
Distributed Algorithm for a Color Assignment on Asynchronous
Rings

Gianluca De Marco1, Mauro Leoncini2,3, Manuela Montangero2,3

1Dipartimento di Informatica e Applicazioni 2Dipartimento di Ingegneria dell’Informazione
Università di Salerno Università di Modena e Reggio Emilia

Via Salvador Allende 1 Via Vignolese 905/b
84081 Baronissi (SA), Italy 41100 Modena, Italy

demarco@dia.unisa.it leoncini@acm.org
montangero.manuela@unimo.it

3Istituto di Informatica e Telematica - CNR
Via Moruzzi 1

56124 Pisa, Italy

Abstract

We study a version of the β-assignment problem [3]
on asynchronous rings: consider a set of items and a
set of m colors, where each item is associated to one
color. Consider also n computational agents connected
by an asynchronous ring. Each agent holds a subset
of the items, where initially different agents might
hold items associated to the same color. We analyze
the problem of distributively assigning colors to agents
in such a way that (a) each color is assigned to one
agent and (b) the number of different colors assigned
to each agent is minimum. Since any color assignment
requires that the items be distributed according to it
(e.g. all items of the same color are to be held by only
one agent), we define the cost of a color assignment as
the amount of items that need to be moved, given an
initial allocation. We first show that any distributed
algorithm for this problem on the ring requires a com-
munication complexity of Ω(n ·m) and then we exhibit
a polynomial time distributed algorithm with message
complexity matching the bound, that determines a
color assignment with cost at most (2 + ε) times the
optimal cost, for any 0 < ε < 1.

Work supported in part by the European RTN Project under
contract HPRN-CT-2002-00278, COMBSTRU.

1. Introduction

We consider the following problem. Let A =
{a0, . . . an−1} be a set of n agents connected on an
asynchronous ring and let C = {c0, . . . , cm−1} be a set
of m colors. Colors are used to color items held by
agents (each item can be colored only with one color),
so let Qj,i ≥ 0 be the number of items with color cj

initially held by agent ai, for every j = 0, . . . , m − 1,
and for every i = 0, . . . , n − 1.

Definition 1 (Balanced Coloring) A Balanced
Coloring is an assignment π : {0, . . . , m − 1} →
{0, . . . , n − 1} of the m colors to the n agents in such
a way that:

• for every color cj, there is exactly one agent ai

such that π(j) = i;

• for every agent ai, �m
n � ≤ |{cj | π(j) = i}| ≤ �m

n �.

Observe that any Balanced Coloring assigns almost
the same number of colors to each agent. When m is
a multiple of n, then each agent receives exactly the
same number of colors.

Definition 2 (Distributed Balanced Color As-
signment Problem) The cost of a Balanced Coloring
π : {0, . . . , m − 1} → {0, . . . , n − 1} is defined as

1-4244-0054-6/06/$20.00 ©2006 IEEE

Cost(π) =
m−1∑
j=0

n−1∑
i=0,

i�=π(j)

Qj,i. (1)

The Distributed Balanced Color Assignment Prob-
lem consist of designing a distributed algorithm that
finds a Balanced Coloring of minimum cost.

The cost of the optimal assignment will be denoted
by CostOPT . The approximation ratio of a suboptimal
algorithm A is the quantity

CostA
CostOP T

, where CostA is
the cost of the solution computed by A.

Informally we can restate the problem in the follow-
ing way: we are given a set of computational agents
connected by an asynchronous ring, and a set of items,
each associated to one color from a given set. Initially
each agent holds a set of items and items with the
same color may be held by different agents (e.g. see
Fig 1.(a)). We wish the agents to agree on an assign-
ment of colors to agents in such a way that each color
is assigned to one agent only, balancing the number of
colors that are assigned to agents. That is why we call
the assignment balanced assignment (in Fig 1.(b) and
Fig 1.(c) two examples are shown). Among all such
assignments, we seek the one that minimizes the total
number of items that agents have to collect from other
agents in order to satisfy the constraint; i.e., each agent
collects all the items colored with the colors that are
assigned to it. For example, agent a0 in Fig 1.(b) is
assigned colors ∇ and ♠, and therefore needs just to
collect four items colored ∇, since no other agent has
items colored ♠.

