameters.

Overall, there are two challenges in the algorithm. The first chal-
lenge is to correctly weigh in the recent as well as long-term behav-
ior of the queue. For this purpose, we introduce a long-term average
queue size factor, denoted by

��
. The other challenge is to promptly

have the adaptation parameter converge to an ideal value. This will al-

low the algorithm to be sensitive to a varying environment. The main
two steps of the algorithm, evaluating

��
, and adjusting parameters, re-

spectively, overcome these two challenges. The list of terms used in
our algorithm is listed in Figure 1.

Evaluating Long-Term Load: This calculation is based upon three
distinct load factors and learning by weighing these factors. These
three load factors are denoted by

	 �
, and

	 �
and

	 
, respectively.	 �

focuses on long-term load and is computed as follows. If the
current length of the queue,

�
, is larger or less than some thresholds,

we say that the queue is over or under-loaded. From the start of the
system,

� �
is the number of times the system was found to be over-

loaded and
� �

is the number of times the system was found to be under-
loaded.

� �
and

� �
describe the long-term behavior of the system. We

compute
	 �

as follows.

	 � � � � � � � " # $% & ( * + ( -( * / ( - if
� � � 1 � � 4 5 "

5 if
� � � 1 � � # 5 "

The reason for choosing this expression is that even if
� �

and
� �

are
large, if they are very close, we believe that the system is properly
loaded from a long-term perspective.

To focus on the short-term behavior, we define the variable � and
��
.

We choose a window size
�

and record the last
�

times the system
was observed to be over or under-loaded. � is a variable that is in-
cremented by 1 for every occurrence of over-load within the window,
and decremented by 1 for every occurrence of under-load within this
window. Thus, 7 � 7 9 �

. We compute
	 �

as follows.

	 � � � " # $;% ;& � < �= > = < A C D C F H- if
� 7 � 7 I# 5 "

5 if
� 7 � 7 # 5 "

We also use another short-term indicator, which is computed as fol-
lows.

��
is the average of the

�
values observed in recent times. Fur-

thermore,
�

is a user-defined expected length of the queue and
�

is
the capacity of the queue. Then, we have

	  � �� " # $% & LM + OO if
�� � �

LM + OP + O if
�� R �

The range of values of
	 T � V # W � X � Y "

is [ ] W � W _ . Moreover, the
closer 7 	 T 7 is to 1, it is more likely that the unit is over or under-loaded.
Now, we can use the following equation to calculate

��
.

�� # � < �� 1 � W ] � " < � � � < 	 � � � � � � � " 1
� � < 	 � � � " 1 �  < 	  � �� " "

Here,
� � � � � � � 

are the factors that give weight to
	 �

,
	 �

, and
	 

,
respectively, and satisfy the constraint

� � 1 � � 1 �  # W . Moreover,5 � � � W is a pre-defined learning rate which helps remove transient
behavior.

Similar to
	 T

,
�� c [ ] W � W _ , and the closer 7 �� 7 to 1, it is more likely

that the unit is having very high or low load. Particularly, when
��

exceeds the pre-defined interval [ ] � � � � � _ , the current server will be
thought of as being under-loaded or over-loaded. These load states
indicated by

��
are used to tune adaptation parameters.

3.2 New Algorithm and Parameter Adjustment



State Condition Adjustment Strategy
� �� �

� � � 
 � �� �
� � � 


Decrease
� �

and increase accuracy
� �� �

� � � 
 � � � 
 � �� �
� � 


Decrease
� �

and increase accuracy� �� �
� � � 
 � �� � � � 


Decrease
� �

and increase accuracy
� � � 
 � �� �

� � 
 � �� �
� � � 


Do not change
� �

� � � 
 � �� �
� � 
 � � � 
 � �� �

� � 

Do not change

� �
� � � 
 � �� �

� � 
 � �� � � � 

Decrease

� �
and increase accuracy� �� � � � 
 � �� �

� � � 

Increase

� �
to speed up the processing rate

� �� � � � 
 � � � 
 � �� �
� � 


Do not change
� �

� �� � � � 
 � �� � � � 

Decrease

� �
to and increase accuracy

Figure 3: Summary of Load States

We now describe our new algorithm, focusing on how an adaptation
parameter is modified at runtime according to the evaluation of

��
. In

the following discussion, we specifically focus on the server � in Fig-
ure 2. The server � receives data from the server A and processes and
forwards data to the server � . There could be two types of adaptation
parameter

� �
at the server � . One is called performance parameter.

