
Dynamic Multi Phase Scheduling for Heterogeneous Clusters

Florina M. Ciorba1, Theodore Andronikos1, Ioannis Riakiotakis1,

Anthony T. Chronopoulos2 and George Papakonstantinou1

1Computing Systems Laboratory 2Dept. of Computer Science

Dept. of Electrical and Computer Engineering University of Texas at San Antonio

National Technical University of Athens 6900 N. Loop 1604 West,

Zografou Campus, 15773, Athens, Greece San Antonio, TX 78249

{cflorina,tedandro,iriak}@cslab.ece.ntua.gr atc@cs.utsa.edu

Abstract

Distributed computing systems are a viable and less
expensive alternative to parallel computers. However,
concurrent programming methods in distributed sys-
tems have not been studied as extensively as for par-
allel computers. Some of the main research issues are
how to deal with scheduling and load balancing of such a
system, which may consist of heterogeneous computers.
In the past, a variety of dynamic scheduling schemes
suitable for parallel loops (with independent iterations)
on heterogeneous computer clusters have been obtained
and studied. However, no study of dynamic schemes
for loops with iteration dependencies has been reported
so far. In this work we study the problem of schedul-
ing loops with iteration dependencies for heterogeneous
(dedicated and non-dedicated) clusters. The presence
of iteration dependencies incurs an extra degree of dif-
ficulty and makes the development of such schemes
quite a challenge. We extend three well known dy-
namic schemes (CSS, TSS and DTSS) by introducing
synchronization points at certain intervals so that pro-
cessors compute in pipelined fashion. Our scheme is
called dynamic multi-phase scheduling (DMPS) and
we apply it to loops with iteration dependencies. We
implemented our new scheme on a network of heteroge-
neous computers and studied its performance. Through
extensive testing on two real-life applications (the heat
equation and the Floyd-Steinberg algorithm), we show
that the proposed method is efficient for parallelizing
nested loops with dependencies on heterogeneous sys-
tems.

1. Introduction

Loops are one of the largest sources of parallelism in
scientific programs. The iterations within a loop nest
are either independent (called parallel loops) or prece-
dence constrained (called dependence loops). Fur-
thermore, the precedence constraints can be uniform
(constant) or non-uniform throughout the execution
of the program. A review of important parallel loop
scheduling algorithms is presented in [7] (and references
therein) and some recent results are presented in [4].
Research results also exist on scheduling parallel loops
on message passing parallel systems and on heteroge-
neous systems [1],[2],[3],[5],[6],[8],[9],[10],[11],[15],[16].
Static scheduling schemes for dependence loops have
been studied extensively for shared memory and dis-
tributed memory systems [18] (and references therein),
[27],[26],[28], [30] [25],[19],[20], [31].

Loops can be scheduled statically at compile-time or
dynamically at run-time. Static scheduling is applica-
ble to both parallel and dependence loops. It has the
advantage of minimizing the scheduling time overhead,
and achieving near optimal loop balancing when the
execution environment is homogeneous with uniform
and constant workload. Examples of such scheduling
are Block [29], Cyclic [18], etc. However, most clus-
ter nowadays are heterogeneous and non-dedicated to
specific users, yielding a system with variable work-
load. When static schemes are applied to hetero-
geneous systems with variable workload the perfor-
mance is severely deteriorated. Dynamic scheduling
algorithms adapt the assigned number of iterations to
match the workload variation of both homogeneous and
heterogeneous systems. An important class of dynamic
scheduling algorithms are the self-scheduling schemes

1-4244-0054-6/06/$20.00 ©2006 IEEE

(such as CSS [23], GSS [24], TSS [13], Factoring [1], and
others [11]). On distributed systems these schemes are
implemented using a Master-Slave model.

Another very important factor in achieving near op-
timal execution time in distributed systems is load
balancing. Distributed systems are characterized by
heterogeneity. To offer load balancing loop scheduling
schemes must take into account the processing power
of each computer in the system. The processing power
depends on CPU speed, memory, cache structure and
even the program type. Furthermore, the process-
ing power depends on the workload of the computer
throughout the execution of the problem. Therefore,
load balancing methods adapted to distributed envi-
ronments take into account the relative powers of the
computers. These relative computing powers are used
as weights that scale the size of the sub-problem as-
signed to each processor. This significantly improves
the total execution time when a non-dedicated hetero-
geneous computing environment is used. Such algo-
rithms were presented in [4],[9]. A recent algorithm
that improves TSS by taking into account the process-
ing powers of a non-dedicated heterogeneous system
is DTSS (Distributed TSS) [6]. All dynamic schemes
proposed so far apply only to parallel loops without
dependencies.

