
An Adaptive Stabilization Framework for Distributed Hash Tables

Gabriel Ghinita, Yong Meng Teo

Department of Computer Science
National University of Singapore

3 Science Drive 2, Singapore 117543
{ghinitag,teoym}@comp.nus.edu.sg

Abstract

Distributed Hash Tables (DHT) algorithms obtain
good lookup performance bounds by using determinis-
tic rules to organize peer nodes into an overlay net-
work. To preserve the invariants of the overlay net-
work, DHTs use stabilization procedures that reorga-
nize the topology graph when participating nodes join
or fail. Most DHTs use periodic stabilization, in which
peers perform stabilization at fixed intervals of time,
disregarding the rate of change in overlay topology; this
may lead to poor performance and large stabilization-
induced communication overhead. We propose a novel
adaptive stabilization framework that takes into consid-
eration the continuous evolution in network conditions.
Each peer collects statistical data about the network and
dynamically adjusts its stabilization rate based on the
analysis of the data. The objective of our scheme is to
maintain nominal network performance and to mini-
mize the communication overhead of stabilization.

1 Introduction

Distributed Hash Tables (DHT) are structured over-
lay networks that support large-scale, highly-dynamic
distributed computing infrastructures. The paradigm
underlying DHT is the virtualization of identifiers of
both nodes (peers) and stored items within a single,
sparsely populated identifier space [6]. Virtualization is
performed using consistent hashing functions [8], such
as SHA-1 [2], that achieve implicit load-balancing by
uniformly distributing nodes and items over the iden-
tifier space. DHT nodes form a distributed data struc-
ture with a simple interface consisting of two prim-
itive operations: Put(key,value) and Get(key) [6].
Higher-level services such as distributed storage [5],
multicast [14] and publish-subscribe [4] are developed
on top of these primitive operations.

At the heart of the Get/Put primitives is a lookup
mechanism that finds the destination node correspond-
ing to the key argument. Since every DHT Get/Put
translates into a key lookup, the efficiency of the lookup
algorithm is crucial to the DHT performance.

Multiple DHT protocols have been proposed [3, 13,
16, 17, 18], and they all organize peer routing tables
according to deterministic rules. These rules have the
form of routing table constraints, specified as a rela-
tion between the identifier of node n and the identifiers
of other peers stored by n in its routing table. Most
DHT protocols [3, 16, 17, 18] achieve an upper bound of
O(logN) hops lookup performance with O(logN) rout-
ing state at each peer, where N is the population size of
the network. The logarithmic lookup bound is achieved
by using a protocol-specific routing technique, in most
cases a variation of hypercube routing. The process
of searching for the correct node to store in a routing
table entry is denoted by pinning.

The topology of DHT overlays changes frequently
due to node join, leave and failure events. The process
of continuous change in network topology is generically
referred to as churn [10]. Churn can cause data loss,
inconsistent views of data distribution at different peers
and incorrectness of routing tables. In this paper, we
only consider the effect of churn on the correctness and
efficiency of overlay routing. We emphasize that rout-
ing underlies every DHT operation, and thus incorrect
routing will severely impact DHT functionality.

There are two undesirable effects of churn on DHT
routing: failed lookups and increased lookup path length.
A lookup failure occurs in one of the following cases:
1) a lookup request encounters a failed node along its
search path, and 2) a lookup request is incorrectly re-
solved to a node that is not the holder of the searched
key. The upper bound on lookup path length holds pro-
vided that the set of protocol-specific routing table con-
straints are satisfied. Since changes in overlay topol-

1-4244-0054-6/06/$20.00 ©2006 IEEE

ogy may result in the violation of these constraints, the
path length of a lookup message may increase, possibly
deteriorating to O(N).

To counter the undesirable effects of churn on rout-
ing, DHTs employ the use of overlay graph mainte-
nance procedures - stabilization routines. The objec-
tive of stabilization is to keep the routing informa-
tion of each overlay node consistent with the perma-
nently changing overlay topology. Each peer verifies if
the nodes stored in its routing table are alive, and if
its routing table invariants are satisfied. Currently, the
most widely used stabilization technique is periodic sta-
bilization, employed by DHTs such as CAN [13], Chord
[17], Pastry [16], etc. With periodic stabilization, each
node invokes corrective routines at fixed intervals of
time. At each invocation, a number of messages pro-
portional to the size of the node’s routing table may be
generated.

Periodic stabilization does not take into considera-
tion the degree of dynamism of the overlay topology,
but instead uses a fixed stabilization timer value, inde-
pendent of network conditions. As a measure of topol-
ogy dynamism, we use the churn rate [10, 11], de-
fined as the cumulative rate of node join and failure
events that occur in the network per unit time, and
similar to other stabilization-related research [11, 12],
we make no distinction between node failure and grace-
ful departure. If periodic stabilization execution rate
is high, changes in the system can be quickly detected,
but at the disadvantage of increased communication
overhead. On the other hand, if the stabilization rate
is low and the churn rate is high, routing tables become
inaccurate and the DHT performance deteriorates.