Incrementing its value results in increasing the processing rate, �
�

,
and decreasing the accuracy of the processing. Thus, a higher value
of

� �
will allow the server � to process the data faster. However,

this will also result in a higher load for the server � . Another type
of adaptation paramenter is accuracy parameter. Contrary to a per-
formance parameter, changing the value of an accuracy parameter can
contribute to the reverse impacts as we describe above. For simplicity,
our description of the algorithm assumes that the server � has a perfor-
mance parameter. We have considered both accuracy and performance
parameters in our experimental evaluation of the algorithm.

There are two main issues for the parameter adaptation component
of our algorithm. The first question is deciding when we should in-
crease or decrease

� �
, and when we should leave it unchanged. The

second question is deciding the new value of
� �

, when we need to
change the parameter. To answer the first question, we define the load
state for a given server.

DEFINITION 1. The load state for the server � , denoted by �
�

, is
based on the tuple

� �� � � �� � �
. Particularly, we consider three possibil-

ities for each of
�� �

and
�� �

, which are,
��

� � � 

, � � 
 � ��

� � 

or

�� � � 

. Thus, there are nine distinct load states for a server.

The nine possible load states are shown in Figure 3. Among these
states, we consider � ! , � " and � $ convergent states. Each of the other
6 states is considered non-convergent. In a convergent state, there is
no need to modify the adaptation parameter at the server � , whereas
in a non-convergent state, the parameter

� �
needs to be modified.

The action taken by our algorithm in each of these cases is shown
in Figure 3. We now explain the rationale for the strategy for different
cases.

Initially, we consider states � %
, � &

, and � '
. These three states are

common in the fact that the server � is underutilized. In such a case,
we can improve the accuracy of processing at the server � , irrespective
of the state of the server � . Note that in a streaming environment, the
data arrival rate at the first stage cannot be modified. Thus, for each of
the subsequent stages, our goal is to be able to achieve highest possible
accuracy, without making them the bottleneck.

Next, let us consider the convergent states, which are � ! , � " and
� $ . When the server B’s state is � ! , it implies that the server B’s load

is within the desired range, whereas, the server C is under-utilized. In
such a case, the server � does not need to make any change. Note,
however, that the same algorithm is applied on the server � also, and
in this case, server � can increase the accuracy of the processing, if
it has a parameter to modify. In the state � " , the load at both � and

� is in the desired range, so clearly, no changes are required. The
last convergent state is � $ . In this state, the server � is overloaded,
but the server � is not underloaded. Thus, increasing the processing
rate at the server � can make � overloaded, which is not desirable.
Thus, the server � does not make a change. Again, note that the same
algorithm is being applied at the server ( , and if possible, server (
should decrease the rate at which it forwards data to the server � .

The three remaining states are � ) , � + and � , . In the state � ) , the
server � is overloaded. In this case, the server � will adjust to slow
down the rate at which it forwards the data to the server � . Note that
it may be possible for � to avoid the overload by adjusting a param-
eter locally, but the server � does not assume that such a parameter
exists. The action for the state � + is easy to explain. The server � is
overloaded, whereas the server � is underloaded. Thus, � needs to
increase the rate of processing. The state � , is quite challenging, as
both � and � are overloaded. In this case, the only likely acceptable
solution will be to have the server ( slow down the processing. To
facilitate this, the server � further slows down the processing. This
will reduce the load at � , but can increase the load at � . Since the
server ( views the load information at the server � , and not the server

� , this is most likely to create convergence.
The second important challenge for our algorithm is to determine

the new (higher or lower) value for
� �

, when a change in its value
is needed. There are several considerations that must be used. First,
the system should be able to converge to an ideal value for the adap-
tation parameters, i.e., the one which allows the best accuracy, while
still meeting the real-time constraint. Second, this convergence should
be achieved quickly. This is important for adapting in a dynamic envi-
ronment, and for avoiding loss of packets when buffer sizes are small.

One obvious way for adjusting parameters will be to use a linear
update algorithm, i.e., changing

� �
by a fixed value in each iteration.

As we will show through our experimental evaluation, this scheme has
the following shortcoming. If the amount of the change is large, the
system may never reach the ideal value. On the other hand, if the
amount of the change is small, a large number of iterations may be
required for convergence.

Therefore, we have designed a method which is similar to a binary
tree search. The overall algorithm is shown in Figure 4. Two vari-
ables, - / 1 2 3 5 7 �

/ 7
and

7 8 : ; 2 3 5 7 �
/ 7

, are used in the third step of the
algorithm. These define a range within which

� �
can be changed.