The scenario defined above may arise in many prac-
tical situations in which a set of agents (distributed
crawlers, sensor networks, etc...) independently search
a common space and then have to reorganize the re-
trieved data (items) according to a given classifica-
tion by topics (colors). In these cases, determining a
distributed balanced color assignment guarantees spe-
cialization and balanced computational load of agents.
The choice of the ring topology is motivated (beside
the fact that it is a very popular architecture in dis-
tributed computing research) by the observation that
in a number of different network settings (e.g., peer-
to-peer networks [16] and sensor networks [4]) nodes
organize themselves in a virtual ring on top of an un-
structured topology.

The model. We assume that the agents in A =
{a0, . . . , an−1} are connected by an asynchronous ring;
i.e., for each i = 0, . . . , n−1, agent ai can communicate
only with its two neighbors a(i+1)mod n and a(i−1)mod n.
We also assume that each agent knows n (the number of

Figure 1. Three agents: a0, a1, a2, and six col-
ors: ∇,♦,♥,�,♠,♣. (a) is the initial alloca-
tion, while (b) and (c) are two possible bal-
anced color assignments. Items above the
line are those that the agent collects from the
others. Therefore their total number is the
cost of the assignment. The assignment in
(b) costs (4×∇)+(2×♥+4×�)+(1×♣+6×♦) =
17 items, while the assignment in (c) costs
(4×�) + (2×♥+ 4×♦) + (5×∇+ 1×♣) = 16
items.

agents), C (the set of colors), and either the parameter
p = max0≤j≤m−1

∑n−1
i=0 Qj,i (the maximum number of

items having the same color), or an upper bound to p.
We measure message complexity in the standard

way (e.g. [11, 13]), i.e., we assume that messages of
bit length at most c log n, for some constant c, (called
basic messages) can be transmitted at unit cost. Mes-
sage can carry at most a constant number of agent
IDs. Non basic messages of length L are allowed, and
we charge a cost c1 �L/ log n� for their transmission,
for some constant c1.

Our results. The goal of this paper is to analyze
the efficiency under which we can solve the Distributed
Balanced Color Assignment problem. In Section 2 we
show the equivalence of the problem with the weighted
β-assignment problem in a centralized setting [3]. In
Section 3 we give a Ω(mn) lower bound on the message
complexity to determine a solution to the problem. In
Section 4 we present an algorithm that finds a feasible
solution to the problem that matches the bound on
message complexity and in Section 5 we show that the

proposed algorithm computes a feasible solution whose
cost is only a factor of (2 + ε) off the optimal one, for
any 0 < ε < 1. Finally, we show that we can find a
feasible solution with approximation ratio two at the
expenses of a slight increase of message complexity.

2. Preliminaries

It is easy to see that when m = n, our problem
is equivalent to a maximum weight perfect matching
problem on a bipartite graph. On the other hand,
when m ≥ n, our problem reduces to the weighted β-
assignment problem. The class of β-assignment prob-
lems has been introduced by Chang and Lee [3], in the
context of the problems of assigning jobs to workers, in
order to incorporate the problem of balancing the work
load that is given to each worker. In the weighted β-
assignment problem one aims at minimizing the max-
imum number of jobs assigned to each worker. The
interested reader can find useful references on these
problems, their complexity, and related approximation
issues in [1, 2, 10, 14, 15].

We associate to agents and colors the complete bi-
partite graph on n + m vertices, which we denote by
G = (C,A, C×A). We add weights to G as follows: the
weight of the edge joining agent ai and color cj is Qj,i.

Case m = n. Given a graph (V,E), a perfect
matching is a subset M of edges in E such that no
two edges in M share a common vertex and each ver-
tex of V is incident to some edge in M . When edges
of the graph have an associated weight, then a max-
imum weight perfect matching is a perfect matching
such that the sum of the weights of the edges in the
matching is maximum.

Lemma 3 A maximum weight perfect matching on G
is a minimum cost solution to the balanced color as-
signment problem.

Proof. Given a perfect matching E ⊆ E = C × A on
G, for every (cj , ai) ∈ E we assign color cj to agent ai.
As G is complete and E is a perfect matching on G,
every color is assigned to one and only one agent and
vice-versa. Moreover, the cost of a balanced color as-
signment, given any matching E, can be written as∑

e∈E\E w(e), and this expression achieves its mini-
mum when E is a maximum weight perfect matching.