The understanding of stabilization in DHT has been
an active research area in recent years. The concept of
churn was first introduced in [11] as the process of con-
tinuous change in network topology, and lower bounds
were formulated on the maintenance rate required to
avoid network disconnection. In [10], the authors in-
troduce a methodology for evaluating the performance
and cost of stabilization, and present a comparative
performance analysis of several DHT protocols. In [9],
a theoretical study of churn is presented, based on a
master-equation approach inspired from statistical me-
chanics. In [15], the authors study the churn patterns
in deployed file-sharing networks and explore several
design tradeoffs that increase the ability of DHT sys-
tems to handle high churn rates.

To alleviate the shortcomings of periodic stabiliza-
tion, alternative stabilization techniques have been pro-
posed. Correction-on-use/correction-on-change, used
by DKS [3], employs a stabilization protocol that is em-
bedded in the DHT lookup protocol, and uses lookup

messages to correct routing state. It achieves a good
performance-cost compromise, but due to its design, its
applicability is restricted to the DKS DHT. The neces-
sity to develop adaptive stabilization techniques that
can dynamically respond to varying network conditions
has been acknowledged by the research community [6].
However, steps taken so far in this direction [12] have
a narrow scope and lack a systematic approach.

In this paper, we present a framework for adaptive
stabilization that can be used to instantiate adaptive
stabilization techniques for different DHT protocols.
To prove the effectiveness of our method, we show how
it can be applied to a particular DHT protocol, namely
Chord [17], and highlight its advantages over periodic
stabilization in terms of both lookup performance and
communication cost.

The rest of the paper is organized as follows: in Sec-
tion 2, we discuss in more detail how periodic stabiliza-
tion works and we analyze its limitations. In Section
3, we introduce our adaptive stabilization framework
for DHT infrastructures. Section 4 presents an instan-
tiation of our framework for Chord DHT. In Section
5, we present a comparative performance analysis of
our adaptive stabilization scheme against periodic sta-
bilization. Our concluding remarks are in Section 6.

2 Limitations of Periodic Stabilization

Studies of real P2P system traces [7] show that churn
rate varies over time, with occasional peaks. We con-
ducted a set of simulation experiments to capture the
behavior of periodic stabilization under diverse net-
work conditions. We chose Chord DHT for our study
and used a modified version of the p2psim [1] P2P pro-
tocol simulation tool. In our simulations, we assume
a reliable communication network, in order to isolate
the effect of churn on routing. We distinguish between
lookup operations generated as a result of user key
lookup requests, and lookups performed by the stabi-
lization routines in order to correct routing tables. We
use the following performance evaluation metrics:
• lookup failure: the percentage of user-generated

key lookup operations that fail or return an incor-
rect result

• average lookup path length: the average hop
count of successful user-generated key lookup op-
erations

• communication overhead: the percentage of
stabilization-generated messages over the user-
generated messages (user-generated lookups plus
node join messages). Each hop along the path of
a lookup (an end-to-end message at the underly-

ing communication network layer) is counted as a
separate message.

Chord uses a one-dimensional, m-bit circular iden-
tifier space - the Chord ring. An item with key key
is stored at succ(key) - the node that immediately fol-
lows key on the Chord ring. We denote by n.id the
identifier of node n. Each node n maintains a routing
table composed of three sections [17]:
• one successor and one predecessor pointer that

point to the node that immediately follows and
the node that precedes n on the identifier ring,
respectively

• a successor list with pointers to the first r consec-
utive successors of n on the Chord ring

• a finger table with m pointers to nodes that
are situated at “power-of-2” distances from n:
F = {fi|fi = succ(n.id + 2i), i = 0, 1, ..,m − 1}.

Chord uses a different stabilization timer for each
section of the routing table, in order to factor the rela-
tive importance of different pointers in the lookup pro-
cess [10]. We denote the stabilization rate in Chord
with a s/sl/f tuple, where each field represents the
time interval between two consecutive stabilization in-
vocations for each routing table section, respectively:
a 1/5/10 stabilization rate, for instance, means that
the successor and predecessor are checked every sec-
ond, the successor list every 5 seconds, and the nodes
in the finger table every 10 seconds.

We simulated a set of “half-life” scenarios [11] that
are commonly-used to study the behavior of DHT un-
der churn: a network that doubles in size, and a net-
work that halves in size. We varied both stabilization
rate and churn rate to capture their relative effect on
both lookup failure and communication overhead. We
used three different stabilization rates, S1 = 1/3/10,
S2 = 3/5/20 and S3 = 5/10/30 corresponding to high,
moderate and low stabilization rate, respectively. For
the network doubling case, we started with a 500 node
network and scheduled 500 node join events, according
to a Poisson process with the mean join rate of 1/sec,
2/sec and 5/sec, corresponding to low, moderate and
high churn rates, respectively. For the network halving
case, we started with a 1000 node overlay and scheduled
500 node failure events, according to a Poisson process
with the same average rates. We considered a user-
generated lookup workload of 0.33 lookups/sec/node.
To isolate the effect of incorrect routing on lookup
performance, we only allow one attempt for each key
lookup: the lookup initiator node does not perform a
lookup retry in case of a failed lookup.