Algorithm getSuggestedPara()

1. //Calculate the tuple
��� �

= calcuateMyLongTermLoad();
next server = getMyFollowingServer();�� �

= next server.calcuateMyLongTermLoad();�
= (

�� �
,

�� �
)

2. Determine which load state
�

belongs to

3. //Update the adaptation parameter’s value
if the direction is ”do not change

� �
”�

// the current value of
� �

is � 
 �
do nothing�

if the direction is ”decrease
� �

”�
//The initial value of

 � � � � � �  � � 
is max value � � � � � �  � �  � � 
 �

� 
 � � � �  ! " $ % & � % ( %
* , .

! " $ % & � %/
�
if the direction is ‘increase

� �
’�

//The initial value of � � 2 � � �  � � 
is min value

� � 2 � � �  � �  � � 
 �
� 
 � � � �  ! " $ % & � % ( %

* , .
! " $ % & � %/

�
4. return � 
 �

Figure 4: Self Adaptation Algorithm

S M F

Data Source The node computing
micro-clusters

The node computing
final clusters

Figure 5: Communication Topology for the CluStream Applica-
tion

Their initial values are the minimum and the maximum values of the
adaptation parameter, which the GATES API requires from application
developers. These values are denoted as 4 � 5 � 
 � 7 � and 4 
 : � 
 � 7 � ,
respectively.

We proceed as follows. The current value is denoted as � 
 � . When
it is determined that

� �
should be decremented, the new range is

changed to < � � 2 � � �  � �  = � 
 � ? , and � 
 � is updated to the mid-point of
the new range. When it is determined that

� �
should be incremented,

the new range is < � 
 � =  � � � � � �  � �  ? , and again, � 
 � is updated to the
mid-point of the new range.

Therefore,
� �

will eventually converge to a value within the range
< 4 
 : � 
 � 7 � C 4 � 5 � 
 � 7 � ? , assuming that the environment is static.
In practice, our algorithm only requires between 3 and 5 steps to con-
verge in a static environment.

Finally, we consider a dynamic environment. An environment is
dynamic if the data arrival rate, available network bandwidth, and/or
CPU cycle availability is varying. In such a case, the algorithm needs
to be able to determine new ideal value. We modify the algorithm as
follows. We store all previous ranges in a stack. When

� �
needs to be

changed, and if current range is very small compared with the initial
range, the previous range is popped from the stack.

4. STREAMING DATA MINING APPLICATIONS
This section describes the two streaming data mining applications

that were used for our experimental study. We show how these appli-
cations can be developed and deployed using GATES system’s sup-
port. We also show how each of these applications naturally has an
adaptation parameter, which allows trade-off between processing rate
and accuracy.

The first application is clustering evolving data streams [1], and is
referred to as CluStream. Clustering involves grouping similar object
or data points from a given set into clusters. The particular problem
considered here is clustering data arriving in continuous streams, es-
pecially as the distribution of data can change over time.

The algorithm we consider [1] approaches the problem as follows.
The clustering process is divided into two major steps. The first steps
involves computing micro-clusters that summarize statistical informa-
tion in a data stream. The second step uses micro-clusters to compute
the final clusters.

This two-step clustering algorithm can be easily implemented using
the GATES middleware. Figure 5 shows the three stages that are used.
The first stage is simply the data source, which sends streaming data
to the second stage. The second stage computes micro-clusters. After
a certain number of data points have been processed, it sends the com-
puted micro-clusters to the third stage. The third and the final stage
then applies the modified E -means algorithm [1] to create and output
the final clusters. To make the system more efficient, the GATES trans-
mits data streams through TCP sockets and only uses SOAP messages
for stages to exchange load states.



�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�	
��	


	����

�
���

�������

�		��
	���

�	��	���
��

������

0045.09.01 =×= εε

]0045.0,00001.0[2 ∈ε

005.0=ε

Figure 6: Communication Topology for the Dist-Freq-Counting
Application

Note that the final number of clusters desired is specified by the
user. However, the number of micro-clusters computed by the second
stage needs to be chosen by the algorithm. A larger number of micro-
clusters results in better accuracy in computing the final clusters. But,
the amount of computation at the second stage and the volume of com-
munication between the second and third stages are both directly pro-
portional to the number of micro-clusters. Thus, the number of micro-
clusters becomes an accuracy parameter for this application.

The second application we have studied finds frequent occurring
itemsets in a distributed data stream and is referred to as Dist-Freq-
Counting [18]. The problem is of finding frequently occurring item-
sets across a set of data streams. If the distribution of data across the
different streams is different, and if the communication bandwidth is
limited, this problem can be quite challenging.