When loops without dependencies are parallelized
with dynamic schemes, the index space is partitioned
into chunks, and the master assigns these chunks to
processors upon request. Throughout the parallel ex-
ecution, every slave works independently and upon
chunk completion sends the results back to the master.
Obviously, this approach is not suitable for dependence
loops because, due to dependencies, iterations in one
chunk depend on iterations in other chunks. Hence,
slaves need to communicate. Inter-processor commu-
nication is the foremost important reason for perfor-
mance deterioration when parallelizing loops with de-
pendencies. No study of dynamic algorithms for loops
with dependencies on homogeneous or heterogeneous
clusters has been reported so far.

In this paper, we study the problem of dynamic
scheduling of uniform dependence loops on heteroge-
neous distributed systems. We extend three well known
dynamic schemes (CSS, TSS, DTSS) and apply them to
dependence loops. After partitioning the index space
into chunks (using one of the three schemes), we in-
troduce synchronization points at certain intervals so
that processors compute chunks in pipelined fashion.
Synchronization points are carefully placed so that the
volume of data exchange is reduced and the pipeline
parallelism is improved. Our scheme is called dy-
namic multi-phase scheduling (DMPS(x)), where (x)

stands for one of the three algorithms, considered as
an input parameter to DMPS. We implement our
new scheme on a network of heterogeneous (dedicated
and non-dedicated) computers and evaluate its perfor-
mance through extensive simulation and empirical test-
ing. Two case studies are examined: the Heat Equa-
tion and the Floyd-Steinberg dithering algorithm. The
experimental results validate the presented theory and
corroborate the efficiency of the parallel code.

Section 2 gives the algorithmic model and some no-
tations. In section 3, we thoroughly present our al-
gorithm and motivation. In section 4, the implemen-
tation, the case studies we used and the experimen-
tal results are presented. In Section 5, conclusions are
drawn.

2. Notation

Parallel loops have no dependencies among itera-
tions and, thus, the iterations can be executed in any
order or even simultaneously. In dependence loops the
iterations depend on each other, which imposes a cer-
tain execution order. The depth of the loop nest, n,
determines the dimension of the iteration index space
J = {j ∈ N

n | lr ≤ ir ≤ ur, 1 ≤ r ≤ n}. Each point of
this n-dimensional index space is a distinct iteration of
the loop body. L = (l1, . . . , ln) and U = (u1, . . . , un)
are the initial and terminal points of the index space.

for (i1=l1; i1<=u1; i1++) {

...

for (in=ln; in<=un; in++) {

S1(I);

...

Sk(I);

}

...

}

����
����

Figure 1. Algorithmic model.

Without loss of generality we assume that L =
(1, . . . , 1) and that u1 ≥ . . . ≥ un. DS = {�d1, . . . , �dp},
p ≥ n, is the set of the p dependence vectors, which
are uniform, i.e., constant throughout the index space.
The index space of the dependence loop is divided into
chunks, using one of the three dynamic schemes, giv-
ing preference to the smallest dimension (here un). The
following notation is used throughout the paper:

• PE stands for processing element.

• P1, . . . , Pm are the slaves.

• N is the number of scheduling steps, i = 1, . . . , N .

• Ci: A few consecutive iterations of the loop are
called a chunk ; Ci is the chunk size at the i-th
scheduling step.

• Vi is the size (in number of iterations) of chunk i
along dimension un.

• SP : In each chunk we introduce M synchroniza-
tion points (SP) uniformly distributed along u1.

• H is the interval (number of iterations along di-
mension u1) between two SP s (H is the same for
every chunk).

• The current slave is the slave assigned with the
chunk i, whereas the previous slave is the slave
assigned with the chunk i − 1.

• V Pk is the virtual computing power of slave Pk.

• V P =
∑m

k=1 V Pk is the total virtual computing
power of the cluster.

• Qk is the number of processes in the run-queue of
Pk, reflecting the total load of Pk.

• ACP : Ak =
⌊

V Pk

Qk

⌋
is the available computing

power (ACP) of Pk (needed when the loop is exe-
cuted in non-dedicated mode).

• A =
∑m

k=1 Ak is the total available computing
power of the cluster.

• SCi,j is the set of iterations of chunk i, between
SPj−1 and SPj .

Figure 3 below illustrates Ci, Vi and H . Note that
Ci is the number of iterations in the rectangular region,
i.e. Ci = Vi × M × H .

3. A dynamic scheduling scheme for uni-

form dependence loops

This section gives the motivation for this work and
describes our proposed method.