Table 1 summarizes our results. We focus on the
network halving experiments, which have a more dis-
ruptive effect on lookup failure. For the low churn

Churn
Rate

Stab.
Rate

Lookup Failure % Comm. Overhead %

Double Halve Double Halve

1/sec
S1 0.5 3.2 421 457
S2 1.1 4.9 211 203
S3 1.7 6.5 135 139

2/sec
S1 0.8 5.1 414 462
S2 1.9 9.2 208 205
S3 2.8 12.3 143 151

5/sec
S1 1.8 8.7 407 445
S2 2.7 12.7 218 209
S3 3.6 23.7 154 154

Table 1. Periodic Stabilization

rate of 1/sec, S1 achieves 3.2% lookup failure, at the
expense of 457% communication overhead; translated
into total number of messages, this corresponds to a to-
tal of 1.3 million stabilization-generated messages, over
a period of only 500 seconds. Even at this high stabi-
lization rate, an increase in churn rate to 5/sec can
cause considerable lookup failure, up to 8.7%. For the
low stabilization rate S3, the communication overhead
decreases to around 150%, but at the expense of 6.5%
lookup failure for the low 1/sec churn rate, and 23.7%
lookup failure for the high 5/sec churn rate. The mea-
sured average lookup path length for successful lookup
operations does not exhibit a significant increase, ris-
ing to at most 0.58 log N , compared to the ideal value
of 0.5 log N [17]. Our conclusion is that the most im-
pairing consequence of churn is lookup failure; those
lookup operations that succeed, do so in a number of
hops close to the ideal value, due to the uniform dis-
tribution of node identifiers on the Chord ring.

We conclude from our experiments that it is not
possible to achieve both low lookup failure and low
communication overhead with a fixed stabilization rate.
To obtain low lookup failure at high churn rates, a
high stabilization rate must be used, but at the cost of
high communication overhead incurred during periods
of low churn rate.

3 Adaptive Stabilization Framework

We propose an adaptive stabilization framework in
which peers estimate the overlay topology dynamism,
build a stochastic network model and use statistical
analysis to adjust stabilization rate, such that QoS re-
quirements are satisfied. The two components of churn
are treated independently: node join is modeled as a
Poisson process with rate λ, while node failure is mod-
eled by an exponential distribution with rate µ, i.e.
expected node lifetime is 1/µ. The parameters λ and
µ are computed dynamically, based on estimations of
network conditions. Each peer n calculates the proba-
bility of its routing table to become incorrect, and exe-

Figure 1. Adaptive Stabilization Framework

cutes the stabilization procedure when this probability
exceeds predefined thresholds.

A routing table entry can become incorrect in two
situations: 1) the node stored in that entry failed and
2) the node stored in that entry no longer fulfills a
constraint imposed by the DHT protocol, due to the
joining of new nodes. We identify two distinct oper-
ations required to correct these two situations: live-
ness check and accuracy check. A liveness check op-
eration (consisting of a ping request-reply) has a cost
of O(1) hops, while an accuracy check (consisting of a
key lookup) usually requires O(logN) hops. We split
DHT stabilization into two distinct processes, liveness
check and accuracy check, with the advantage that the
effects of node join and failure are dealt with sepa-
rately. This way, the network can better adapt to sce-
narios with different compositions of join and failure
workloads. Moreover, the cost of stabilization can be
more effectively controlled, due to the considerable dif-
ference in cost between liveness and accuracy checks.
The stabilization decision is taken separately for each
single pointer, as different pointers may have different
weights in the lookup forwarding process.

An important advantage is that our adaptive sta-
bilization framework is general, and can be used to
instantiate stabilization techniques for different DHT
protocols. In section 4, we illustrate how an instantia-
tion of our framework can be obtained for Chord.

3.1 Adaptive Stabilization Algorithm

The functionality of our framework is summarized
in Figure 1: using an estimation of dynamic network
parameters, such as churn rate and network size, and
a target QoS requirement, such as maximum allowed
lookup failure, a peer node locally performs the live-
ness check analysis and accuracy check analysis for
each routing pointer p it keeps. The analysis yields
two stabilization parameters:

• P p
tout - the probability of forwarding a lookup mes-

sage to a dead node pointed by p, and

• P p
inacc - the probability that the peer pointed to

by p no longer abides protocol-specific constraints

procedure Adaptive Stabilization
routine stabilize

for each p in routing table
estimate probability P p

inacc ;
if (P p

inacc > P Thr
inacc)

re-pin p ;
else

estimate probability P p
tout ;

if (P p
tout > P Thr

tout)
ping p ;

end routine
begin

register notifier(TimerEvent, stabilize) ;
register notifier(ExternalEvent, stabilize) ;

end
end procedure

Figure 2. Adaptive Stabilization Pseudocode

If these parameters reach certain thresholds, pointer p
is refreshed (ping), or respectively re-pinned.

The algorithm executed by each peer comprises of
both an asynchronous and a synchronous component,
with actions triggered both by external events and by
an internal clock. A message received from another
peer, or the detection of the failure of another node
represent examples of an asynchronous ExternalEvent.
Such an event can determine node n to update the
statistics it keeps about the network, to recompute the
stabilization parameters by using liveness and accuracy
analysis, and to re-evaluate the stabilization decision.