The algorithm we consider is extention of a proposed algorithm for
finding frequent items from distributed streams [18]. The algorithm
addresses the problem stated above by arranging the nodes in a hierar-
chical structure. Figure 6 shows an example of such a structure. Each
monitor node � �

counts the frequencies of itemsets appearing in the
stream � �

, and periodically sends this information to its parent node,
which could be an intermediate node or the root node. Intermediate
nodes combine the frequency information received from their children
and pass them up to their parent node. Finally, the root node outputs
the itemsets whose frequencies exceed the specified support threshold

� .
To reduce communication loads, the monitor and intermediate nodes

should avoid sending less frequent itemsets over the links. Therefore,
the algorithm uses an error tolerance parameter � at every node, except
the data sources. Only the itemsets with frequency greater than this
parameter are forwarded to the next node.

The value of a tolerance parameter impacts both the processing rate

and the accuracy. With a higher value, we could miss itemsets which
may be frequent overall. With a lower value, the volume of commu-
nication can be increased. Generally, it is desirable that all nodes at
the same level use the same tolerance value, and the tolerance value
(frequency) is increased as we move closer to the root node.

In our implementation, we consider the tolerance parameter at the
monitor nodes as a performance parameter. This is because the com-
munication volume at this stage can be the highest, and therefore, the
tolerance parameter has the largest impact on the performance.

5. EXPERIMENTAL EVALUATION
This section presents results from a number of experiments we con-

ducted to evaluate our self-algorithm and the use of the GATES mid-
dleware for streaming data mining applications. Specifically, we had
the following goals in our experiments:

� Demonstrate that our self-adaptation algorithm is able to quickly
converge to the ideal value of the adaptation parameter, for dif-
ferent data stream arrival rates.

� Show that the algorithm is not sensitive to the initial value of
adaptation parameter.

� Show that how the algorithm is able to vary the value of an adap-
tation parameter as the execution environment changes dynami-
cally.

� Show that our algorithm is more efficient and effective than the
algorithm presented in our earlier work [7] and an obvious alter-
native, which involves the use of linear adjustments.

The experiments were conducted using the two streaming data min-
ing applications described in the previous section. For the CluStream
application, we used the KDD-CUP’99 Network Intrusion Detection
dataset. For Dist-Freq-Counting, we use a dataset generated by the
IBM data generator [2]. The average size of each transaction in this
dataset is 6.

5.1 Experimental Environment
For efficient and distributed processing of streaming data in a grid

environment, we need high bandwidth networks and a certain level of
quality of service support. Recent trends are clearly pointing in this di-
rection. However, for our study, we did not have access to a wide-area
network that gave high bandwidth and allowed repeatable experiments.
Therefore, all our experiments were conducted within a single linux
cluster. Each node in the cluster has a Pentium III 933MHz CPU with
512MB of main memory and 300GB local disk space, interconnected
with switched 100 Mb/s Ethernet. We sampled the queue loads every
50 ms and recalculate the values of the variables in Figure 1. Applica-
tion developers can specify those pre-defined constants in Figure 1 to
meet applications’ specific needs. For instance, if an application needs
a bigger buffer and the system can afford it, the developer can set

�
to a larger value. The developer could set

� �
larger than

� 	 � � �
if

they believe the application should focus on the system’s long term
behavior. In our experiments, we configured the parameter values as
indicated in the Figure 7.

We conducted 3 sets of experiments, which are described in the rest
of this section.

5.2 Convergence In a Static Environment



0

10

20

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16

Steps

N
um

be
r

of
M

ic
ro

-C
lu

st
er

s

50K 100K 200K 400K

0

10

20

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16

Steps

N
um

be
r

of
M

ic
ro

-C
lu

st
er

s

50K 100K 200K 400K

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 5 10 15 20 25 30 35 40 45 50 55

Steps

E
rr

or
T

ol
er

an
ce

10K 40K 60K 80K 100K 120K

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 5 10 15 20 25 30 35 40 45 50 55

Steps

E
rr

or
T

ol
er

an
ce

10K 40K 60K 80K 100K 120K

Figure 8: Convergence Under Different Data Arrival Rates: CluStream Application (top two charts) and Dist-Freq-Counting (bottom two
charts)

Parameter Value�
0.9�
5�
0.65�
20,000� � � � � � � �
0.3, 0.5, 0.2, respectively� 

0.85

Figure 7: Parameter Values

Our first experiment demonstrated that the self-adaptation algorithm
can choose the ideal values for the adaptation parameters under differ-
ent data arrival rates, irrespective of the initial values of these parame-
ters.

