
Fast Distributed Graph Partition and Application
(Extended Abstract)

Bilel Derbel, Mohamed Mosbah, and Akka Zemmari

LaBRI, Université Bordeaux I
351, Cours de la libération

33405 Talence, France
{derbel, mosbah, zemmari}@labri.fr

Abstract

This paper presents efficient deterministic and ran-
domized distributed algorithms for decomposing a graph
with n nodes into a disjoint set of connected clusters
with small radius and few intercluster edges. Our al-
gorithms can be easily implemented in the distributed
CONGEST model of computation i.e., limited message
size, improving the time complexity of previous algo-
rithms [27, 3, 29] from linear to sublinear. One im-
portant application of our algorithms is efficient con-
struction of sparse graph spanners. In fact, given a pa-
rameter k, we show that there exists a sublinear deter-
ministic distributed algorithm that constructs a graph
spanner of stretch 2k−1 with at most O(n1+1/k) edges
in the CONGEST model.

Keywords: distributed algorithm, distributed model,
time complexity, sparse partition, graph spanner.

1. Introduction

1.1. Goals

The purpose of decomposing a graph into subsets of
nodes, called clusters, is to produce a data structure
which uses a small amount of information to repre-
sent the graph in a relevant and accurate way. Many
examples in the literature show that graph decomposi-
tion is at the bottleneck of many algorithms that effi-
ciently solve distributed fundamental problems includ-
ing synchronization [27, 32], maximal independent set
(MIS) [6, 20, 21], coloring [6, 28], routing [8], span-
ners [14, 18], shortest paths [33, 12], mobile users [9].
Often, one tries to have clusters of small radius in such

a way that the induced graph, i.e., the graph obtained
by contracting each cluster into a single node, has few
edges. An important graph decomposition, called Ba-
sic Partition ([29] Chapter 11), aims at partitioning
an n-node graph into disjoint connected clusters such
that the radius of a cluster is at most k − 1 and the
number of the intercluster edges is O(n1+ 1

k) where k
is a given parameter. In this paper, we are interested
in designing time efficient algorithms for constructing
a Basic Partition of a graph in a distributed model of
computation where nodes can only communicate with
their neighbors by exchanging messages of limited size.

1.2. Related work and motivation

The Basic Partition that interests us, was first used
in [3] in order to design efficient network synchroniz-
ers. The idea of producing a decomposition satisfy-
ing a good compromise between the locality level of
the decomposition (e.g., the radius of clusters) and the
sparsity level (e.g., the number of edges connecting the
clusters) was then studied in [7]. The results there have
inspired many other works [15, 4, 5]. In particular, [4]
surveys the different formulations of network decompo-
sitions and covers. One can find two main types of such
network representations. The first one aims at parti-
tioning the network into disjoint colored clusters with
either weak or strong small radius and using a small
number of colors. For weak -network decompositions, a
cluster does not need necessarily to be connected and
its radius is computed using paths which may short-
cut through neighboring clusters. For strong-network
decompositions, a cluster must be connected and its
radius is computed in the network induced by this clus-
ter. The second type of clustered-based representations
called network covers constructs a set of possibly over-

1-4244-0054-6/06/$20.00 ©2006 IEEE

lapping clusters with the property that for any node,
there exists a cluster in the cover that contains its t-
neighborhood (neighbors at distance at most t) with
t an integer parameter. The quality of such covers is
measured using the strong radius of clusters and the
cluster overlap, i.e., the maximum number of clusters
a node belongs to.

In addition to provide decompositions satisfying
some desirable properties, it is important to efficiently
construct these representations. In [4], the authors
give a deterministic (resp. randomized) distributed al-
gorithm to construct a (k, t,O(kn1/k))-neighborhood
cover in O(tk · 2c

√
log n + tk2 · 24

√
log n · n1/k) (resp.

O(tk2 · log2 n · n1/k)) time for some constant c > 0.
A (k, t,∆)-neighborhood consists of possibly overlap-
ping clusters with strong diameter at most O(kt) and
such that (i) each node belongs to at most ∆ clusters
and (ii) the t-neighborhood of each node is covered
by at least one cluster. In addition, the authors in
[4] remark at the end of their paper that it is possi-
ble by using techniques from [15, 7] to translate their
cover into a strong-network decomposition of compara-
ble parameters, i.e., slightly worst than the Basic Par-
tition we are interested in. Although, the algorithm
one can obtain using the method of [4] is sublinear, the
distributed model of computing considered there does
not take into account the congestion created at vari-
ous bottlenecks in the network (see Section 3.4 of [4]).
In fact, the network model used in [4] is the Linial’s
free model [22, 23] (known as the LOCAL model, see
[29] Chapter 2). This model assumes that nodes can
communicate by exchanging messages of unlimited size.
This assumption focuses on the locality nature of some
distributed problems, i.e., what can be computed dis-
tributively assuming every node knows its whole neigh-
borhood at some distance? In order to illustrate the
mathematical power of such assumption, we give two
examples used in [4]. First, in that model, assuming
the nodes of the graph have unique identities, all dis-
tributed tasks can be computed in a time bounded by
the diameter of the graph; by electing a leader and let-
ting the leader learn the topology of the whole graph.
Second, given a graph G, an integer d and a distributed
task which is τ time consuming, computing the same
task on the logical graph Gd (the graph obtained by
adding an edge between any two nodes at distance d or
less in G) is only d · τ time consuming. Although, the
Linial’s model allows to express the locality of some
problems, it fails to take into account some other im-
portant distributed features such as the message con-
gestion. Moreover, when analyzing the algorithm of
[4], it appears that no trivial methods enable to derive
new algorithms in a distributed model of computation

where the message size is limited, without dramatically
deteriorating the time complexity.