The stabilization parameters P p
tout and P p

inacc are
dependent of the age of pointer p, and therefore their
values can change even during periods when no ex-
ternal event occurs. An internal clock generates a
TimerEvent that triggers the re-calculation of Ptout

and Pinacc. Note that unlike in the case of periodic
stabilization, where a timer expiry will generate uncon-
ditional network traffic, in the case of adaptive stabi-
lization the timer is used only to update local state, by
local computation, and no network traffic is generated
unless a change in the estimation of network conditions
dictates it. Computational cost is far less expensive
than communication cost, and thus the adaptive sta-
bilization timer can be set as fine-grained as desired,
without paying a penalty in communication overhead.

Figure 2 shows the pseudocode of the algorithm ex-
ecuted by each peer. The stabilize routine, executed
each time an event occurs, computes network statis-
tics and determines the P p

tout and P p
inacc parameters

for each routing table entry. If the values of P p
inacc

and P p
tout exceed thresholds PThr

inacc and PThr
tout , pointer

p is re-pinned or refreshed, respectively. In the rest
of this section, we describe how P p

tout and P p
inacc are

computed, how the thresholds are chosen, and how the
estimations of network size, node join and node failure
rate are obtained.

3.2 Liveness Check

During the lookup process, node n forwards a lookup
message to the node in its routing table that is the next
hop for the given destination key, say node p. If p is not
alive, the lookup message is lost. The initiator node of
the lookup will timeout and conclude that something
is wrong along the lookup path. The application layer
of the initiating node will decide whether to retry or
not, and how many retry attempts will be issued.

In order to maintain good network performance, we
must minimize the probability P p

tout for any node n in
the network to forward a message to a dead node p in its
routing table. Given a random destination key of the
lookup, P p

tout is the product of the probabilities of two
independent events: P p

fwd, the probability that node
n forwards a message to p, and P p

dead, the probability
that node p is dead. Thus,

P p
tout = P p

fwd × P p
dead (1)

P p
fwd depends on the DHT lookup algorithm used

and the identifier of node p. Distinct pointers are used
to forward lookups directed to disjoint partitions of the
identifier space. The formulation of P p

fwd must take
into account the details of the DHT protocol-specific
lookup process. In Section 4 we will show how P p

fwd is
computed in Chord.

Consider node n that stores a pointer to node p,
which was last known to be alive at time T p

s - the time
n performed the last liveness check for p. In our churn
model, nodes fail according to an exponential distribu-
tion with rate parameter µ; the probability of node p
being dead at current time t is

P p
dead(t) = 1 − e−µ(t−T p

s) (2)
Substituting the formulations of P p

fwd and P p
dead in

(1), we can estimate the probability of timeout (Ptout)
and schedule the next liveness check operation for node
p such that Ptout does not exceed threshold PThr

tout . The
threshold must be in agreement with the target lookup
failure probability Pf , that is specified as an input to
our framework. Since for most DHT protocols a lookup
path consists of log2 N/2 hops on average [6], the per-
pointer threshold value can be set to

PThr
tout = Pf

2
log2 N (3)

where the forwarding timeouts along the lookup path
are assumed to be independent events.

3.3 Accuracy Check

There are two negative consequences of pointer in-
accuracy: incorrect lookups and increased lookup path
length. When a new node n joins the network, it takes
an amount of time until this event is propagated to

other peers that should point to n, and thus it is pos-
sible for a lookup operation to skip node n, rendering
its stored items inaccessible.

The DHT lookup hop-count upper bound, logarith-
mic in the size of the network, holds only as long as
routing table invariants are satisfied. The invariants
guarantee that the remaining distance to destination
is reduced at each hop, such that the lookup is com-
pleted in O(logN) hops. If pointers are inaccurate, the
distance to destination reduced at each hop is smaller
than nominal, and the number of hops to destination
increases, in the worst case degenerating to O(N).

Since routing table constraints are specified by de-
terministic rules, the accuracy of pointer p maintained
by node n can only be affected by nodes that join in a
well-determined region of the identifier space. In most
DHT protocols, there is an ideal theoretical value for
each pointer p. Based on this observation, node n can
estimate what is the probability that pointer p is still
accurate by comparing the current value of p to its ideal
value, and by estimating the probability of a new node
joining in the gap between the actual and ideal value
of p.

Modeling the joining process of new nodes as a Pois-
son process with rate λ, and assuming that newly-
joined nodes are uniformly distributed over the identi-
fier space, then if pointer p was known to be accurate
at the time it was pinned T p

pin, the probability of it
becoming inaccurate at current time t is given by

P p
inacc =

distance(pcurrent, pideal)
id size

× λ(t − T p
pin) (4)

where id size is the size of the identifier space. As
opposed to the Ptout threshold in (3), which depends
only on the node life/death statistical model used, the
Pinacc threshold is dependent on the DHT protocol
used, since the routing table accuracy constraints are
protocol-dependent. In Section 4 we will describe a
particular example of this formulation for Chord DHT.