Finding matchings in graphs is one of the most
deeply investigated problems in Computer Science and
Operations Research (see [12] for a comprehensive de-
scription of the different variants, theoretical proper-
ties, and corresponding algorithms). The best known

algorithm to find a perfect matching in a bipartite
graph is due to Hopcroft and Karp [8], and runs in
O

(
|E|√|V |

)
time, where V and E denote the vertex

and edge sets, respectively. In our case this bound re-
duces to O(n5/2). The best known algorithm for find-
ing a maximum weight perfect matching is the Hun-
garian method, due to Kuhn [9], which runs in time
O(n3).

Case m ≥ n. The β-assignment problem is defined
on a bipartite graph G = (S, T,E) where (S, T) is the
bipartition of the vertex set. A β-assignment of S in
G is a subset of the edges X ⊆ E such that, given the
graph G′ = (S, T,X), the degree of every vertex in S is
exactly one. Let β(X) be the maximum degree, in G′,
of vertices in T and let β(G) be the minimum value
of β(X) among all possible β-assignments X. The
weighted β-assignment problem consists of finding a β-
assignment X with β(X) = β(G) which maximizes the
total weight of the edges in X. The following lemma is
straightforward.

Lemma 4 The balanced color assignment problem is
a weighted β-assignment of C in the complete bipartite
graph G = (C,A, C × A), with β(G) = m/n.

The fastest known algorithm to solve the weighted
β-assignment problem is due to Chang and Ho [2]
and runs in O(max{|S|2|T |, |S||T |2}) time, which in
our case gives the bound O(m2n). While the max-
imum perfect matching problem (with its variants)
has been widely investigated in the distributed setting
(see [6, 7]), no distributed results are known for the
weighted β-assignment problem.

A brute force approach. A brute force dis-
tributed solution to the problem can be obtained by
asking all the agents to send their color information
to one specific agent (a priori chosen or elected as the
leader of the ring); such an agent will then solve the
problem sequentially and send the solution back to all
the other agents. The factor dominating the message
complexity of the algorithm above is the information
collecting stage, even if leader election is considered.
Indeed, each agent sends O(m) non-basic messages,
each corresponding to O(log p/ log n) basic messages,
through O(n) links, on the average. This results in
a message complexity of O(mn2 log p/ log n). On the
other hand, we might think of an algorithm in which
each agent selects the correct number of colors bas-
ing its choice just on local information (e.g., its label).
This requires no communication at all, but, even if we
are able to prove that the agents agree correctly on a

balanced coloring, we have no guarantee on how good
the solution is. Can we do better? In the next section
we show a Ω(mn) lower bound on the message com-
plexity of the problem, and in Section 4 we describe
a O(n log p) time distributed algorithm matching the
lower bound on message complexity whose cost is at
most (2 + ε) times the optimal, for any 0 < ε < 1.

For the sake of presentation and without loss of gen-
erality, we will assume that m is a multiple of n, so that
exactly m

n colors are assigned to each agent. In general,
�m

n � colors will be assigned to
(�m

n � + 1
)
n−m agents,

and �m
n � + 1 color to m − �m

n �n agents. Our results
can be easily extended to handle the general case.

3. Lower bound on message complexity

Before formally proving the lower bound we make
some observations to clarify the nature of the problem.
Assume agents can agree on a balanced coloring with-
out communicating, i.e., each agent is able to select
the colors that are assigned to it autonomously with-
out “making errors”. In such a situation, the choice
of agent ai must be independent of the particular val-
ues of the Qj,i’s, for otherwise, the agent cannot be
sure that no other agent choose the same colors (sup-
pose the two have exactly the same initial distribution
of items). On the other hand, an assignment that is
done without taking the initial distribution of items
to agents into consideration can not give any guaran-
tee on the cost. Consider, for example, the case of an
initial distribution such that each agent has items of
all colors except the ones that it selects. This leads
to a cost that is equal to the total amount of items.
Any assignment in which at least one agent is assigned
one of the colors it initially holds has a smaller cost.
We conclude that any solution in which the agents’ se-
lection is done according to the initial distribution of
items requires some communication among agents. In
the rest of this section we will prove that agents need
to exchange Ω(mn) messages to solve the problem.

Assume w.l.o.g. that n is even and let m = (nt)/2,
for some integer t. For any agent ai, let ai′ denote the
agent at maximum distance from ai in the ring.