From a practical point of view and because network
decompositions are in the basis of many fundamental
distributed problems such as synchronizers and rout-
ing, it is crucial to be able to design fast algorithms to
construct such representations using a more realistic
distributed model. From a theoretical point of view,
it is also interesting and challenging to design fast dis-
tributed algorithms assuming less strong distributed
models e.g., see [30]. In [27], Moran and Snir gave
a distributed algorithm that computes a Basic Parti-
tion in O(n) time in a distributed model where the
message size is at most O(log n) bits, i.e., CONGEST
model, [29] Chapter 2. The algorithm of [27] improves
previous constructions used in [3, 32] which allows to
obtain more efficient algorithms for designing network
synchronizers γ, γ1 and γ2. However, The algorithm
given in [27] is semi-sequential: Each cluster is con-
structed around some node in a distributed and layered
fashion (a layer is added to the cluster if it increases
the size of the cluster by a constant fraction). Nev-
ertheless, the clusters forming the decomposition are
constructed one after the other which requires to select
at each iteration the next node around which the next
cluster will grow. More recently, a fully distributed al-
gorithm for constructing a Basic Partition was given
in [17]. The algorithm there is based on a simple and
practical framework to grow clusters in parallel and in-
dependently, and by applying some rules to break the
symmetry. The algorithm has O(n) time complexity
in the worst case and uses messages of size at most
O(log n).

1.3. Our results

This paper presents new techniques allowing to
achieve sublinear time constructions (using message of
size at most O(log n)) which answers a question asked
by Moran and Snir in [27]. Our algorithms are fully
distributed and do not need any precomputation step
(such as computing a spanning tree cf. [27]). In fact,
we let the clusters grow in parallel and in a concur-
rent way breaking ties using node identities. In our
approach, we privilege the construction of clusters in
the dense regions of the graph. This allows to finish
the distributed construction in constant time as soon
as the graph becomes sparse (it contains few edges).
We obtain a deterministic synchronous distributed al-
gorithm Sync Part with O(k2 ·n1− 1

k) time complexity
in the worst case. We also give an improved determin-
istic algorithm Fast Part which does not make use of
any global clock. Furthermore, we design a random-

ized distributed algorithm Elect Part which is based
on local elections in balls of radius k. This technique is
a generalization of the algorithms given in [26] which
can be of an independent interest. Using randomiza-
tion enables us to focus on the degree of parallelism
of our construction and allows to obtain an improved
time complexity for particular graphs. Finally, our al-
gorithms allow to obtain the first sublinear determin-
istic algorithm to construct a sparse graph spanners
assuming a O(log n) limitation on the message size.
More precisely, we obtain a deterministic distributed
construction of a (2k − 1)-multiplicative stretch span-
ner with O(n1+1/k) edges in O(n1− 1

k) time (for small
k).

1.4. Outline of the paper

The paper is organized as follows. In the first part of
Section 2, we define the model and the basic notations
that will be used in the remainder of the paper. In the
second part, we review past algorithms to construct
the Basic Partition we are interested in. In Section 3,
we present two deterministic sublinear time distributed
algorithms (Sync Part and Fast Part). In Section 4,
we present a randomized algorithm Elect Part and we
analyze its expected time complexity. In Section 5, we
present a sublinear deterministic construction of sparse
graph spanners. Section 6 concludes the paper.

2. Preliminaries

2.1. Definitions

We represent a network of n processes by an un-
weighted undirected connected graph G = (V,E)
where V represents the set of processes (|V | = n) and
E the set of links between them. We consider the dis-
tributed model of computation used in [27, 3] which is
also known as the CONGEST model. More precisely,
we assume that a node can only communicate with its
neighbors by sending and receiving messages of size
O(log(n)) bits. Each node processes messages received
from its neighbors, performs local computations, and
sends messages to its neighbors in negligible time. In a
synchronous network, all nodes have access to a global
clock that generates pulses. A message that have been
sent in a given pulse arrives before the next pulse. In
a synchronous network, the time complexity of an al-
gorithm is defined as the worst-case number of pulses
from the start of the algorithm to its termination. In
an asynchronous network, there is no global clock and
a message delay is arbitrary but finite. In this case,

the time complexity is defined as the worst-case num-
ber of time units from the start of the algorithm to its
termination, assuming that a message delay is at most
one time unit (this assumption is introduced only for
the purpose of performance evaluation).

A cluster S is a subset of V such that the subgraph
induced by S is connected. A cluster is always consid-
ered with a leader node and a spanning tree rooted at
some node: the leader or the root of the cluster. A
cluster that contains only one node is called a single-
node cluster. We also assume that each node v of a
graph G has a unique identity IDv (of O(log(n)) bits).
If node identities are not provided then each node can
select an identity at random from a large set of integers
which guarantees that identities are unique with high
probability. This is a classical and relevant assumption
made in related past works. Under this assumption,
each node v of the graph knows its own identity IDv

and the identity IDS of the cluster S it belongs to.
The identity of a cluster is defined as the identity of its
leader.