3.1. Motivation

Existing dynamic scheduling algorithms cannot cope
with uniform dependence loops. Consider, for instance,
the heat equation, with its pseudocode below:

/* Heat equation */

for (l=1; l<loop; l++) {

for (i=1; i<width; i++){

for (j=1; j<height; j++){

A[i][j] = 1/4*(A[i-1][j] + A[i][j-1]

+ A’[i+1][j] + A’[i][j+1]);

}

}

}

When dynamic schemes are applied to parallelize
this problem, the index space is partitioned into
chunks, that are assigned to slaves. These slaves then
work independently. But due to the presence of de-
pendencies, the slaves have to communicate. However,
existing dynamic schemes do not provide for inter-slave
communication, only for master-to-slaves communica-
tion. Therefore, in order to apply dynamic schemes to
dependence loops, one must provide an inter-slave com-
munication scheme, such that problem’s dependencies
are not violated or ignored.

In this work we bring dynamic scheduling schemes
into the field of scheduling loops with dependencies.
We propose an inter-slave communication scheme for
three well known dynamic methods: CSS [23], TSS [13]
and DTSS [6]. In all cases, after the master assigns
chunks to slaves, the slaves synchronize by means of
synchronization points. This provides the slaves with
a unified communication scheme. This is depicted in
Fig. 2 and 3, where chunks i − 1, i, i + 1 are assigned
to slaves Pk−1, Pk, Pk+1, respectively. The shaded ar-
eas denote sets of iterations that are computed concur-
rently by different PEs. When Pk reaches the synchro-
nization point SPj+1 (i.e. after computing SCi,j+1) it
sends Pk+1 only the data Pk+1 requires to begin exe-
cution of SCi+1,j+1. The data sent to Pk+1 designates
only those iterations of SCi,j+1 imposed by the de-
pendence vectors, on which the iterations of SCi+1,j+1

depend on. Similarly, Pk receives from Pk−1 the data
Pk requires to proceed with the execution of SCi,j+2.
Note that slaves do not reach a synchronization point
at the same time. For instance, Pk reaches SPj+1 ear-
lier than Pk+1 and later than Pk−1. The existence of
synchronization points leads to pipelined execution, as
shown in Fig. 2 by the shaded areas.

3.2. Dynamic scheduling for dependence
loops

This section gives a brief description of the three
dynamic algorithms we used. Chunk Self-Scheduling
(CSS) assigns a chunk that consists of a number of
iterations (known as Ci) to a slave. A large chunk
size reduces scheduling overhead, but also increases
the chance of load imbalance. The Trapezoid Self-
Scheduling (TSS) [13] scheme linearly decreases the

Pk+1

Pk

Pk-1

SPj

Ci+1

Ci

Ci-1

SPj+1 SPj+2

SCi,j+1

SCi-1,j+1 ��

�� ������

������

������	�
�	�����

��������	�����������

�����������

��������	�����������

���������

	��	�
���������	�
�	��

��	�	
������
�
�	���

Figure 2. Synchronization points

chunk size Ci. Considering |J | the total number of
iterations of the loop, in TSS the first and last (as-
signed) chunk size pair (F, L) may be set by the pro-
grammer. In a conservative selection, the (F, L) pair is

determined as: F = |J|
2×m

and L = 1. This ensures that
the load of the first chunk is less than 1/m of the total
load in most loop distributions and reduces the chance
of imbalance due to large size of the first chunk. Then,
the proposed number of steps needed for the schedul-

ing process is N = 2×|J|
(F+L) . Thus the decrease between

consecutive chunks is D = (F −L)/(N − 1). Then the
chunk sizes in TSS are C1 = F, C2 = F − D, C3 =
F − 2 × D, Distributed TSS (DTSS) [6] improves
on TSS by selecting the chunk sizes according to the
computational power of the slaves. DTSS uses a model
that includes the number of processes in the run-queue
of each PE. Every process running on a PE is as-
sumed to take an equal share of its computing re-
sources. The programmer may determine the pair
(F, L) according to TSS; or the following formula may
be used in the conservative selection approach (by de-

fault): F = |J|
2×A

and L = 1. The total number

of steps is N = 2×|J|
(F+L) and the chunk decrement is

D = (F −L)/(N − 1). The size of a chunk in this case
is Ci = Ak × (F − D × (Sk−1 + (Ak − 1)/2)), where:
Sk−1 = A1 + .. + Ak−1. When all PEs are dedicated
to a single process then Ak = Vk. Also, when all the
PEs have the same speed then Vk = 1 and the tasks
assigned in DTSS are the same as in TSS. The impor-
tant difference between DTSS and TSS is that in DTSS

u1

u2

current
slave

H H

Vi+1

Vi

Vi-1

C
S
S

SP1

H

previous
slave

M Synchronization points

V1

VN

Ci+1

Ci

Ci-1

... ...

...

...