Let P be the set of all possible partitions of the
set of colors C = {1, . . . , m} into n/2 subsets of the
same cardinality t = 2m/n. Consider the set of initial
allocations I in which, for any i = 0, . . . , n/2 − 1 and
some partition {C0, . . . , Cn/2−1} ∈ P, agents ai and
ai′ hold only items of the colors in Ci = {i1, . . . , it},
where i1 < i2 < . . . < it. It is easy to see that any
solution in which any ai is assigned a color that it does
not initially hold is worse than any solution in which
ai and ai′ arbitrarily choose among the colors in Ci.

Suppose that there is at least one ai that is assigned a
color j �∈ Ci, then there must be ak, with k �= i, i′, and
h ∈ Ci (hence h �∈ Ck) such that h is assigned to ak.
Let us calculate the cost of this solution:

Cost1 = Γ +
n−1∑
w=0,
w �=i

Qj,w +
n−1∑
w=0,
w �=k

Qh,w

= Γ +
n−1∑
w=0,
w �=i

Qj,w + Qh,i + Qh,i′ ,

where Γ is the contribution to the cost given by all
colors different from j and h.

Consider a solution that differs from the previous
one only by the fact that h is assigned to ai and j
to ak. Obviously, the contribution given by all other
colors remains the same and the cost of this solution
is:

Cost2 = Γ+
n−1∑
w=0,
w �=k

Qj,w+
n−1∑
w=0,
w �=i

Qh,w = Γ+
n−1∑
w=0,
w �=k

Qj,w+Qh,i′ ,

and

Cost1 − Cost2 = Qj,k − Qj,i + Qh,i = Qj,k + Qh,i ≥ 0

as Qj,i = 0. Hence, for any instance in I we can
always assume that an optimal solution assigns colors
in Ci to the pair (ai, ai′), for all i. We now concentrate
on one such a pair.

Partition set Ci = {i1, . . . , it} into two sets C′ and
C′′ of cardinality t/2 each (observe that, as we assume
m is a multiple of n and since t/2 = m/n, then t has to
be even). Consider the following instance for the pair
(ai, ai′):

I1 :
Qj,i = 2j for each j ∈ Ci

Qj,i′ = Qj,i if j ∈ C′

Qj,i′ = Qj′,i where j′ ∈ C′ ∪ {it}
is the smallest index
s.t. j ≤ j′ if j ∈ C′′

That is: ai has a different quantity of each color,
which depends on the color index. Concerning agent
ai′ : for each j ∈ C′, then Qj,i′ is exactly Qj,i, i.e., the
same amount that agent ai has of that color. For each
index j ∈ C′′, consider the smallest index j′ ∈ C′ that

a i

a i’

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

a i

a i’

Initial situation Optimal assignment

Initial situation Optimal assignment

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

(1)

(2)

Figure 2. Example: C′ = {2, 4, 5, 8}, C′′ =
{1, 3, 6, 7} and instances I1 and I2 (resp. in (1)
and (2)); agent ai has knowledge of ai′ colors
whose indices are in C′ only (in gray). Even
if ai knows the exact position of these col-
ors in the ordering of ai′ colors it is not able
to distinguish between instances I1 and I2.
Observe that these two instances have com-
plementary optimal solutions.

is greater than j (if this does not exist, then j′ = it).
Then Qj,i′ is exactly Qj′,i (see Fig 2.1 - initial situation
- for an example). Observe that, by construction, for
any j ∈ C′′ we have that Qj,i′ > Qj,i. The following
lemma holds (see Fig 2.1 - optimal assignment - for an
example).

Lemma 5 There is only one optimal solution for in-
stance I1: assign colors in C′ to ai and colors in C′′ to
ai′ .

Proof. Let us first compute the cost of the solution
that assigns colors in C′ to ai and colors in C′′ to ai′ :

Cost =
∑
j∈C′

Qj,i′ +
∑
j∈C′′

Qj,i

=
∑
j∈C′

Qj,i +
∑
j∈C′′

Qj,i

=
∑
j∈Ci

Qj,i.