In all the algorithms we will introduce, clusters are
constructed in a layered and concurrent fashion. In
other words, a cluster may grow and explore a new
layer but it may also lose its last layer. Some clus-
ters may disappear because they lost all their layers
and some others may be newly formed. A cluster is
said finished if it belongs to the final decomposition we
are constructing. A finished cluster is no longer taken
into account in the algorithm computations. A finished
node is part of a finished cluster. A node is said active
if it is still not in any finished cluster. In the sequel, we
will denote by Vf the set of finished nodes. Further-
more, at each step of an algorithm execution, we are
interested in active nodes in V − Vf , hence the degree
of a node v is defined as its degree in the graph G|V −Vf

induced by V − Vf . We also define the l-neighborhood
Nl(v) of a node v as the set of nodes at distance at
most l from v in G|V −Vf

.

2.2. Algorithms Basic Part and Dist Part

One of the most basic algorithms to construct a
sparse partition of a graph is algorithm Basic Part
which was introduced in [3] and then improved in [27].
A formal description of this algorithm is given in Fig-
ure 1 where P is the set of constructed clusters, k
is an integer parameter and Γ(S) is the set of nodes
in the cluster S together with their neighbors, i.e.,
Γ(S) =

⋃
v∈S

N1(v).

Algorithm Basic Part is inherently sequential as it
constructs clusters one by one starting from a single
node and adding a layer at each iteration. A layer is

Set P ← ∅

while V �= ∅ do
Select an arbitrary vertex v ∈ V
Set S ← {v}
while |Γ(S)| > n1/k|S| do

S ← Γ(S)
end while
Set P ← P ∪ S and V ← V − S

end while
return P

Figure 1. Algorithm Basic Part [29]

continue ← True
while continue do

execute the Exploration Rule
if success of the Exploration Rule then

add the new layer
execute the Growth Rule
if Non success of the Growth Rule then

reject the last explored layer
switch to a finished cluster
continue ← False

end if
else

execute the Battle Rule
end if

end while

Figure 2. Algorithm Dist Part [17]: code for a
cluster

added only if the sparsity condition |Γ(S)| > n
1
k |S| is

verified. Once a cluster is constructed, a new leader is
chosen from the set of active nodes and a new cluster
grows up around this center node. It is obvious that
clusters constructed by algorithm Basic Part are dis-
joint. Furthermore, the sparsity condition ensures that
a cluster can not add more than k − 1 layers. Hence,
the following result holds:

Theorem 1 ([29]) The output P of algorithm
Basic Part is a partition of G and:

1. Rad(P) � k − 1. (Rad(P) is the maximum radius
of any cluster in P)

2. The graph induced by the clusters of P contains at
most n1+1/k intercluster edges.

In [17], the authors have proposed a new fully
distributed algorithm Dist Part that emulates the
Basic Part algorithm. One of the most interesting fea-
tures of that algorithm is to allow clusters to grow in

parallel and in a concurrent way. The algorithm starts
with single-node clusters, then each cluster tries to add
new layers according to some rules. These rules both
control the cluster growth and manage the conflicts oc-
curring between neighboring clusters using node identi-
ties to break the symmetry. Figure 2 gives a high level
description of algorithm Dist Part which is based on
the following three rules:

1. Exploration Rule: a cluster is able to add a new
layer if its identity is bigger than those of not fin-
ished neighboring clusters at distance one or two.
If a cluster wins in exploring a new layer then it
must apply the Growth Rule, otherwise it must
apply the Battle Rule.

2. Growth Rule: If the sparsity condition is satisfied
then a cluster adds the last explored layer and tries
to apply the Exploration Rule once again. Other-
wise, the cluster construction is finished and the
cluster rejects the last explored layer.

3. Battle Rule: a cluster must give up its last layer if
at least a neighboring cluster at distance one has
successfully applied the Exploration Rule.

The Exploration Rule can be viewed as an attack
hold by a cluster against its neighboring clusters in or-
der to win a new layer. If a new layer is explored by
a cluster S, then S is sure that no other clusters are
sharing some nodes in this layer. A cluster may lose
exploring a new layer, and it may be invaded by some
neighboring clusters which have successfully performed
their exploration. In this case, the invaded cluster loses
its whole last layer because the sparsity condition may
no longer hold. Note that a layer is first explored and
then added to the cluster if it verifies the sparsity con-
dition (Growth Rule).

In past sequential implementations [27, 29] of algo-
rithm Basic Part, a spanning tree of the graph was
precomputed and a breadth first search was used in
order to find the next center around which a new
cluster will grow. In opposite, the three rules of al-
gorithm Dist Part allow us to avoid electing a new
center each time the construction of a cluster is fin-
ished. In addition, many clusters may be constructed
independently in parallel. It is also easy to see that
using classical convergecast and broadcast techniques,
the three rules can be implemented using messages of
size O(log n) bits. For a more detailed description of
algorithm Dist Part, its implementation and its anal-
ysis, the reader can refer to [17]. In particular, it
has been proved that the time complexity of algorithm
Dist Part is O(n) in the worst case. In the next sec-
tions, we show new techniques inspired by [17] allowing

us to construct the decomposition produced by algo-
rithm Basic Part in sublinear time.