3.4 Gathering Network Statistics

In Sections 3.2 and 3.3 we have used estimates of
global network parameters such as µ, λ and network
size N . In this section, we show how each peer can
obtain an accurate estimation of these parameters in a
completely decentralized manner. Each peer n main-
tains for each pointer p in its routing table three times-
tamps: the time p was pinned - T p

pin, the time p was
last checked for liveness - T p

s , and the time when the
node pointed by p joined the overlay - T p

join.
Node Failure Rate. Each peer maintains a his-

tory of node failure events it has observed, in a manner
similar to [12]. The history covers a time range Thist

equal to the current time minus the time of the oldest
failure event recorded in the history. We denote by F
the number of events in the history and by rsize the
size of the routing table. From equation (2), we obtain
the estimation of the failure rate as

µ = −ln

(
1 − F

rsize

)
× 1

Thist
(5)

The size of the history determines how fast a node
reacts to changes in node failure rate: a small size can
determine node n to overreact each time a new failure
is recorded, while a large history size can be biased by
earlier periods of time with no failure events, and may
be slow to react to sudden churn rate changes. In our
implementation, we use a history size of 25% of the
routing table size, which we have found to be accurate
within 17% of the real value of µ.

Node Join Rate. Peer n estimates node join rate
based on the T p

join of each of its pointers p. An increase
in node join rate will be reflected by a decrease in the
average age of nodes in the routing table. To obtain
a good reaction time to sudden increases in join rate,
we use only the ages of the youngest 25% of the nodes
in the routing table (this reduces the bias of a small
number of nodes with very old ages). Let Ages be the
array of all pointer ages sorted in increasing order; then
the estimation of global node join rate is

λ =
N

4
× 1

Ages[rsize/4]
(6)

Using this method, we are able to obtain an estimate
of λ accurate within 22% of its real value.

Network Size. Each overlay node stores in its rout-
ing table the identifiers and addresses of other peers.
In most DHT protocols, each node keeps a separate list
with its immediate neighbors in the identifier space: in
Chord, this is the successor list, in Pastry the neigh-
borhood set, etc. If we compute the average distance
between these nodes, we can obtain a good estimation
of the network population size by dividing the identifier
space size to the average inter-node distance.

Furthermore, in the case of some DHT protocols,
each pointer in node n’s routing table has a theoretical
ideal value, relative to the identifier of n. By evaluating
the distance between a pointer’s ideal value and its
actual value, we obtain a good estimation of the density
of nodes in the identifier space, which in turn can help
us estimate the network size.

4 Adaptive Stabilization in Chord

In this section, we show how our proposed frame-
work applies to a specific DHT protocol: Chord DHT
[17]. In Chord, a lookup message for key key is for-
warded hop-by-hop to its destination succ(key). Each

hop n chooses as the next hop nextn(key) its farthest
finger which does not overshoot key. We assume that
recursive routing is used: the lookup initiator ni del-
egates the lookup task to p1 = nextni

(key), p1 in
turn delegates to p2 = nextp1(key) and so forth until
plasthop is reached, such that the successor of plasthop

is succ(key).

4.1 Liveness Check

To perform liveness check, we need to determine the
value of P p

fwd in equation (1). We denote by P i
fwd

the forwarding probability for ith finger (shorthand for
P fi

fwd). In an idealized Chord ring, where each finger fi

points to a node at a distance of exactly 2i, and lookup
keys are randomly distributed, all pointers are used
with equal frequency. However, in a real m-bit Chord
ring where node identifiers are randomly distributed,
there is a bias of B = 2m

2N on average between the ideal
and the actual value of fi. For this reason, P i

fwd is
not constant over the set {fi}; instead, it depends on
the sparsity of nodes in the identifier space, which we
define as

H = log2

2m

N
= m − log2 N (7)

Assuming node identifiers and search keys are ran-
domly distributed over the identifier space, an approx-
imative formulation of P i

fwd (we omit details due to
space limitations) is given by

P i
fwd =

⎧⎪⎪⎨
⎪⎪⎩

2i−H

log N , 0 ≤ i ≤ H
1

2+log N (2i+1−H

22(i−H)+1
−

2i−H−2

22(i−H−2)+1
+ 1

)
, H < i < m

(8)

Figure 3(a) shows the plot of P i
fwd for a set of simulated

Chord networks with different population sizes. Figure
3(b) illustrates the correlation between the measured
and estimated values of P i

fwd. Equation (8), which we
use in our framework implementation, has been vali-
dated for a large set of network and identifier space
sizes.

4.2 Accuracy Check

Inaccuracy of pointers in Chord can cause both in-
correct lookups and increased lookup path length. An
incorrect lookup occurs when the last hop plasthop of
a lookup for key wrongfully identifies its successor as
succ(key), due to the fact that a new node has joined
between plasthop and its successor.

If finger pointers become inaccurate, the remain-
ing distance to destination of a lookup request will no
longer halve at each intermediate node. The distance

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 5 10 15 20 25 30

P

i

2048
8192

65536
262144

(a) Measured forwarding probability for Chord fingers: 32-
bit identifier space and varying network size

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 5 10 15 20 25 30

P

i

Measured
Estimated

(b) Measured vs estimated forwarding probability for Chord
fingers: 32-bit identifier space and 65536 nodes

Figure 3. Analysis of Chord Fingers Forwarding Probability

gained at each hop may become too small, requiring
more than O(logN) hops for lookup completion.