Consider any other partition of Ci into two sets, C′
and C′′. Consider another solution that assigns C′ to ai

and C′′ to ai′ and let us compute the cost of this new
solution:

Cost =
∑

j∈C′∩C′

Qj,i′ +
∑

j∈C′∩C′′

Qj,i′ +
∑
j∈C′′

Qj,i

=
∑

j∈C′∩C′

Qj,i +
∑

j∈C′∩C′′

Qj,i′ +
∑
j∈C′′

Qj,i

=
∑

j∈Ci\(C′∩C′′)

Qj,i +
∑

j∈C′∩C′′

Qj,i′

>
∑

j∈Ci\(C′∩C′′)

Qj,i +
∑

j∈C′∩C′′

Qj,i = Cost

Since C′∩C′′ �= ∅ (otherwise the two partitions would
coincide) and for any j ∈ C′′ we have Qj,i′ > Qj,i.

Consider now a dual instance

I2 :
Qj,i = 2j for each j ∈ Ci

Qj,i′ = Qj,i if j ∈ C′

Qj,i′ = Qj′,i where j′ ∈ C′ ∪ {i1}
is the largest index
s.t. j′ ≤ j if j ∈ C′′

This instance differs from I1 for the values Qj,i′

when j ∈ C′′. In this case consider the greater index
j′ ∈ C′ that is smaller than j (if this does not exist,
then j′ = i1). Then Qj,i′ is exactly Qj′,i (see Fig 2.2

- initial situation - for an example). Observe that by
construction, for any j ∈ C′′ we have that Qj,i′ < Qj,i.
Analogously to the previous lemma we can prove the
following (see Fig 2.2 - optimal assignment - for an
example):

Lemma 6 There is only one optimal solution for in-
stance I2: assign colors in C′ to ai′ and colors in C′′ to
ai .

Corollary 7 If agent ai knows the Qj,is and up to t/2
of the Qj,i′s, it can not compute an optimal solution
(even if ai knows the exact position of the colors in ai′

ordering).

Proof. Construct a partition of Ci in the following
way: place index j in C′ if ai has knowledge of Qj,i′ .
If the cardinality of C′ is smaller than t/2, randomly
add indices to make the cardinality exactly t/2. Let all
the other indices in C′′. Agent ai can not distinguish
between instances I1 and I2 build according to this
partition of Ci and, hence, can not decide if it has to be
assigned colors whose indices are in C′ or in C′′. Finally,
observe that in both instances indices in C′ are exactly
in the same position in the ordering of the colors held
by ai′ , thus the knowledge of these positions does not
help.

Theorem 8 The message complexity of the distributed
balanced color assignment problem on ring is Ω(mn).

Proof. Let A be any distributed algorithm for the
problem. We analyze two cases separately.

Assume first that during the execution of A, in at
least Ω(n) pairs (ai, ai′), agent ai gets to know at least
m/n + 1 of the colors a′

i has. We use Shannon’s En-
tropy to calculate the minimum number of bit B to
be exchanged between each pair ai and a′

i so that that
information is known by ai. We have:

B = log
(

m
m
n + 1

)
.

Using Stirling’s approximation, and as m ≥ n, we
get

B ≈
(m

n
+ 1

)
· log

m · n
m + n

≥
(m

n
+ 1

)
· log

n

2
∈ Ω

(m

n
log n

)
.

A basic message contains log n bits, hence we need
at least Ω(m/n) basic messages to exchange B bits.
Finally, as the distance between ai and a′

i is Ω(n/2) we
have that at least Ω(n/2) · (m/n + 1) ·Ω(n) ∈ Ω(m · n)

messages are exchanged during the execution of the
algorithm.

Assume now that the hypothesis above about ais
knowledge does not hold, then there must be at least
one pair (ai, ai′) for which at most m/n colors are
communicated. We show that there is an adversary
that puts ai in the situation described in Corollary 7.
We assume that ai asks the adversary to know Qh,k

(i.e., imagine the adversary simulates communication
between agents). The adversary chooses a partition in
P and one between the corresponding I1 and I2, an-
swering accordingly and placing the first m/n requests
of Qj,i′ in C′. Whenever ai asks for some Qj,h with
h �= i, i′, then the adversary answers with a fixed con-
stant K if j �∈ Ci, with zero otherwise. By Corollary 7,
it is clear that the pair (ai, ai′) can not compute an
optimal solution.

4. An approximation algorithm

Let us now describe a greedy algorithm that matches
the lower bound on the message complexity, and is
guaranteed to compute approximations that are within
a factor three from the optimal solutions. In the next
section we will show how the same algorithm can be
used to find a (2 + ε)-approximation, for any ε < 1.