3. Sublinear Deterministic Distributed
Partition

3.1. Algorithm Sync Part

Preliminary In this section, we assume the network
to be synchronous, i.e., there exists a global clock. At
any time t, At denotes the set of active nodes, i.e.,
nodes in V − Vf , and Rt = {v ∈ At, dv � n

1
k } denotes

the set of active nodes having high enough degrees.
We remark that the sparsity condition for a single-

node cluster rooted at some node v is dv � n
1
k . Hence,

a single-node cluster rooted at some node in At \ Rt

cannot grow any layer. Thus, at any time t, we only
let nodes in Rt compete in order to grow some clusters.
Once Rt becomes empty, we just let remaining active
nodes be finished clusters.

In practice, the new algorithm Sync Part works
in two stages. The first stage is performed until time
T = 10 k2n1−1/k. The second stage begins at time
T . In the next paragraphs, we give the details of
algorithm Sync Part and discuss its correctness and
its complexity.

First stage of the algorithm During this stage, all
nodes execute algorithm Dist Part with the following
additional exploration rules:

• If a node v ∈ At is no longer in Rt, i.e., v ∈
At \Rt, then v sets its identity to −∞ (this avoids
to use additional labels and makes the algorithm
easier to understand)

• Single-node clusters rooted at nodes in At \ Rt do
not explore any layer.

These modifications concerns only single-node
clusters which do not verify the sparsity condition.
We use the same three rules of algorithm Dist Part
to manage the growth of clusters rooted at any node
in Rt. Let us consider a single-node cluster rooted
at v ∈ At \ Rt. When applying the new rules, v sets
its identity to −∞. Hence, v has the lowest identity
among all other possible identities. In consequence,
it will not stop the growth of another cluster whose
leader is in Rt. In fact, v can only be part of other
neighboring dense clusters (if it is asked to join). If
the neighborhood of v is also in At \ Rt, then the
cluster acts as if it has the lowest identity, i.e., it does
not explore any layer. In practice, a node needs to

know whether it is in Rt or not. Since, at any moment
of algorithm Dist Part a node is aware of its fin-
ished neighbors, there are no further communications
to be done by a node in order to know if it is still in Rt.

Second stage of the algorithm At time T , all
remaining active nodes in At stop computing and just
decide to be finished single-node clusters.

Lemma 1 Considering a cluster with the biggest iden-
tity among active nodes, we need 10k2 time in the worst
case before its construction is finished.

Lemma 2 At any time t such that Rt �= ∅,
|At+10k2 | < |At| − n1/k

Proof. (Sketch) At time t such that Rt �= ∅, we
consider the node v in Rt with the biggest identity. Let
us denote S the cluster rooted at v. Using Lemma 1,
at time t′ = t + 10k2, at least the n1/k nodes in the
first layer of cluster S are not in At′ . �

Lemma 3 For t = 10k2n1−1/k, Rt = ∅.

Proof. Using Lemma 2, at some time t, if Rt �= ∅

then after a 10k2 time units period p, the number
of active nodes will decrease by at least n1/k. By
induction, after i � 0 periods p, if Rt �= ∅ then
|At| < n − i n1/k. Using the fact that Rt ⊆ At, we
have at most i = n1−1/k periods p such that Rt �= ∅. �

Theorem 2 (Correctness) Algorithm Sync Part
emulates the Basic Part algorithm.

Proof. (Sketch) The correctness of the algorithm re-
lies on the fact that after time T , no clusters of radius
greater or equal to 1 can be constructed (Lemma 3). �

Since the first stage of the algorithm costs T =
O(k2n1−1/k) time units and the second one is per-
formed in O(1) time units, we get the following the-
orem:

Theorem 3 (Time Complexity) The time com-
plexity of algorithm Sync Part is O(k2 n1−1/k).

Remark 1 One can show that if we privilege
the growth of clusters having the biggest couple
(Radius,ID), then T can be chosen such that
T =O(n1−1/k) for relevant range of k < log(n). This
requires to show that a finished cluster of radius l has
at least n

l
k nodes and that it was constructed in at

most O(l2) time, and thus we can prove that at each

O(1) time units, the number of nodes becoming part of
the cluster having the biggest couple (Radius,ID) is at
least n

1
k . For clarity of our algorithms and because k

is taken to be small, we omit details and proofs.

3.2. Algorithm Fast Part

Preliminary Algorithm Sync Part uses the property
that the system is synchronous to find a bound on
the time T after which there are no nodes able to
grow a non zero radius cluster. The time T informs
all remaining active nodes that there are no more
active dense clusters in the graph. This compels
us to wait T time units even if the input graph is
sparse. Furthermore, algorithm Sync Part cannot be
run in an asynchronous systems without using any
synchronizer (see [29]). Hence, we propose a new
asynchronous algorithm Fast Part that does not use
any global clock. The general idea of the algorithm
is to allow sparse clusters to become finished without
waiting until a pulse T .

Details of the algorithm Let us call a cluster S dense
if S has a radius at least 1 or if the single node v of S is
such that dv > n

1
k . We also define a sparse cluster to

be a single-node cluster which is not dense (this corre-
sponds to a node in At \ Rt in algorithm Sync Part).
Algorithm Fast Part runs like algorithm Dist Part
with the following Exploration Rule:

• A dense cluster can explore a new layer if it has
an identity bigger than those of its active dense
neighbors at distance one or two.