H

T
S
S

SP2 SP3 SPj

D
T
S
S

Figure 3. Chunks are formed along u2 and SP are

introduced along u1

the next chunk is allocated according to a PE’s avail-
able computing power, but in TSS all PEs are simply
treated in the same way. Thus, faster PEs get more
iterations than slower ones in DTSS. Table 3.2 shows
the chunk sizes computed with CSS, TSS and DTSS for
an index space size of 5000 × 10000 and and m = 10
slaves. CSS and TSS obtain the same chunk sizes in
dedicated clusters as in non-dedicated clusters; DTSS
adapts the chunk size to match the different compu-
tational powers of slaves. These algorithms have been
evaluated for parallel loops and it has been established
that the DTSS algorithm improves on the TSS, which
in turn outperforms CSS [6].

Table 1. Sample chunk sizes given for |J | =
5000 × 10000 and m = 10

Algorithm Chunk sizes

CSS 300 300 300 300 300 300 300 300 300
300 300 300 300 300 300 300 200

TSS 277 270 263 256 249 242 235 228 221
214 207 200 193 186 179 172 165 158
151 144 137 130 123 116 109 102 73

DTSS 392 253 368 237 344 221 108 211 103
(dedicated) 300 192 276 176 176 252 160 77 149

72 207 130 183 114 159 98 46 87 41 44

DTSS 263 383 369 355 229 112 219 107 209
(non-dedicated) 203 293 279 265 169 33 96 46 89 86

83 80 77 74 24 69 66 31 59 56
53 50 47 44 20 39 20 33 30 27
24 21 20 20 20 20 20 20 20 20 8

For the sake of simplicity we consider a 2D depen-
dence loop with U = (u1, u2), and u1 ≥ u2. The index
space of this loop is divided into chunks along u2 (using

one of the three algorithms). Along u1 synchronization
points are introduced at equal intervals. The interval
length (H), chosen by the programmer, determines the
number of synchronization points.

3.3. The DMPS(x) algorithm

The following notation is essential for the inter-slave
communication scheme: the master always names the
slave assigned with the latest chunk (Ci) as current
and the slave assigned with the chunk Ci−1 as previ-
ous. Whenever a new chunk is computed and assigned,
the current slave becomes the (new) previous slave,
whereas the new slave is named (new) current. Fig. 4
below shows the state diagram related to the (new)
current – (new) previous slaves. The state transitions
are triggered by new requests for chunks to the master.

Slave Pk-1: previous
Slave Pk: current

Slave Pk+1: undefined

Slave Pk-1: (former) previous
Slave Pk: (new) previous
Slave Pk+1: (new) current

old state for
scheduling SCi,j

new state for
scheduling SCi+1,j

Slave Pk-1: (former) previous
Slave Pk: (new) current
Slave Pk+1: undefined

Slave Pk finished
chunk Ci and Pk+1

is still undefined

Slave Pk+1 requests
new chunk from

master

Figure 4. State diagram of the slaves

The DMPS(x) algorithm is described in the follow-
ing pseudocode:

INPUT (a) An n-dimensional dependence nested
loop, with terminal point U.

(b) The choice of algorithm CSS, TSS or DTSS.

(c) If CSS is chosen, then chunk size Ci.

(d) The synchronization interval H .

(e) The number of slaves m; in case of DTSS the
virtual power of every slave.

Master:

Initialization: (a) Register slaves. In case of
DTSS, slaves report their ACP .

(b) Calculate F, L, N, D for TSS and DTSS. For
CSS use the given Ci.

1. While there are unassigned iterations do:
(a) If a request arrives, put it in the queue.

(b) Pick a request from the queue, and com-
pute the next chunk using CSS, TSS or
DTSS.

(c) Update the current and previous slave ids.

(d) Send the id of the current slave to the
previous one.

Slave Pk:

Initialization: (a) Register with the master; in case
of DTSS report ACPk.

(b) Compute M according to the given H .

1. Send request to the master.

2. Wait for reply; if received chunk from master
goto step 3 else goto OUTPUT.

3. While the next synchronization point is not
reached compute chunk i.

4. If id of the send-to slave is known goto step
5
else goto step 6.

5. Send computed data to send-to slave.

6. Receive data from the receive-from slave and
goto step 3.

OUTPUT Master: If there are no more chunks to
be assigned to slaves, terminate.

Slave Pk: If no more tasks come from mas-
ter, terminate.