For CluStream, we initialized the number of micro-centers to 20,
40, 80, and 110. The allowed range of this parameter was �  � �   � � .
We used one data source, and controlled the data arrival rate at the
second stage to be 50, 100, 200, and 400 Kbps, respectively. The
results from the cases where the number of micro-clusters was 20 and
80 are shown as top two charts from Figure 8. Let us consider the
first chart, where the initial values is 20. The value of the number
of micro-clusters converged to 110, 73, 44, and 20, for the four data
arrival rates we considered. The convergence occured in an average
of 5 steps, which corresponds to an average of 53 seconds. The X-
axis in this chart is the number of steps, which denotes the number
of invocations of the Algorithm shown in Figure 4. The results are
similar when the initial value is 80. A similar set of experiments were
also conducted using our second application, Dist-Freq-Counting. The
results are shown as the bottom two charts in Figure 8. We set the

range of � �
to be � � � � � �  � � � � � � � � . We set all monitor nodes to have

the same data arrival rate and then considered six different rates and
two different initial values. The algorithm converges in each of the
cases.

5.3 Adaptation in a Dynamic Environment
In this subsection, we show that our binary search based adaptation

algorithm can quickly adjust the value of an adaptation parameter in a
dynamic environment. Such dynamic adaptation may be needed if the
data arrival rate varies frequently, and/or if the available network band-
with or CPU cycles can vary. For our experiments, we only considered
variations in data arrival rates.

The two charts in Figure 9 consider the CluStream application. The
allowed range of number of micro-clusters is �  � �  � � � . The initial
value is 60. The initial data arrival rate is 400 Kbps. The data arrival
rate is varied with two different frequencies, which are every 120 and
30 seconds, respectively. The left and the right charts in Figure 9 corre-
spond to these two frequencies. The data arrival rate is varied between
40 Kbps and 400 Kbps, with a step of 60 Kbps, applied every 120 or
30 seconds.

The Y-axis in the charts in Figure 9 corresponds to both the data ar-
rival rates, and the number of micro-clusters chosen by our algorithm.
The scales for these values are shown in left and right side, respec-
tively, of each chart. Our results show that our algorithm is able to
vary the number of micro-clusters with the same frequency as rate of
change of data arrival rate. As the data arrival rate increases, the num-
ber of micro-clusters goes down to the minimum possible value of 10.
As the data arrival rate decreases, it goes back up to a higher value.

One interesting question is, how does the frequency of change of



0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

0 500 1000 1500 2000 2500
Time(seconds)

D
at

a
ar

ri
va

lr
at

es
(b

ps
)

0

10

20

30

40

50

60

70

80

90

N
um

be
r

of
M

ic
ro

-C
lu

st
er

s

Rates Binary Search

Frequency of changing the data arrival rate is once every 120 seconds

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

0 200 400 600 800 1000 1200
Time(seconds)

D
at

a
ar

ri
va

lr
at

es
(b

ps
)

0

10

20

30

40

50

60

70

80

90

N
um

be
r

of
M

ic
ro

-C
lu

st
er

s

Rates Binary Search

Frequency of changing the data arrival rate is once every 30 seconds

Figure 9: Algorithm Behavior in a Dynamic Environment: CluStream Application

0

20,000

40,000

60,000

80,000

100,000

120,000

0 500 1000 1500 2000
Time(seconds)

D
at

a
ar

ri
va

lr
at

es
(b

ps
)

0.0013

0.0018

0.0023

0.0028

0.0033

0.0038

0.0043

E
rr

or
to

le
ra

nc
e

Rates Binary Search

Frequency of changing the data arrival rate is once every 120 seconds

0

20,000

40,000

60,000

80,000

100,000

120,000

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time(seconds)

D
at

a
ar

ri
va

lr
at

es
(b

ps
)

0.0013

0.0018

0.0023

0.0028

0.0033

0.0038

0.0043

E
rr

or
to

le
ra

nc
e

Rates Binary Search

Frequency of changing the data arrival rate is once every 30 seconds

Figure 10: Algorithm Behavior in a Dynamic Environment: Dist-Freq-Counting



data arrival rates impact the algorithm. We can see that the range of
number of microclusters is � � � � � � 
 with the slower rate of change (first
chart) and � � � �  � 
 with the higher rate of change (second chart). This
is because our algorithm needs to see an under-loaded server for a
long duration to increase the accuracy of the processing to the highest
levels.

We also conducted the same experiment with the other application.
The results are shown in Figure 10. The results are very similar. The
range of variation of � �

is quite limited when the frequency in the
change of data arrival rates is higher.

5.4 Comparing Different Algorithms
We now compare the self-adaptation algorithm with the obvious al-

ternative, which is a linear update algorithm, and the algorithm pre-
sented in our previous work [7]. We compared these algorithms in
both static and dynamic environments.