• A sparse cluster is not allowed to explore a new
layer.

• A sparse cluster declares itself finished single-node
cluster:

– if all its neighbors are sparse,

– or if none of its dense neighbors has decided
to explore a new layer.

Using these new rules, a sparse node is allowed to
declare itself finished if it is not explored by any neigh-
boring cluster. This may happen if all neighbors are
sparse or if the dense neighbors have not succeeded
their explorations. This simple idea enables us to im-
prove the time complexity.

It is obvious that the new exploration rule can be
implemented using messages of size at most O(log(n))
using the same techniques than in algorithm Dist Part
[17]. In fact, using, for example, a couple (ID,Dense),
where Dense is a boolean variable indicating whether a

cluster is dense or sparse, allows us to take into account
the new modifications. Nevertheless, because a sparse
node (having dense neighbors) decides to be finished
if it was not explored, it must inform its neighbors
by sending them a message. This enables neighboring
nodes to be aware of their degrees.

Theorem 4 (Correctness) Algorithm Fast Part
emulates algorithm Basic Part.

Proof. (Sketch) The correctness of the algorithm is
ensured by the following three facts : (i) two clusters
at distance at most 2 can not explore the same node
(ii) dense clusters grow in a layered fashion with
respect to the sparsity condition (iii) if a cluster
wins in exploring a new layer then none of its sparse
neighbors will be allowed to declare itself finished. �

Let Λ be the number of clusters of radius at least 1
at the end of algorithm Fast Part. Then, the following
theorem holds:

Theorem 5 (Time Complexity). The worst case
time complexity of algorithm Fast Part satisfies:

Time(Fast Part) = O(k2 Λ) = O(k2 n1− 1
k)

Proof. The new exploration rule guarantees that a
dense cluster is never stopped in its growth by a sparse
one. In the worst case, no two dense clusters are
constructed in parallel. Hence, we consider finished
dense clusters sorted in a decreasing order of their
time construction. The construction of one cluster has
cost at most O(k2). Thus, after at most O(k2 Λ) time,
it only remains active sparse clusters in the graph.
In two rounds, all remaining sparse clusters detect
that their neighbors are sparse. Thus, using the new
rules, they become finished clusters and the algorithm
terminates. Thus, the first part of the theorem holds.
In addition, it is obvious that for any graph and for
any execution of the algorithm, Λ is bounded by n1− 1

k

which completes the proof. �

Remark 2 Note that we can apply Remark 1 for the
asynchronous algorithm Fast Part in order to obtain
a O(n1− 1

k) time complexity.

Remark 3 The bound O(k2 Λ) becomes of special in-
terest in the case of graphs for which Λ is known to be
small comparing with n1− 1

k , e.g., Circulant graphs.

Remark 4 Algorithm Fast Part has the advantage to
focus on clustering dense regions. In fact, if we con-
sider a graph with only some few dense regions, e.g.,

some cliques connected by some paths). Our algorithm
will automatically capture the topology of the underly-
ing graph and the clustering will have a high priority
on dense regions. Moreover, the construction will be
faster if dense areas are far from each other. This two
facts do not hold for existing constructions.

4. Randomized Distributed Partition

4.1. Randomized local elections

In [26], a randomized algorithm called LE2 (Lo-
cal Election) is introduced to implement algorithms
based on local computations and relabeling systems
[25, 24, 2]. The LE2-algorithm allows to simulate lo-
cal computations on a closed star, that is, the labels
(states) attached to the center and to the leaves of the
star can be modified according to some rules. In algo-
rithm LE2 of [26], nodes are fighting to be centers of a
ball of radius 1 so that the elected nodes can execute
a computation step. Non elected nodes are part of at
most one star which allows to execute local computa-
tions concurrently on closed balls of radius 1. For more
details about the LE2-algorithm the reader is referred
to [26]. In particular, the authors studied the average
number of nodes locally elected and they interpreted
that as the degree of parallelism authorized by an al-
gorithm. In the special case of our algorithm, that
study gives an idea about the number of clusters con-
structed in parallel in one round and for k = 2. In fact,
when taking k = 2 in the Basic Part algorithm and
using Theorem 1, the radius of the clusters produced
by the decomposition can be either 0 (i.e., single-node
clusters) or 1 (i.e., clusters containing a node v and its
neighborhood N1(v)). Therefore, we can use the LE2-
algorithm to produce the sparse partition we need. It
suffices to run the LE2-algorithm until there are no
more active nodes in the graph. Every time a node v is
center of a star, it computes its neighborhood |N1(v)|
and decides to be either a radius 1 finished cluster or
just a finished single-node cluster.

In the next paragraphs, we use a generalization
(LEk) of the algorithm of [26] in order to elect nodes
which are centers of disjoint balls of radius k � 2. The
LEk algorithm is used as a subprocedure in algorithm
Elect Part in order to construct the graph partition.