Remark: (1) Note that the synchronization intervals
are the same for all chunks. For remarks (2)–(5) below
refer to Fig. 4 for an illustration. (2) Upon completion
of SCi,0, slave Pk requests from the master the iden-
tity of the send-to slave. If no reply is received, then
Pk is still the current slave, and it proceeds to receive
data from the previous slave Pk−1, and then it begins
SCi,1. (3) Slave Pk keeps requesting the identity of the
send-to slave, at the end of every SCi,j until either a
(new) current slave has been appointed by the master
or Pk has finished chunk i. (4) If slave Pk has already
executed SCi,0, . . . , SCi,j by the time it is informed by
the master about the identity of the send-to slave, it
sends all computed data from SCi,0, . . . , Si,j . (5) If no
send-to slave has been appointed by the time slave Pk

finishes chunk i, then all computed data is kept in the
local memory of slave Pk. Then Pk makes a new re-
quest to the master to become the (new) current slave.

4. Implementation and Test Results

Our implementation relies on the distributed pro-
gramming framework offered by the mpich.1.2.6 im-
plementation of the Message Passing Interface (MPI)
[12], and the 1.2.6 version of the gcc compiler.

We used a heterogeneous distributed system that
consists of 10 computers, one of them being the mas-
ter. More precisely we used: (a) 4 Intel Pentiums III
1266MHz with 1GB RAM (called zealots), assumed to
have V Pk = 1.5 (one of these was chosen to be the mas-
ter); and (b) 6 Intel Pentiums III 500MHz with 512MB
RAM (called kids), assumed to have V Pk = 0.5. The
virtual power for each machine type was determined
as a ratio of processing times established by timing a
test program on each machine type. The machines are
interconnected by a Fast Ethernet, with a bandwidth
of 100 Mbits/sec.

We present two cases, dedicated and non-dedicated.
In the first case, processors are dedicated to running
the program and no other loads are interposed during
the execution. We take measurements with up to 9
slaves. We use one of the fast machines as a master. In
the second case, at the beginning of the execution of
the program, we start a resource expensive process on
some of the slaves. Due to the fact that scheduling al-
gorithms for loops with uniform dependencies are usu-
ally static and no other dynamic algorithms have been
reported so far, we cannot compare with similar al-
gorithms. We ran three series of experiments for the
dedicated and non-dedicated case: (1) DMPS(CSS),
(2) DMPS(TSS), and (3) DMPS(DTSS) and com-
pare the results for two real-life case studies. We ran
the above series for m = 3, 4, 5, 6, 7, 8, 9 slaves in or-
der to compute the speedup. We compute the speedup
according to the following equation:

Sp =
min{TP1

, TP2
, . . . , TPm

}

TPAR

(1)

where TPi
is the serial execution time on slave Pi, 1 ≤

i ≤ m, and TPAR is the parallel execution time (on m
slaves). Note that in the plotting of Sp, we use V P
instead of m on the x-axis.

4.1. Test Problems

We used the heat equation computation for a do-
main of 5000 × 10000 points, and the Floyd-Steinberg
error diffusion computation for a image of 10000×20000
pixels, on a system consisting of 9 heterogeneous slave
machines and one master, with the following configu-
ration: zealot1 (master), zealot2, kid1, zealot3, kid2,

zealot4, kid3, kid4, kid5, kid6. For instance, when us-
ing 6 slaves, the machines used are: zealot1 (master),
zealot2, kid1, zealot3, kid2, zealot4, kid3. The slaves in
italics are the ones loaded in the non-dedicated case.
As mentioned previously, by starting a resource expen-
sive process on these slaves, their ACP is halved.

4.2. Heat Equation

The heat equation computation is one of the most
widely used case studies in the literature, and its
loop body is similar to the majority of the numerical
methods used for solving partial differential equations.
It computes the temperature in each pixel of its
domain based on two values of the current time step
(A[i-1][j], A[i][j-1]) and two values from the
previous time step (A’[i+1][j], A’[i][j+1]), over
a number of loop time steps. The dependence vectors

are: �d1 = (1, 0) and �d2 = (0, 1). The pseudocode is
given below:

/* Heat equation */

for (l=1; l<loop; l++) {

for (i=1; i<width; i++){

for (j=1; j<height; j++){

A[i][j] = 1/4*(A[i-1][j] + A[i][j-1]

+ A’[i+1][j] + A’[i][j+1]);

}

}

}

An illustration of the dependence patterns is given in
Fig. 5. The iterations in a chunk are executed in the or-
der imposed by the dependencies of the heat equation.
Whenever a synchronization point is reached, data is
exchanged between the processors executing neighbor-
ing chunks.

Table 2 shows comparative results we obtained for
the heat equation, for the three series of experiments:
DMPS(CSS), DMPS(TSS) and DMPS(DTSS),
on a dedicated and a non-dedicated heterogeneous clus-
ter. The values represent the parallel times (in seconds)
for different number of slaves. Three synchronization
intervals were chosen, and the total ACP ranged ac-
cording to the number of slaves from 3.5–7.5.

Fig. 6 presents the speedups for the heat equation
on an index space of 5000×10000 points, for one time
step (i.e. loop=1), for chunks sizes computed with
CSS, TSS and DTSS and synchronization interval 150,
on a dedicated cluster and a non-dedicated cluster.