To prevent incorrect lookups, we must ensure that
the successor pointer of each node n is accurate, i.e.
points to the correct successor of n on the Chord ring.
Using the estimation of node join rate λ, each node n
evaluates the probability of a new node joining between
n and n’s successor s as:

P succ
inacc =

distance(n.id, s.id)
2m

λ(t − Tsucc) (9)

where Tsucc is the time of the last accuracy check for
n’s successor. Given a target lookup failure of maxi-
mum Pf , the time interval required between two con-
secutive successor checks is obtained from the condition
P succ

inacc < Pf .
To prevent an increase in lookup path length, each

node n evaluates for each of its fingers fi the prob-
ability that fi does no longer fulfill the condition
fi = succ(n.id + 2i). Given the current values for
the set of fingers fi, and considering the ideal value
of fi = n.id + 2i, we can formulate the probability for
a finger to be inaccurate at current time t as

P i
inacc =

fi.id − n.id − 2i

2m
λ(t − T i

pin) (10)

where λ is the estimated join rate and T i
pin is the time

when fi was last pinned.

4.3 Gathering Network Statistics

The Node Failure Rate and Join Rate estima-
tion procedures described in 3.4 are independent of
DHT protocol, and can be used without further modifi-
cation for Chord. To estimate overlay population size,
we compute the average inter-node distance between
the successive nodes starting with the predecessor and
ending with the farthest successor in the successor list.
The estimated population size is the size of the iden-
tifier space divided by the inter-node distance. During

our experiments, we have found this estimation to be
accurate within 15% of the real network size.

5 Performance Evaluation

In this section, we evaluate using simulation the per-
formance of our proposed adaptive stabilization tech-
nique for Chord DHT. In Sections 5.1 and 5.2 we com-
pare adaptive stabilization (AS) with periodic stabi-
lization (PS) for constant and variable churn rate, re-
spectively. In Section 5.3 we analyze the performance-
cost tradeoff that can be achieved with adaptive stabi-
lization.

5.1 Constant Churn Rate

To evaluate the performance of AS at constant
churn rate, we revisit the “half-life” scenarios described
in Section 2. For AS, we have chosen the target lookup
failure Pf to be the same as the lookup failure obtained
by the high S1 = 1/3/10 stabilization rate at the low
1/sec churn rate. We set Pf to 1% for the network
doubling and to 3% for the network halving case. The
average RTT between peer nodes is 200ms. We con-
sider the same low, moderate and high churn rates as
in Section 2, of 1, 2 and 5/sec respectively.

Table 2 summarizes the AS results in comparison
with the PS results obtained in Section 2. For network
doubling, AS achieves the target lookup failure at all
three node join rates, with a slightly 0.1% over the
nominal Pf for the 5/sec join rate. The communication
overhead of AS is three times and 1.4 times lower than
S1 for low and moderate node join rates, respectively.
For high join rate, AS still meets the target Pf , with
an increase in cost of 20% compared to S1, but with an
improvement by a factor of 1.6 in lookup failure over
S1. For low and moderate node join rate, the cost of

Churn
Rate

Stab.
Rate

Lookup Failure % Comm. Overhead %

Double Halve Double Halve

1/sec

S1 0.5 3.2 421 457
S2 1.1 4.9 211 203
S3 1.7 6.5 135 139
AS 0.9 2.9 141 142

2/sec

S1 0.8 5.1 414 462
S2 1.9 9.2 208 205
S3 2.8 12.3 143 151
AS 0.9 3.1 296 305

5/sec

S1 1.8 8.7 407 445
S2 2.7 12.7 218 209
S3 3.6 23.7 154 154
AS 1.1 3.4 489 552

Table 2. AS vs PS: Constant Churn Rate

AS is comparable with that of S3 and S2 respectively,
but with an improved lookup failure by a factor ranging
from 1.9 to 2.1.

For network halving, at low node failure rate, AS
matches the lookup failure of S1 but at roughly the
same cost as S3, which is only a third of S1’s cost.
Translated into number of messages, AS generates only
0.4 million messages compared to S1’s 1.3 million in a
time window of 500 seconds. For moderate node failure
rate, AS still meets the target Pf of 3% with a cost
lower than S1’s cost by a factor of 1.5, while S1 only
manages a lookup failure larger by a factor of 1.7 than
AS. For high node failure rate, AS misses the target Pf

but only by a small margin of 0.4%. However, the 3.4%
lookup failure is still lower by a factor of 2.6 compared
to S1, and at only a 24% increase in cost compared to
S1. The reason that AS does not achieve the target
Pf is the latency of the communication network. The
failure of a node can not be detected in a shorter time
than the RTT, and for this reason, at high churn rate,
it may be impossible to detect failures that occur more
often than the average RTT of 200ms, regardless of the
stabilization technique used.

As in the case of PS in Section 2, we have found that
with AS the effect of churn on average lookup path
length is not significant, with a path length increase
from the nominal 0.5 log N to 0.56 log N .

The strength of AS resides in its ability to self-tune
according to changing network conditions, so we expect
its full potential to be exploited at variable churn rates.
However, AS has one important advantage over PS
even for constant churn rates: its ability to determine a
suitable stabilization rate on-the-fly. Even if for a con-
stant churn rate there exists an ideal PS instance that
can perform well, determining that particular combi-
nation of parameters is a difficult task, and can only
be done through a trial-and-error process, requiring the
churn rate to be known in advance. With AS, nomi-

nal network performance can be achieved without any
prior knowledge of node join/failure rate, and in most
cases at a lower cost than PS.