4.2. Algorithm Elect Part

Algorithm Elect Part is depicted in Figure 3. It
runs in many phases until each node of the graph be-
longs to a finished cluster. A phase of the algorithm is

executed in two stages. The first stage consists in run-
ning algorithm LEk (see Figure 4) which is a variant
of algorithm Dist Part in which the sparsity condition
does not matter: only the radius of elected clusters is
important. After the first stage, some balls of radius
k and centered on some elected nodes are constructed.
Note that some other balls of radius less then k are
also constructed. The second stage is devoted to com-
pute finished clusters and to re-initialize the compu-
tations. In fact, each cluster in the input of the sec-
ond phase computes independently whether there is a
layer that does not satisfy the sparsity condition (Step
2.a). This can be done distributively using converge-
cast and broadcast between the root of each ball and
its leaves. If there exists a layer j violating the sparsity
condition then the cluster rejects all layers l � j and
declares itself finished (Steps 2.b and 2.c). Otherwise,
if all its neighbors are finished then the cluster can not
grow any more and it also declares itself finished (Step
2.d). Finally, the remaining clusters are just broken
into single-node clusters in order to run another phase
(Step 2.e).

Note that, algorithm LEk grows balls of radius k
whereas a radius k− 1 suffices. This allows us to mark
edges connecting a cluster with the nodes in the last re-
jected layer and thus avoiding the preferred edge elec-
tion step needed for some applications. This is dis-
cussed in more details in Section 5.

while There exist nodes not in a finished cluster do
(0.) each node selects randomly an identity from a big

set of integers.
Stage 1: local election in balls of radius k
(1.a) Each node v not in a finished cluster runs algorithm

LEk

Stage 2: reinitialization
(2.a) Each formed cluster S computes independently the

sparsity condition for each layer j � k,
if S contains a layer j violating the sparsity condition
then

(2.b) S releases all layers l � j and becomes a finished
cluster,

(2.c) nodes in released layers become single-node
clusters.

else
if all neighbors are finished then

(2.d) S becomes finished.
end if

end if
(2.e) Break all non finished clusters and form new single-

-node clusters.
end while

Figure 3. Algorithm Elect Part

Round ← 0;
while Round < k do

execute the Exploration Rule;
Round ← Round + 1;
if Non Success of the Exploration Rule then

execute the Battle Rule;
end if

end while

Figure 4. Algorithm LEk: code for a cluster

4.3. Analysis of the algorithm

In this section, we compute a bound on the expected
number of phases needed before algorithm Elect Part
terminates. The main idea of our analysis is to bound
the number of nodes becoming part of a finished cluster
in a phase, by using the number of clusters constructed
in parallel in each phase.

In the sequel, we say that a node is locally k-elected if
it has succeeded the LEk phase without losing against
any other cluster. We also use a parameter K such
that: ∀v ∈ V,N2k(v) � K.

Inspired by proofs in [26], the following proposition
holds:

Proposition 1 The expected number of nodes locally
k-elected in a phase satisfies:

Mk(G|V −Vf
) =

∑
v∈V −Vf

1
N2k(v)

>
|V − Vf |

K

Theorem 6 Let T be the time complexity of the algo-
rithm Elect Part. The expected value of T satisfies:

E (T) = O
⎛
⎝k2 log(n)

log
(

K
K−1

)
⎞
⎠

Proof. (Sketch) Let Gi denotes the graph induced by
not finished nodes at step i. Let the random variable
Xi denotes the number of nodes of Gi. Let the random
variables Yi denotes respectively the number of nodes
locally k-elected in the ith step, i.e., in Gi. Using
Proposition 1, one can show that the expected number
of Yi satisfies E (Yi | Gi) � Xi/K. Then, using some
further probabilistic arguments to bound E(Yi+1)
using E(Yi), one can show that E (Xi) � n

(
1 − 1

K

)i.
The theorem is proved by noting that the algorithm
terminates when Xi = 1. �

Remark 5 The bound given by Theorem 6 does not
take into account the size of the finished clusters at
each phase but only the number of clusters constructed
in parallel. Furthermore, the number of clusters con-
structed in parallel is just lower bounded using the vari-
able K which corresponds to the initial graph G and not
to the subgraph in the input of each phase. It would be
very interesting to take all this features into account in
order to get a better bound on the number of phases
needed to terminate algorithm Elect Part.

4.4. Discussion

In algorithm Elect Part, sparse nodes also partic-
ipate in the computations and compete against other
nodes in order to grow a ball. This slows down the
construction because an elected sparse node will al-
ways form a finished single node cluster. Thus, we
should apply some new rules similar to those of algo-
rithm Fast Part in order to (i) prohibit that a sparse
node keeps a dense one from growing (ii) and to al-
low a sparse node to declare itself finished if it is not
explored by any neighbor. In consequence, we obtain
a modified version of algorithm Elect Part in which
only dense nodes can be k-elected. In this modified
version, only dense nodes are allowed to compete in
order to grow a ball of radius k. Just like in algorithm
Fast Part, we let a dense node always wins against
a sparse one using the couple (ID,Dense). Further-
more, a sparse node is allowed to declare itself finished
cluster if it is not invaded by any neighboring cluster
i.e., if dense neighbors loose their explorations or if all
neighbors are sparse.

By considering the number of dense nodes at each
phase and using the same arguments than in Theo-
rem 6, we can find a bound on the expected number
of phases needed to terminate the construction. Un-
fortunately, the theoretical analysis leads to the same
bound than in Theorem 6. It is also easy to prove us-
ing the same arguments than in Theorem 5 that the
complexity of the modified algorithm is bounded by
O(k2 · Λ). The new version of algorithm Elect Part
is of special interest because it has a sublinear time
complexity for general graphs and by the same time it
allows to express the high degree of parallelism of our
method when analyzing the time complexity for some
particular graphs. For example, let us consider a graph
G such that K = O(nε) with ε < 1. This defines a large
class of graphs for which we can achieve an improved
time complexity, namely O(k2 log(n)nε).