4.3. Floyd-Steinberg

The Floyd-Steinberg computation [17] is an image
processing algorithm used for the error-diffusion dither-

u2

H
u1... ...

SPj

Vi+1

Vi

Vi-1

...

...

Ci+1

Ci

Ci-1

HEAT EQUATION

SPj+1

H
u1

u2

... ...

SPj

Ci+1

Ci

Ci-1

...

...

Vi+1

Vi

Vi-1

FLOYD-STEINBERG

SPj+1

Figure 5. The dependence patterns for heat
equation and Floyd-Steinberg.

ing of a width by height grayscale image. The bound-
ary conditions are ignored. The dependencies are:
�d1 = (1, 0), �d2 = (1, 1), �d3 = (0, 1) and �d4 = (1,−1)
The pseudocode is given below:

/* Floyd-Steinberg */ for (i=1; i<width; i++){

for (j=1; j<height; j++){

I[i][j] = trunc(J[i][j]) + 0.5;

err = J[i][j] - I[i][j]*255;

J[i-1][j] += err*(7/16);

J[i-1][j-1] += err*(3/16);

J[i][j-1] += err*(5/16);

J[i-1][j+1] += err*(1/16);

}

Table 2. Parallel execution times (sec) for
heat equation

Heat Equation, non-dedicated heterogeneous cluster

0

1

2

3

4

3.5 4 5.5 6 6.5 7 7.5

Virtual powers

S
p

ee
d

u
p

DMPS(CS) DMPS(TSS) DMPS(DTSS)

Figure 6. Speedups for the heat equation

}

An illustration of the dependence patterns is given

in Fig. 5. The iterations in a chunk are executed in
the order imposed by the dependencies of the Floyd-
Steinberg algorithm. Whenever a synchronization
point is reached, data is exchanged between the pro-
cessors executing neighboring chunks.

Comparative results for the Floyd-Steinberg case
study on a dedicated and a non-dedicated heteroge-
neous cluster are given in Table 3. The values repre-
sent the parallel times (in seconds) for different number
of slaves. Three synchronization intervals were chosen,
and the total ACP ranged according to the number of
slaves from 3.5–7.5.

Table 3. Parallel execution times (sec) for
Floyd-Steinberg

Fig. 7 presents the speedup results of the Floyd-
Steinberg algorithm, for the three variations. The size
of the index space was 10000×20000. Chunks sizes
were computed with CSS, TSS and DTSS and syn-
chronization interval chosen to be 100, on a dedicated
cluster and a non-dedicated cluster.

4.4. Interpretation of the results

As expected, the results for the dedicated clus-
ter are much better for both case studies. In par-
ticular, DMPS(TSS) seems to perform slightly bet-
ter than DMPS(CSS). This was expected since
TSS provides better load balancing than CSS for sim-

Floyd-Steinberg, dedicated heterogeneous cluster

0

1

2

3

4

5

6

7

3.5 4 5.5 6 6.5 7 7.5

Virtual powers

S
p

ee
d

u
p

DMPS(CS) DMPS(TSS) DMPS(DTSS)

Floyd-Steinberg, non-dedicated heterogeneous cluster

0

1

2

3

4

5

6

3.5 4 5.5 6 6.5 7 7.5

Virtual power

S
p

ee
d

u
p

DMPS(CS) DMPS(TSS) DMPS(DTSS)

Figure 7. Speedups for Floyd-Steinberg

ple parallel loops without dependencies. In addition,
DMPS(DTSS) outperforms both algorithms. This is
because it explicitly accounts for the heterogeneity of
the slaves. For the non-dedicated case, one can see that
DMPS(CSS) and DMPS(TSS) cannot handle work-
load variations as effectively as DMPS(DTSS). This
is shown in Fig. 6. The speedup for DMPS(CSS) and
DMPS(TSS) decreases as loaded slaves are added,
whereas for DMPS(DTSS) it increases even when
slaves are loaded. In the non-dedicated approach, our
choice was to load the slow processors, so as to incur
large differences between the processing power of the
two machine types. Even in this case, DMPS(DTSS)
achieved good results.

The ratio commputation
communication

along with the selection of
the synchronization interval play a key role in the over-
all performance of our scheme. A rule of thumb is to
maintain this ratio ≥ 1 at all times. The choice of the
(fixed) synchronization interval has a crucial impact
on the performance, and it is dependent on the con-
crete problem. H must be chosen so as to ensure the
ratio commputation

communication
is maintained above 1, even when

Vi decreases at every scheduling step. Assuming that
for a certain H , commputation

communication
≥ 1 is satisfied, small

changes in the value of H do not significantly alter
the overall performance. Notice that the best synchro-
nization interval for the heat equation was H = 150,
whereas for the Floyd-Steinberg better results were ob-
tained for H = 100. The performance differences for

interval sizes close to the ones depicted in Fig. 6 and 7
are small.