We first consider CluStream. We initially compared the binary search
algorithm with the other two algorithms in a static environment. The
results are shown in the first chart of Figure 11. For this experiment,
the data arrival rate is fixed at 200 Kbps and the number of micro-
centers is allowed to vary within the range � � � � � � � 
 . We consider
two scenarios with the binary search algorithm, which corresspond
to the initial number of micro-clustering being 60 and 100. We also
consider two scenarios with the linear-update algorithm. Though the
initial number of micro-clusters is 60 in both the cases, the amount of
update in each case is

� � � � � � � � � � � � � � and
� � � � � � � � � � � � � � ,

respectively.
The binary search algorithm is able to converge to the ideal value of

46 within 6 to 8 steps in the both the cases. With the linear update al-
gorithm with a step of 10, the algorithm never converges, instead, after
a few iterations, it starts alternating between 40 and 50. When we use
a step of 1, the algorithm converges, but takes nearly 13 steps, or about
twice as long as the binary search algorithm. This algorithm shows the
main limitation of the linear-update algorithm, which is the difficulty
of choosing an appropriate step value. A large value can result in an
unstable behaviour, whereas, a small step value can create large delays
in convergence. Finally, as we can see from this figure, the number
of micro-clusters continuously decreases with the algorithm presented
in our earlier work [7]. This is because this algorithm did not con-
sider the possibility of a compute-intensive stage being the bottleneck.
We also compared these three algorithms in a dynamic environment.
We considered two cases, with the frequency of the change of data ar-
rivals rates being once every 60 seconds and 180 seconds. The results
for these two cases are shown in the 2nd and 3rd charts of Figure 11.
Again, we considered linear-update algorithm with steps of 10 and 1.
The conclusions from these experiments are similar to those from the
static experiments. The linear-update algorithm with the step of 10
is unstable and with a step of 1, it is slower to adjust. Our previous
algorithm slowly converges to the minimum value of the adaptation
parameter. Figure 12 shows the results from the same set of experi-
ments, but using Dist-Freq-Counting. The results are identical.

6. RELATED WORK
We now compare our work with other efforts on support for stream-

ing model of execution, and adaptation through a middleware.
Stream Data Processing: In the area of stream processing, the work
that is probably the closest to our work is the dQUOB project [21, 22].
This system enables continuous processing of SQL queries on data
streams. Our work is distinct in the following ways. First, we support
an API to allow general processing, and not just SQL queries. Sec-

ond, the processing can be done in a pipeline of stages. Third, it does
not support self-adaptation. Stampede is a cluster middleware for sup-
porting streaming applications [24, 25]. Our work is again distinct in
consider grid resources and adaptation for real-time processing. Maz-
zucco et al. have looked at the specific support for merging multiple
high speed data streams [19].
Adaptation Through a Middleware: Application adaptation has been
studied in many contexts, including through (grid) middleware. We
briefly survey this work here and state how our work is distinct. As a
quick summary, our work is different in focusing on adapting to meet
real-time constraint on stream data processing, and in adapting the out-
put of the application to do so.

DART [26] is a system facilitating quick development of adaptive
applications. A runtime component is responsible for making adapta-
tion decisions following a set of selected policies. Moura et al. present
software support in the component-base programming context for con-
struction of auto-adaptive applications [8]. It leaves applications the
option to dynamically choose the most beneficial components. ROAM
implements resource-aware runtime adaptation for device heterogene-
ity in mobile systems [14]. Schwan and his group take into account
the runtime resource management issues when supporting adaptable
applications [23]. Somewhat similar ideas have been considered by
Karamcheti and co-workers [6, 16]. Particularly, the notion of tun-
able parameters has similarity to our work, though their focus is not
on streaming data. Isert and Schwan have developed a system called
ACDS, which includes a monitoring and steering tool for adapting
stream based computations [15]. These systems requires that either
the resource usage associated with each option be stated explicity or
the logic for making adaptation decisions be specified by the applica-
tion developer. In comparison, we consider a more restrictive class of
applications, but automate the adaptation process more.

7. CONCLUSIONS
With increasing focus on interactive and real-time applications in a

wide-area environment, it is important for a grid middleware to support
adaptive execution, especially, as the execution environment changes
dynamically. In this paper, we have considered adaptive execution for
stream data processing. Here, the goal of the middleware is to enable
the highest level of accuracy, while still maintaining real-time con-
straint on the processing.

We have developed a self-adaptation algorithm, and have imple-
mented and evaluated it as part of the GATES middleware system. Our
algorithm has the following characteristics. First, it carefully evaluates
the long-term load at each processing stage. It consider different pos-
sibilities for the load at a processing stage and its next stages, and
decides if the value of an adaptation parameter needs to be modified,
and if so, in which direction. To find the ideal new value of an adap-
tation parameter, it performs a binary search on the specified range of
the parameter.