5.2 Variable Churn Rate

We consider a network with two different steady-
state regimes, each characterized by a low, but constant
churn rate. There is a significant difference in network
size between the two states. The transition from one
state to the other produces abruptly, with nodes that
join/fail at rates much higher than the churn rates in
the steady states. This model can be used to represent
a corporate network, for instance, with two “office-
hours” and “after-working-hours” steady states, and
two high-churn “peak-hour” periods.

We consider a 500-node initial bootstrap network,
corresponding to the first steady-state; 2500 new nodes
join the network at a rate of 3/sec and leave at the same
rate 6 hrs later. During the 6 hrs period, correspond-
ing to the second steady-state, peers abide an on-off
pattern of being connected for an interval of time ex-
ponentially distributed with mean of 60 minutes, and
disconnected for an interval of time exponentially dis-
tributed with mean of 30 minutes. The average size of
the network in the second steady-state is 2200 nodes.
The target lookup failure Pf for AS is set to 2%.

Figure 4 shows the evolution in time of the churn
rate, lookup failure and stabilization cost, measured in
number of messages/node/second. All metrics are av-
eraged over 200 seconds intervals. Figure 4(a) shows
the churn pattern, with the initial surge consisting
mainly of join events, and the final surge of mainly fail-
ure events. Figure 4(b) shows the evolution of lookup
failure over time: with both S1 and S2 PS rates, the
lookup failure increases sharply, to 3% and 8% respec-
tively for the mainly-join workload; for the mainly-fail
workload, lookup failure increases even further, to 7.5%
and 12% respectively. AS, tuned for a target lookup
failure of 2%, achieves a 1.8% and 2.2% lookup failure
for the node join and failure cases, better than both
S1 and S2. The low PS rate S3 caused severe network
disconnection, and was excluded from our results.

Figure 4(c) shows the stabilization cost per-node.
The communication cost of S1 and S2 remains al-
most constant over time: the cost decreases slightly
during the join process, as new nodes generate mostly
join lookup messages, which are not considered as part
of the stabilization traffic. For the fail process, the
number of stabilization messages increases slightly, due
to the numerous timeout-triggered stabilization execu-
tions. In the case of AS, we observe how the rate of sta-
bilization adjusts to the churn pattern, with increases

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 2.4

 2.7

 3

 0 5000 10000 15000 20000

C
hu

rn
 R

at
e

(e
ve

nt
s/

se
c)

Time (sec)

Churn Rate

a) Churn Rate

 0

 2

 4

 6

 8

10

12

 0 5000 10000 15000 20000

Lo
ok

up
 F

ai
lu

re
 (%

)

Time (sec)

S1
S2
AS

 0

 2

 4

 6

 8

10

12

 0 5000 10000 15000 20000

Lo
ok

up
 F

ai
lu

re
 (%

)

Time (sec)

S1
S2
AS

b) Lookup Failure

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5000 10000 15000 20000

S
ta

bi
liz

at
oi

n
C

os
t (

m
sg

/s
ec

/n
od

e)

Time (sec)

S1
S2
AS

c) Stabilization Cost

Figure 4. AS vs PS: Variable Churn Rate

during periods of high churn rate. Once the churn rate
lowers, AS reacts and decreases the stabilization rate.

Over the entire simulated period, S1 generates a
420% communication overhead and achieves a peak
lookup failure of 7.5%, while AS reduces the peak
lookup failure by a factor of 3.4, to 2.2%, with an over-
all communication overhead of only 172%. For com-
parison, S2 generates a 154% communication overhead,
but only achieves a modest lookup failure, larger by a
factor of 5.4 than AS.

AS achieves both low lookup failure and reduced
overall communication overhead by adjusting the sta-
bilization rate according to the estimated churn rate.
For periods of high churn, AS may generate more over-

head than PS, but that overhead is needed to maintain
nominal network performance. On the other hand, AS
lowers the overall stabilization cost by generating less
traffic during periods of low churn rate.

5.3 Performance-cost Tradeoff

During high churn rate periods, AS attempts to
maintain lookup failure below the Pf threshold by in-
creasing the stabilization rate. We evaluate the depen-
dence between the communication overhead of stabi-
lization and the target lookup failure Pf , in order to
determine what is a good tradeoff in practice between
lookup performance and stabilization cost.

We consider a fail-only workload, which has a more
disruptive effect on lookup performance. First, we de-
termine the theoretical dependence between Pf and
stabilization cost, for a fixed node failure workload with
rate µ. For simplification, we disregard finger forward-
ing probability, and consider that Pfwd = 1 for each
finger, which corresponds to an upper bound for the
traffic generated by AS in practice, with Pfwd < 1.
The interval T between two consecutive liveness checks
of the same pointer is given by

1 − e−µT = 1 − (1 − Pf)
2

log2 N (11)

Considering each liveness check (a ping request/reply)
as a single message, the number of messages generated
per node/per pointer/per time unit interval is

#msg = 1/T = − µ log2 N

2 ln(1 − Pf)
(12)

We simulated a 5000-node network that halves in
size with a node failure rate of 10/sec. The average
RTT between nodes is 1000ms. Figure 5 shows the
cost of stabilization in messages/node/pointer/sec for
the theoretical estimation in (12) and the experimental
measurement. As Pf approaches zero, the denominator
in (12) will also approach zero. To safeguard our imple-
mentation against an undesirable traffic spike, we limit
the interval between successive stabilizations of the
same pointer to the RTT-value. In the performance-
cost tradeoff experiment we have set an RTT value of
1000ms, and we can observe that the cost is limited at
1 msg/node/pointer/sec.