5. Conclusion

In this paper we presented a novel dynamic schedul-
ing scheme for dependence loops on heterogeneous clus-
ters. We tested three variations of our method on
a heterogeneous cluster, both in dedicated and non-
dedicated mode. The main contribution of our work
is extending three previous schemes by taking into ac-
count the existing iteration dependencies of the prob-
lem, and hence providing a scheme for inter-slave com-
munication. We tested our method on two real-life
applications: heat equation and Floyd-Steinberg algo-
rithm. The results demonstrate that our new scheme is
effective for distributed applications with dependence
loops.

Future work will focus on establishing a model
for predicting the optimal synchronization interval
(H) such that communication is minimized for every
problem. Also we intend to extend other well known
dynamic algorithms to be applied to dependence
loops, and incorporated in an automatic parallel code
generation tool for heterogeneous systems.

Acknowledgments

The project is partially co-funded by the European
Social Fund (75%) and National Resources (25%) -
Operational Program for Educational and Vocational
Training II (EPEAEK II) and particularly the Pro-
gram PYTHAGORAS. This work of F. Ciorba was
supported by the Greek State Scholarships Founda-
tion. This work of Dr. Chronopoulos was supported
in part by National Science Foundation under grant
CCR-0312323.

References

[1] I. Banicescu and Z. Liu. Adaptive Factoring: A
Dynamic Scheduling Method Tuned to the Rate of
Weight Changes, Proc. of the High Performance
Computing Symposium 2000, Washington, USA,
2000, pp. 122–129.

[2] I. Banicescu, V. Velusamy and J. Devaprasad. On
the Scalability of Dynamic Scheduling Scientific
Applications with Adaptive Weighted Factoring,
Cluster Computing 6, 2003, pp. 215–226.

[3] J. Barbosa, J. Tavares and A. J. Padilha. Linear
Algebra Algorithms in a Heterogeneous Cluster of

Personal Computers, Proc. of the 9th Heteroge-
neous Computing Workshop (HCW 2000), Can-
cun, Mexico, 2000, pp. 147–159.

[4] D.J. Hancock, J.M. Bull, R.W. Ford and T.L.
Freeman. An Investigation of Feedback Guided
Dynamic Scheduling of Nested Loops Proc. of the
IEEE International Workshops on Parallel Pro-
cessing, 21-24 Aug. 2000, ed. P. Sadayappan, pp.
315–321.

[5] M. Cierniak, W. Li and M. J. Zaki. Loop Schedul-
ing for Heterogeneity, Proc. of the 4th IEEE Intl.
Symp. on High Performance Distributed Comput-
ing, Washington, DC, 1995, pp. 78–85.

[6] A. T. Chronopoulos, R. Andonie, M. Benche and
D. Grosu. A Class of Distributed Self-Scheduling
Schemes for Heterogeneous Clusters, Proc. of the
3rd IEEE International Conference on Cluster
Computing (CLUSTER 2001), Newport Beach,
CA USA, 2001.

[7] Y.W. Fann, C.T. Yang, S.S. Tseng and C.J. Tsai.
An Intelligent Parallel Loop Scheduling for Paral-
lelizing Compilers, Journal of Information Science
and Engineering, 16:69–200, 2000.

[8] G. Goumas, N. Drosinos, M. Athanasaki and N.
Koziris. Compiling Tiled Iteration Spaces for Clus-
ters, Proc. of the 4th IEEE International Con-
ference on Cluster Computing (CLUSTER 2002),
Chicago, IL USA, 2002, pp. 360–369.

[9] S.F. Hummel, J. Schmidt, R.N. Uma and J.
Wein. Load-Sharing in Heterogeneous Systems via
Weighted Factoring, Proc. of 8th Annual Symp.
on Parallel Algorithms and Architectures, Padua,
Italy, 1996, pp. 318–328.

[10] T.H. Kim and J.M. Purtilo. Load Balancing for
Parallel Loops in Workstation Clusters, Proc. of
Intl. Conference on Parallel Processing, Bloom-
ingdale, IL USA, 3:182–190, 1996.

[11] E.P. Markatos and T.J. LeBlanc. Using Processor
Affinity in Loop Scheduling on Shared-Memory
Multiprocessors, IEEE Transactions on Parallel
and Distributed systems, 5(4):379–400, April 1994.

[12] Peter Pachecho. Parallel Programming with MPI,
Morgan Kauffman 1997.