The algorithm works in �log p� + 3 rounds (unless
differently stated, we assume logarithms are in base
two). The first round is for electing a leader aL among
the set of agents. In the second round, every agent ai is
assigned a label l(ai) which represents its left-distance
from the leader. By left-distance of an agent ai from
another agent aj , we mean the length of the path from
aj to ai when traveling the ring clockwise. In this way
the leader has label l(aL) = 0, its left neighbor has la-
bel 1, and so on. The right neighbor of the leader has
label n−1. It is well known that leader election can be
done in O(n) time with O(n log n) message complex-
ity on a non anonymous unidirectional or bidirectional
asynchronous ring of n nodes, even when the nodes are
not aware of the size n of the ring (e.g., [5]). Therefore,
in the following we shall focus on the last �log p� + 1
rounds. Every such round consists of 2n−1 steps num-
bered 0 through 2n−2. During the first n steps of each
round, the variables ξi, which list the set of colors as-
signed to individual agents, are updated. The purpose
of the remaining n − 1 steps is the computation (at
each agent) of the variable Cr = ∪iξi, which stores the
set of colors assigned up to round r. At the end of
the last round C�log p� is equal to the set of all colors.
The colors assigned during round r of the algorithm are
those whose weights fall in the interval [lr, ur), where

lr =
{

p
2r+1

}
, ur =

{
p
2r

}
, and

{a

b

}
=

{ �a
b � if a

b > 1
2 ;

0 otherwise.

We now formally describe the algorithm performed
by any agent ai at any round r. Message M is received
from the right neighbor and contains a list of the
colors already assigned to agents closer to the leader
at the present round. M′ is the list of candidate colors
to be assigned to agent ai: colors whose weights fall
in the interval relative to the round r, that have not
been already assigned to agents closer to the leader in
round r or to any other agent in previous rounds (i.e.,
M′ ∩ (M ∪ Cr−1) = ∅). Finally, M∗ ⊆ M′ contains
the maximum number of colors still assignable to the
agent (i.e. |M∗| ≤ m

n − |ξi|).

ALGORITHM Balance (performed by agent ai)
1. C−1 := ξi := ∅;

For r := 0 to �log p� do

2. Wait for message M from the right; /* the
leader starts the round by setting M := ∅; */

3. M′ := {cj | cj /∈ M ∪ Cr−1 and Qj,i ∈ [lr, ur)};
/* if r = 0, Qj,i ∈ [lr, ur] */

4. Let M∗ be the set with the min{m
n
− |ξi|, |M′|}

colors of highest weight in M′;

5. ξi := ξi ∪ M∗; /* ai updates its own set of
assigned colors */

6. Send message M∪M∗ to the left;

7. Wait for message Mr from the right;

8. Cr := Cr−1∪Mr; /* Update Cr with the colors
assigned in round r */

9. Send message Mr to the left;

10. If Cr = C then stop;

nextfor

Theorem 9 Algorithm Balance finds a feasible solu-
tion to the distributed balanced color assignment prob-
lem in time O(n log p) using O(mn) messages.

Proof. To prove correctness, we show that any as-
signment of colors to agents computed by algorithm
Balance satisfies the two following conditions:

(i) i �= j ⇒ ξi ∩ ξj = ∅;
(ii)

⋃n
i=1 ξi = {c1, . . . , cm}.

(i) Starting from the empty set, the algorithm assigns
new colors to agent ai (by “storing” them in the vari-
able ξi) only in statement 5. A color cj is assigned to ai

only if cj /∈ M∪ Cr−1 (statement 3.), where M∪Cr−1

represents the set of currently assigned colors. Since
balanced color assignment is done sequentially (start-
ing from the leader and following the ring clockwise
�log p� + 1 times) no color can be assigned to two dif-
ferent agents. In this way Balance prevents the assign-
ment of the same color to two different agents.
(ii) If an available color cj of weight Qj,i ∈ [lr, ur)
is not taken by ai during round r, it is only because
ai has enough colors already (statement 4.). However,
this circumstance may not occur at all agents during
the same round (for this would imply that there were
more than m colors). Thus, either the color is taken
by a higher labeled agent in round r, or is “left free”
for agents for which the weight of cj is less than lr.
By iterating the reasoning, we may conclude that, if
not taken before, the color must be eventually assigned
in round �log p� + 1, where agents are allowed to pick
colors for which their weight is zero.