AS manages to achieve in practice a performance-
cost tradeoff as good as the theoretical estimation given
by (12). In those cases where the physical RTT lim-
itation of the underlying communication network pre-
vents AS (as well as any other stabilization technique)
to achieve the target lookup failure at high churn rates,
an upper-bound on the stabilization rate is enforced, in
order to avoid a surge in stabilization traffic that could
cause network congestion.

 0.01

 0.1

 1

 10

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

S
ta

b.
 T

ra
ffi

c
(m

sg
/s

ec
/n

od
e/

po
in

te
r)

Pf

Measured Cost
Theoretical Cost

Figure 5. AS: Performance-cost tradeoff

6 Conclusions

We have proposed an adaptive stabilization frame-
work for DHT that dynamically adjusts the rate of sta-
bilization according to the evolution of network condi-
tions. Peers collect statistical information about the
network and determine the required stabilization rate
in order to achieve target QoS objectives.

The contribution of this paper is two-fold. First,
we identify the principles of stabilization common to
all DHT protocols - the liveness and accuracy check
analyses - and we evaluate the effect of the two sepa-
rate churn components (node join and failure) on DHT
routing. Second, we formulate a mathematical model
for our framework and we provide its instantiation for
the Chord DHT. Our experimental evaluation shows
that adaptive stabilization outperforms periodic sta-
bilization in terms of both lookup failure and com-
munication overhead, for constant and variable churn
rate. Furthermore, adaptive stabilization provides a
predictable performance-cost tradeoff model that can
help in the decision of choosing a QoS threshold.

In future work, we plan to address workload model-
ing for real P2P system traces and to extend the AS
framework to support general churn workloads, other
than exponential distributions. In addition, we plan to
investigate more accurate methods to estimate global
network conditions using only local state.

References

[1] p2psim: The Peer-to-Peer Network Simulator.
http://pdos.csail.mit.edu/p2psim.

[2] Secure Hash Standard. U.S. Dept. Commerce/NIST,
Springfield, VA, FIPS 180-1, Apr. 1995.

[3] L. Alima, S. El-Ansary, P. Brand, and S. Haridi.
DKS(N,k,f):a Family of Low Communication, Scalable
and Fault-Tolerant Infrastructures for P2P applica-
tions. The 3rd Int’l Workshop CCGRID2003, 2003.

[4] M. Castro, P. Druschel, A. Kermarrec, and A. Row-
stron. SCRIBE: A large-scale and decentralized
application-level multicast infrastructure. IEEE Jour-
nal on Selected Areas in Communications (JSAC),
20(8):1489–1499, 2002.

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proc. of ACM SOSP’01, Banff, Canada, 2001.

[6] S. El-Ansary and S. Haridi. Handbook on Theoreti-
cal and Algorithmic Aspects of Sensor, Ad-Hoc Wire-
less, and Peer-to-Peer Networks, chapter An overview
of structured overlay networks. CRC, 2004.

[7] P. Gummadi, S. Saroiu, and S. Gribble. A measure-
ment study of Napster and Gnutella as examples of
peer-to-peer file sharing systems. Multimedia Systems
Journal, 9(2):170–184, 2003.

[8] D. Karger, E. Lehman, T. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing and
random trees: Distributed caching protocols for reliev-
ing hot spots on the world wide web. In ACM Sympo-
sium on Theory of Computing, pages 654–663, 1997.

[9] S. Krishnamurthy, S. El-Ansary, E. Aurell, and
S. Haridi. A statistical theory of Chord under churn. In
Proc. of the 5th Int’l Workshop on Peer-to-Peer Sys-
tems (IPTPS), 2005.

[10] J. Li, J. Stribling, T. Gil, R. Morris, and F. Kaashoek.
Comparing the performance of distributed hash tables
under churn. In Proc. of the 3rd Int’l Workshop on
Peer-to-Peer Systems (IPTPS), 2004.

[11] D. Liben-Nowell, H. Balakrishnan, and D. Karger.
Analysis of the evolution of peer-to-peer systems. In
Proc. of Principles of Distributed Computing, pages
233–242, 2002.

[12] R. Mahajan, M. Castro, and A. Rowstron. Control-
ling the cost of reliability in peer-to-peer overlays. In
Proc. of the 2nd Int’l Workshop on Peer-to-Peer Sys-
tems (IPTPS), 2003.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Network.
Tech. Report TR-00-010, Berkeley, CA, 2000.

[14] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level multicast using content-addressable
networks. Lecture Notes in Computer Science,
2233:14–26, 2001.

[15] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz.
Handling churn in a DHT. In Proc. of USENIX Tech-
nical Conference, 2004.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, de-
centralized object location, and routing for large-scale
peer-to-peer systems. Lecture Notes in Computer Sci-
ence, 2218:329–350, 2001.

[17] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. ACM SIG-
COMM 2001, pages 149–160, 2001.

[18] B. Y. Zhao, J. D. Kubiatowicz, and A. D.
Joseph. Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report
UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