We have implemented two streaming data mining applications using
our middleware, and have extensively evaluated the adaptive capabili-
ties of our middleware. The main observations from our experiments
are as follows. First, our algorithm is able to quickly converge to stable
values of the adaptation parameter, for different data arrival rates, and
independent of the specified initial value. Second, in a dynamic envi-
ronment, the algorithm is able to adapt the processing rapidly. Finally,
in both static and dynamic environments, the algorithm clearly out-
performs the algorithm described in our earlier work and an obvious
alternative, which is based on linear-updates.



Data arrival rate is 200Kbps

0
10
20
30
40
50
60
70
80
90

100
110

0 2 4 6 8 10 12 14 16 18 20
Steps

N
um

be
r

of
M

ic
ro

-C
lu

st
er

s

Binary Search: initial value 60 Binary Search: initial value 100
Linear Update: unit=(max-min)/10 Linear Update: unit=(max-min)/100
Previous Algorithm

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

0 200 400 600 800 1000 1200
Time(seconds)

D
at

a
ar

ri
va

lr
at

es
(b

ps
)

0

20

40

60

80

100

120

N
um

be
r

of
M

ic
ro

-C
lu

st
er

s

Rates Binary Search
Linear Update: unit=(max-min)/10 Linear Update: unit=(max-min)/100
Previous Algorithm

Frequency of changing the data arrival rate is once every 60 seconds

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

0 500 1000 1500 2000 2500
Time(seconds)

D
at

a
ar

ri
va

lr
at

es
(b

ps
)

0

20

40

60

80

100

120

N
um

be
r

of
M

ic
ro

-C
lu

st
er

s

Rates Binary Search
Linear-Update: unit=(max-min)/10 Linear-Update: unit=(max-min)/100
Previous Algorithm

Frequency of changing the data arrival rate is once every 180 seconds

Figure 11: Comparing Different Self-Adaptation Algorithms: CluStream Application

Data arrival rate is 60Kbps

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 2 4 6 8 10 12 14 16 18 20
Steps

E
rr

or
T

ol
er

en
ce

Binary Search: initial value 0.003 Binary Search: initial value 0.004
Linear Update: unit=(max-min)/10 Linear Update: unit=(max-min)/100
Previous Algorithm

0

20,000

40,000

60,000

80,000

100,000

120,000

0 500 1000 1500 2000
Time(seconds)

D
at

a
ar

ri
va

lr
at

es
(b

ps
)

0.0013

0.0018

0.0023

0.0028

0.0033

0.0038

0.0043

E
rr

or
to

le
ra

nc
e

Rates Binary Search
Linear Update: unit=(max-min)/10 Linear Update: unit=(max-min)/100
Previous Algorithm

Frequency of changing the data arrival rate is once every 60 seconds

0

20,000

40,000

60,000

80,000

100,000

120,000

0 500 1000 1500 2000
Time(seconds)

D
at

a
ar

ri
va

lr
at

es
(b

ps
)

0.0013

0.0018

0.0023

0.0028

0.0033

0.0038

0.0043

E
rr

or
to

le
ra

nc
e

Rates Binary Search
Linear Update: unit=(max-min)/10 Linear Update: unit=(max-min)/100
Previous Algorithm

Frequency of changing the data arrival rate is once every 180 seconds

Figure 12: Comparing Different Self-Adaptation Algorithms: Dist-Freq-Counting

8. REFERENCES
[1] C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework for clustering evolving data

streams. In The 29th International Conference on Very Large Data Bases, 2003.
[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association

rules. In Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487–499,
12–15 1994.

[3] Gabrielle Allen, Thomas Dramlitsch, Ian Foster, Tom Goodale, Nick Karonis, Matei
Ripeanu, Ed Seidel, and Brian Toonen. Cactus-G Toolkit: Supporting Efficient
Execution in Heterogeneous Distributed Computing Environments. Technical
report, U. of Chicago, 2001.

[4] E. Borovikov, A. Sussman, and L. Davis. A High-Performance Multi-Perspective
Vision Studio. In Proceedings of the International Supercomputing Conference
(ICS). ACM Press, June 2003.

[5] Henri Casanova, Graziano Obertelli, Francine Berman, and Rich Wolski. The
AppLeS Parameter Sweep Template: User-Level Middleware for the Grid. In
Proceedings of Super Computing 2000, 2000.

[6] F. Chang and V. Karamcheti. Automatic Configuration and Run-time Adaptation of
Distributed Applications. In Proceedings of Conference on High Performance
Distributed Computing (HPDC), 2000.

[7] Liang Chen, Kolagatla Reddy, and Gagan Agrawal. GATES: A Grid-Based
Middleware for Distributed Processing of Data Streams. In Proceedings of IEEE
Conference on High Performance Distributed Computing (HPDC). IEEE Computer
Society Press, 2004.