Remark 6 Both our deterministic and randomized al-
gorithms are directly implementable on real data. Some
experiments using some well chosen critical graphs

have been done with ViSiDiA [16], i.e., a platform
which enables to visualize and to simulate on the fly
the execution of a distributed algorithm. Our experi-
ments confirm that, in practice, our techniques allow
a high degree of parallelism. Furthermore, most of
the graphs we have used are quickly portioned in many
independent connected components which enhance the
time complexity, i.e., this was not taken into account
in our theoretical analysis.

5. Application to Graph Spanners

An (α,β)-spanner of a graph is a subgraph H such
that for any two nodes u,v: dH(u, v) � α.dG(u, v) + β
where dH(u, v) (resp. dG(u, v)) is the distance in H
(resp. in G) between u and v. There are three features
to take into account when evaluating spanner construc-
tions: the size of the spanner (space), the approxima-
tion quality (stretch) and the construction time. Many
efforts have been done in order to give algorithms that
improve one (or all) of these features. In particular, it
is well known that there exist (2k− 1,0)-spanners with
size O(n1+ 1

k) which is optimal [1, 13, 31].
One immediate application of algorithm Basic Part

is the construction of a (4k − 3,0)-spanner with
O(n1+ 1

k) edges. The spanner is obtained by consid-
ering the set of edges spanning each cluster and by
selecting an intercluster edge for each pair of two neigh-
boring clusters. The bounds on the stretch and the size
of the spanner follow from Theorem 1. Therefore, in or-
der to distributively construct such a spanner, we have
to select an edge between every two neighboring clus-
ters. Nevertheless, we can avoid this additional step
of selecting preferred edges and by the same time the
stretch can be improved without changing the bound
on the spanner size.

In fact, let us consider a cluster S under construc-
tion. Before completing the construction of S (i.e., just
after the sparsity condition is no longer satisfied), for
every neighboring vertex u of S (i.e., u is on the last
rejected layer of S), we select an edge from u to some
v in the last layer of S. Thus, we obtain a (2k − 1,0)-
spanner with the same size bound by considering the
selected edges and the trees spanning the clusters. This
idea was attributed to [19] in [29] (Exercise 3, page
188) and was used in [18] as a first step to construct
(1+ ε,β)-spanners. The same idea was also used in [27]
to improve the complexity of synchronizers γ1 and γ2.
The time complexity of the algorithms used in [29, 27]
was O(n) and it has not been improved since.

Let us remark that in all our algorithms the last re-
jected layer is always explored. Hence, the edges con-
necting a cluster with nodes in the last rejected layer

can be computed without any extra time. Hence, the
following holds:

Theorem 7 There is a deterministic algorithm that
given a graph with n nodes and a fixed integer k � 1,
constructs a (2k − 1, 0)-spanner with O(n1+1/k) edges
in O(n1−1/k) time in the worst case.

Corollary 8 There is a deterministic algorithm that
given a graph with n nodes constructs a (3, 0)-spanner
with O(n3/2) edges in O(

√
n) time in the worst case.

To our knowledge, this is the fastest determinis-
tic algorithm that constructs such spanners in the
CONGEST model.

Remark 7 Although it is very hard to construct span-
ners deterministically, there already exist randomized
efficient algorithms. In particular, a randomized algo-
rithm for constructing a (2k − 1,0)-spanner with ex-
pected size O(k n1+ 1

k) was introduced in [11]. A ran-
domized distributed algorithm for that construction was
given in [10] with a running time of O(k). Note that
the randomization in the algorithm of [11] is on the size
of the spanner which can be unsatisfying in applications
where the correctness of the spanner is crucial.

6. Conclusion

The algorithms given in this paper improve the
time complexity of past constructions and are im-
plementable in the practical CONGEST distributed
model. Since the decomposition described in this pa-
per is used in many other settings, we are hopeful that
our construction will help improving other applications
that use the Basic Part algorithm as a starting point.
For instance, one can show that with some few modi-
fications, our technique improves the time complexity
of the preprocessing phase of synchronizers γ1 and γ2

from O(n) to O(n1− 1
k).

We can note that, in the case k = 2, the time
complexity bound obtained using our technique is the
same as the bound one can obtain by both assuming
a more powerful distributed model i.e., unlimited mes-
sage size, and using techniques from [4]. In the case of
sparse spanners, this remark is intriguing and one can
be interested in a lower bound on the time complex-
ity of distributively computing a (3, 0)-spanner. We
are optimistic that deterministic algorithms with bet-
ter bounds exist.

It is also unknown if there exists poly-logarithmic al-
gorithm for the basic sparse partition problem studied
in this paper. We are optimistic that poly-logarithmic

algorithms exist even in the CONGEST distributed
model.

Acknowledgment We would like to thank Ph.
Duchon and O. Bernardi for helpful discussions.

References

[1] I. Althofer, G. Das, D. Dobkin, D. Joseph, and
J. Soares. On sparse spanners of weighted graphs.
Discrete Computational Geometry, 9:81–100, 1993.

[2] D. Angluin. Local and global properties in networks
of processors. 12th Symp. on Theory of Computing,
pages 82–93, 1980.