[13] T.H. Tzen and L.M. Ni. Trapezoid Self-
Scheduling: A Practical Scheduling Scheme for
Parallel Compilers, IEEE Trans. on Parallel and
Distributed Systems, 4(1):87–98, Jan. 1993.

[14] M. Wolfe. High Performance Compilers for Paral-
lel Computing, Addison-Wesley Publication Co.,
1996.

[15] Y. Yan, C. Jin and X. Zhang. Adaptively Schedul-
ing Parallel Loops in Distributed Shared-Memory
Systems, IEEE Trans. on Parallel and Distributed
Systems, 8(1):70–81, Jan. 1997.

[16] C.T. Yang and S.C. Chang. A Parallel Loop Self-
Scheduling on Extremely Heterogeneous PC Clus-
ters, Proc. of Intl Conf. on Computational Sci-
ence, Melbourne, Australia and St. Petersburg,
Russia, 2003, pp. 1079–1088.

[17] R.W. Floyd and L. Steinberg. An adaptive algo-
rithm for spatial grey scale. Proc. Soc. Inf. Dis-
play, 17:75-77, 1976.

[18] N. Manjikian and T.S. Abdelrahman. Exploit-
ing Wavefront Parallelism on Large-Scale Shared-
Memory Multiprocessors. IEEE Trans. on Parallel
and Distributed Systems, 12(3):259–271, 2001.

[19] T. Andronikos, F.M. Ciorba, P. Theodoropou-
los, D. Kamenopoulos and G. Papakonstantinou.
Code Generation for General Loops Using Meth-
ods from Computational Geometry. Proc. of the
IASTED Parallel and Distributed Computing and
Systems Conference (PCDS 2004), Cambrige, MA
USA, November 9-11, 2004, pp. 348–353.

[20] F.M. Ciorba, T. Andronikos, I. Drositis and G.
Papakonstantinou. Reducing Communication via
Chain Pattern Scheduling. In Proc. of the 4th
IEEE International Symposium on Network Com-
puting and Applications (IEEE NCA05), Cam-
bridge, MA USA, July 27-29 2005, pp. 187-193.

[21] M. Gonzalez, E. Ayugade, X. Martorell and J.
Labarta. Defining and Supporting Pipelined Ex-
ecutions in OpenMP. Proc. of the Int’l Workshop
on OpenMP Applications and Tools: OpenMP
Shared Memory Parallel Programming (WOM-
PAT 2001), 2001, pp. 155–169.

[22] M. Gonzalez, E. Ayugade, X. Martorell and
J. Labarta. Exploting Pipelined Executions in
OpenMP. Proc. of the Int’l Conference on Parallel
Processing (ICPP 2003), 2003, pp. 153–160.

[23] C.P. Kruskal and A. Weiss. Allocating indepen-
dent subtasks on parallel processors. IEEE Trans.
on Software Engineering, 11(10):1001–1016, 1985.

[24] C.D. Polychronopoulos and D.J. Kuck. Guided
self-scheduling: A practical self-scheduling scheme

for parallel supercomputers. IEEE Trans. on
Computer, C-36(12): 1425–1439, 1987.

[25] F. Rastello, A. Rao and S. Pande. Optimal Task
Scheduling to minimize Inter-Tile Latencies. Par-
allel Computing, 29(2): 209–239, 2003.

[26] J. Xue. Loop Tiling for Parallelism. Kluwer Aca-
demic Publishers, August 2000 (280 pages).

[27] P. Boulet, J. Dongarra, F. Rastello, Y. Robert and
F. Vivien. Algorithmic Issues on Heterogeneous
Computing Platforms. Parallel Processing Letters,
9(2): 197–213, 1998.

[28] T. Thanalapati and S. Dandamudi. An Effi-
cient Adaptive Scheduling Scheme for Distributed
Memory Multicomputers. IEEE Transactions on
Parallel and Distributed Systems, 12(7): 758–768,
2001.

[29] Y.K. Kwok and I. Ahmad. Static Scheduling Al-
gorithms for Allocating Directed Task Graphs to
Multiprocessors. ACM Computing Surveys, 31(4):
406–471, 1999.

[30] G. Goumas, A. Sotiropoulos and N. Koziris.
Minimizing Completion Time for Loop Tiling
with Computation and Communication Overlap-
ping. Proc. of the 2001 International Parallel and
Distributed Processing Symposium (IPDPS2001),
IEEE Press, San Francisco, California, April 2001.

[31] I. Riakiotakis and P. Tsanakas. Dynamic Schedul-
ing of Nested Loops with Uniform Dependencies in
Heterogeneous Networks of Workstations. Proc. of
the 8th International Symposium on Parallel Ar-
chitectures, Algorithms and Networks (ISPAN’05)
Las Vegas, NV, USA, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