[8] Ana Lcia de Moura, Cristina Ururahy, Renato Cerqueira, and Noemi Rodriguez.
Dynamic support for distributed auto-adaptive applications. In Proceedings of the
22nd International Conference on Distributed Computing Systems Workshops
(ICDCSW ’02), July 02 - 05,2002.

[9] Pedro Diniz and Bing Liu. Selector: A Language Construct for Developing
Dynamic Applications. In In the proceedings of the Workshop on Languages and
Compilers for Parallel Computing (LCPC), July 2002.

[10] P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, and P. Tan. Data Mining
for Network Intrusion Detection . In Proc. of the NSF Workshop on Next Generation
Data Mining, November 2002.

[11] Wei Du and Gagan Agrawal. Language and Compiler Support for Adaptive
Applications. In Proceedings of Supercomputing 2004, November 2004.

[12] Brian Ensink, Joel Stanley, and Vikram Adve. Program control language: a
programming language for adaptive distributed applications. J. Parallel Distributed
Computing, 63(11), 2003.

[13] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems Integration.
In Open Grid Service Infrastructure Working Group, Global Grid Forum, June
2002.

[14] Hao hua Chu, Henry Song, Candy Wong, Shoji Kurakake, and Masaji Katagiri.
Roam: a seamless application framework. J. System Software, 69(3), 2004.

[15] Carsten Isert and Karsten Schwan. ACDS: Adapting computational data streams for

high performance. In 14th International Parallel & Distributed Processing
Symposium (IPDPS 2000), pages 641–646, Cancun, Mexico, May 2000. IEEE
Computer Society Press.

[16] Inca-Andreea Ivan, Josh Harman, Michael Allen, and Vijay Karamcheti.
Partitionable Services: A Framework for Seamlessly Adapting Distributed
Applications to Heterogeneous Environments. In Proceedings of the Conference on
High Performance Distributed Computing (HPDC), June 2002.

[17] Xinyue Li and Han-Wei Shen. Time-critical multiresolution volume rendering using
3d texture mapping hardware. In Proceedings of the 2002 IEEE symposium on
Volume visualization and graphics, 2002.

[18] Amit Manjhi, Vladislav Shkapenyuk, Kedar Dhamdhere, and Christopher Olston.
Finding (recently) frequent items in distributed data streams. In The 21st
International Conference on Data Engineering, 2005.

[19] Marco Mazzucco, Asvin Ananthanarayan, Robert L. Grossman, Jorge Levera, and
Gokulnath Bhagavantha Rao. Merging multiple data streams on common keys over
high performance networks. In Proceedings of SC 2002, November 2002.

[20] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton,
Jason Flinn, and Kevin R. Walker. Agile application-aware adaptation for mobility.
In Proceedings of the sixteenth ACM symposium on Operating systems principles,
1997.

[21] Beth Plale. Leveraging Runtime Knowledge about Event Rates to Improve Memory
Utilization in Wide Area Data Stream Filtering. In IEEE High Performance
Distributed Computing (HPDC), August 2002.

[22] Beth Plale and Karsten Schwan. Dynamic Querying of Streaming Data with the
dQUOB System. IEEE Transactions on Parallel and Distributed Systems, 14(3),
April 2003.

[23] Christian Poellabauer, Hasan Abbasi, and Karsten Schwan. Cooperative run-time
management of adaptive applications and distributed resources. In Proceedings of
the tenth ACM international conference on Multimedia, 2002.

[24] U. Ramachandran, R. S. Nikhil, N. Harel, J. M. Rehg, and K. Knobe. Space-Time
Memory: A Parallel Programming Abstraction for Interactive Multimedia
Applications. In Proceedings of the Conference on Principles and Practices of
Parallel Programming (PPoPP), pages 183–192. ACM Press, May 1999.

[25] Umakishore Ramachandran, Rishiyur S. Nikhil, James M. Rehg, Yavor Angelov,
Arnab Paul, Sameer Adhikari, Kenneth M. Mackenzie, Nissim Harel, and Kathleen
Knobe. Stampede: A Cluster Programming Middleware for Interactive
Stream-Oriented Applications. IEEE Transactions on Parallel and Distributed
Systems, 14(11), November 2004.

[26] P.-G. Raverdy, H. L. V. Gong, and R. Lea. Dart: A reflective middleware for
adaptive applications. Technical report, University of Tsukuba, 1998.

[27] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the grid. In Fran
Berman, Geoffrey Fox, and Anthony Hey, editors, Grid Computing: Making the
Global Infrastructure a Reality. John Wiley & Sons Inc., 2003.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