[3] B. Awerbuch. Complexity of network synchronization.
Journal of the Association for Computing Machinery,
32:804–823, 1985.

[4] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Fast
distributed network decompositions and covers. J. of
Parallel and Dist. Comp., 39:105–114, 1996.

[5] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg.
Near-linear time construction of sparse neighborhood
covers. SIAM J. Computing, 28:263–277, 1998.

[6] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A.
Poltkin. Network decomposition and locality in dis-
tributed computation. 30th IEEE Symp. on Found. of
Computer Science, pages 364–369, 1989.

[7] B. Awerbuch and D. Peleg. Sparse partitions. 31st

IEEE Symp. on Found. of Comp. Science, pages 514–
522, 1990.

[8] B. Awerbuch and D. Peleg. Routing with polynomial
communication-space trade-off. SIAM Journal on Dis-
crete Mathematics, 5:151–162, 1992.

[9] B. Awerbuch and D. Peleg. Online tracking of mobile
users. J. of the ACM, 42:1021–1058, 1995.

[10] S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie.
New constructions of (α,β)-spanners and purely addi-
tive spanners. 16th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), To appear, 2005.

[11] S. Baswana and S. Sen. A simple linear time algorithm
for computing (2k − 1)-spanner of O(n1+1/k) size for
weighted graphs. Int. Colloquium on Automata, Lan-
guages and Programming, pages 384–296, 2003.

[12] S. Baswana and S. Sen. Approximate distance oracles
for unweighted graphs in O(n2 log(n)) time. 15th An-
nual ACM-SIAM Symposium On Discrete Algorithms,
New Orleans, LA, USA.:271–280, 2004.

[13] B. Chandra, G. Das, G. Narasimhan, and J. Sores.
New sparseness results on graph spanners. Proceed-
ings of the 8th annual symposium on Computational
geometry, pages 192–201, 1992.

[14] E. Cohen. Fast algorithms for constructing t-spanners
and paths with stretch t. SIAM Journal on Comput-
ing, 28:210–236, 1998.

[15] L. Cowen. On Local Representations of Graphs and
Networks. Ph. D Thesis, 1993.

[16] B. Derbel and M. Mosbah. Distributing the execu-
tion of a distributed algorithm over a network. 7th

IEEE International Conference on Information Visu-
alization, IV03-AGT. London, pages 485–490, 2003.

[17] B. Derbel and M. Mosbah. A fully distributed lin-
ear time algorithm for cluster network decomposition.
16th IASTED Int. Conf. on Parallel and Distributed
Computing and Systems, MIT, pages 548–553, 2004.

[18] M. Elkin and D. Peleg. (1+ε, β)-spanner constructions
for general graphs. Siam J. Comput, 33:608–631, 2004.

[19] S. Halperin and U. Zwick. Unpublished result. 1996.
[20] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Watten-

hofer. Fast deterministic distributed maximal inde-
pendent set computation on growth-bounded graphs.
In 19th International Symposium on Distributed Com-
puting (DISC), Sept. 2005.

[21] F. Kuhn, T. Moscibroda, and R. Wattenhofer. On the
locality of bounded growth. In 24th ACM Symp. on
the Principles of Dist. Comp. (PODC), 2005.

[22] N. Linial. Distributive graph algorithms - global so-
lutions from local data. 28th IEEE Symp. Found. of
Computer Science, pages 331–335, 1987.

[23] N. Linial. Locality in distributed graph algorithms.
SIAM J. Computing, 21:1:193 – 201, 1992.

[24] I. Litovsky, Y. Métivier, and E. Sopena. Different lo-
cal controls for graph relabelling systems. Math. Syst.
Theory, 28:41–65, 1995.

[25] I. Litovsky, Y. Métivier, and E. Sopena. Graph
relabelling systems and distributed algorithms. In
H. Ehrig, H. Kreowski, U. Montanari, and G. Rozen-
berg, editors, Handbook of graph grammars and com-
puting by graph transformation, volume 3, pages 1–56.
World Scientific, 1999.

[26] Y. Métivier, N. Saheb, and A. Zemmari. Randomized
local elections. Inf. Processing Letters, 82:313–320,
2002.

[27] S. Moran and S. Snir. Simple and efficient network
decomposition and synchronization. Theoretical Com-
puter Science, 243:217–241, 2000.

[28] A. Panconesi and A. Srinivasan. Improved distributed
algorithms for coloring and network decomposition.
24th ACM Symp. on Theory of Computing, pages 581–
592, 1992.

[29] D. Peleg. Distributed Computing, A Locality-Sensitive
Approach. SIAM Monographs on Discrete Mathemat-
ics and Applications, 2000.

[30] D. Peleg and V. Rubinovich. A near-tight bound on
the time complexity of distributed minimum-weight
spanning tree. SIAM J. COMPT, 32(5):1427–1442,
2000.

[31] D. Peleg and A. Schaffer. Graph spanners. J. Graph
Theory, 13:99–116, 1989.

[32] L. Shabtay and A. Segall. Low complexity network
synchronization. 8th Internat. Workshop on Dis-
tributed Algorithms, pages 223–237, 1994.

[33] M. Thorup and U. Zwick. Approximate distance or-
acles. 33rd Annual ACM Symposium on Theory of
Computing (STOC), pages 183–192, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