As for the time complexity, algorithm Balance re-
quires O(log p) rounds, and every round lasts 2n time
units. Note, however, that the (r + 1)th round can
start as soon as the leader has sent the message Mr to
its left neighbor, so that the first half of round r + 1
and the second half of round r overlap. This saves a
factor 2 in the time complexity. In addition there are
two preliminary rounds, taking O(n) time.

As far as the message complexity is concerned, it is
easy to see that the number of messages exchanged dur-
ing round r is O(n|Mr|), where Mr is the set of colors
assigned during round r. Therefore the total number
of messages exchanged during the whole algorithm is
O(

∑log p
r=0 n|Mr|) = O(n

∑log p
r=0 |Mr|) = O(nm).

Under certain circumstances, it may be possible to
reduce the actual time bound by avoiding rounds dur-
ing which no colors are possibly assigned to agents. To
this end, we endow algorithm Balance with the fol-
lowing simple preliminary computation, just after the
leader election stage. First, each agent ai constructs
a string si of log p bits such that the rth bit of si

is ‘1’ if and only if there is at least one color cj for
which Qj,i falls in the interval [lr, ur). Second, every
agent computes the string S =

∨n−1
i=0 si in the follow-

ing way: the leader (say, a0) starts by just sending s0 to
its left neighbor; when an agent ai receives the string
Si−1 =

∨i−1
k=1 sk from its right neighbor, it computes

Si = Si−1 ∨ si and forwards it to its left neighbor. A
final round is required to broadcast S to all the agents.

At this point, we can slightly modify algorithm
Balance by simply skipping any round r such that the
rth bit of S is 0. It is easy to observe that the additional
stage requires O(n log p) messages and O(n) time units.
This does not affect the asymptotic complexity of the
whole algorithm, provided that log p/log n ∈ O(m).

5. Approximation Factor of Algorithm
Balance

In this section, for the sake of presentation, we will
first prove that the cost of the solution computed by
algorithm Balance is at most three times the cost of
the optimal solution, and that the analysis is tight. We
will then show how the algorithm can be modified to
achieve a (2 + ε)-approximation ratio for any ε < 1,
without affecting time and message complexities. Fi-
nally, we will show how to modify the algorithm to get
a 2-approximation ratio with a little increase of mes-
sage complexity.

Lemma 10 Let color cj be assigned to agent ai in
round r by algorithm Balance. Let ak be a different
agent with Qj,k ∈ [lr, ur). Then Qj,i ≤ 2Qj,k.

Proof. If r = log p, then Qj,i = Qj,k = 0, and we are
done. Otherwise, as cj is assigned to agent ai in round
r then Qj,i ∈ [lr, ur) and the thesis easily follows from

p

2r+1
≤ Qj,i, Qj,k <

p

2r
.

Let B be the assignment of colors to agents deter-
mined by algorithm Balance, and let OPT be an opti-
mal assignment. Define a partition of the set of colors
based on their indices, as follows:

• C ′ = {j | B(j) = OPT (j)}; i.e., indices of the col-
ors for which the assignment made by algorithm
Balance coincides with (that of) the optimal so-
lution.

• C ′′ = {0, . . . , m − 1} \ C ′.

Lemma 11 Let j ∈ C ′′, and let k �= j be any other
index in C ′′ such that B(k) = OPT (j). Then

Qj,OPT (j) ≤ max{2 · Qj,B(j), Qk,B(k)}.

Proof. First notice that, by a simple cardinality ar-
gument, at least one such k must exist.

Given that j, k ∈ C ′′ and that B(k) = OPT (j), we
easily get B(j) �= B(k). For simplicity, suppose a1 =
B(j) and a2 = B(k). What we have to prove is then
Qj,2 ≤ max{2Qj,1, Qk,2}. Suppose that Qj,2 > Qk,2.
Clearly this happens if and only if agent a1 gets color
cj before a2 can process it, for otherwise a2 would get
cj instead. Now, the “worst” case for a2 is to try to get
cj in the same round (though after) a1. By Lemma 10,
this implies Qj,2 ≤ 2Qj,1.

Theorem 12 Algorithm Balance is a 3-
approximation algorithm for the distributed balanced
color assignment problem.

Proof. Let CostB and CostOPT be the cost of the
solutions given by algorithm Balance and OPT , re-
spectively. We can express these costs in the following
way (for an easy reading, we omit index i’s range, that
is always [0, n − 1]):

CostB

=

m−1∑
j=0

∑
i�=B(j)

Qj,i

=
∑
j∈C′

∑
i�=B(j)

Qj,i +
∑

j∈C′′

∑
i�=B(j)

Qj,i

=
∑
j∈C′

∑
i�=B(j)

Qj,i +
∑

j∈C′′

⎛
⎜⎝Qj,OPT (j) +

∑
i�=OP T (j),

i�=B(j)

Qj,i

⎞
⎟⎠ .

Analogously,

CostOPT

=
∑
j∈C′

∑
i�=OPT (j)

Qj,i +
∑

j∈C′′

⎛
⎜⎝Qj,B(j) +

∑
i�=OP T (j),

i�=B(j)

Qj,i

⎞
⎟⎠ .

By definition, B(j) = OPT (j), for j ∈ C ′, and thus∑
j∈C′

∑
i�=B(j)

Qj,i =
∑

j∈C′

∑
i�=OPT (j)

Qj,i, i.e., the cost associ-

ated with color cj ∈ C ′ is exactly the same for Balance
and OPT . Notice also that the term

∑
j∈C′′

∑
i�=OP T (j)

i�=B(j)

Qj,i

appears in both cost expressions. Hence, to prove that
CostB/CostOPT ≤ 3, it is sufficient to show that

∑
j∈C′′

Qj,OPT (j) ≤ 3
∑

j∈C′′
Qj,B(j).

To this end, we build a partition of the set C ′′ ac-
cording to the following procedure (which corresponds
to decomposing a permutation into the unique prod-
uct of cycles). We start from any j1 in C ′′ and find
another index j2 such that OPT (j1) = B(j2). As al-
ready pointed out in Lemma 11, such an index j2 must
exist. We repeat until, for some t, we get jt = j1. We
then set

C1 = {j1, j2, . . . , jt} .

If C′′ = C1, we stop; otherwise, we pick another in-
dex l1 �∈ C1 and repeat the same procedure to define a
second set C2. We continue until we obtain the parti-
tion

C ′′ = C1 ∪ C2 ∪ . . . ∪ Cs.

Now, for simplicity, let us regard the set Ci also as
the ith cycle of the permutation corresponding to C ′′,
with (j, j′) ∈ C ′′ meaning that (j, j′) is an inversion of
C ′′. Then, using Lemma 11,

∑
j∈C′′

Qj,OPT (j)

=
∑
Ci

∑
(j,j′)∈Ci

Qj,OPT (j)

≤
∑
Ci

∑
(j,j′)∈Ci

max{2 · Qj,B(j), Qj′,B(j′)}

≤
∑
Ci

∑
(j,j′)∈Ci

(
2 · Qj,B(j) + Qj′,B(j′)

)

=
∑

j∈C′′
3Qj,B(j)

Theorem 13 For any 0 < ε < 1, there exist instances
of the distributed balanced color assignment problem
such that COSTB is a factor 3 − 4ε/(4δ + ε) larger
than the optimal cost, for some 0 < δ < 1.

Proof. Consider the following instance of the prob-
lem. For the sake of presentation, our example is given
for the case m = n even, but it is straightforward to ex-
tend it to the general case. Fix any rational 0 < ε < 1,
let q, δ > 0 be such that qε/4 is integer and qδ = �q�.
Assume the colors are distributed as follows:⎧⎪⎪⎨
⎪⎪⎩

Q2i,2i = q(δ + ε/4)
Q2i+1,2i = qδ
Q2i,2i+1 = q(2δ − ε/4)
Q2i+1,2i+1 = 0.

i = 0, 1, . . . ,
n

2
− 1

Suppose that a0 is the leader elected in the first round
of algorithm Balance, and that the label assigned to
agent ai is i, for i = 1, . . . , n − 1. Consider agents a2i

and a2i+1, for any 0 ≤ i ≤ n
2 − 1. We can always

assume that q is such that p
2r+1 ≤ qδ < q(δ + ε/4) <

q(2δ − ε/4) < p
2r , for some r. Hence, the weights of

color c2i for agents a2i and a2i+1 belong to the same
interval

[
p/2r+1, p/2r

)
.

It is easy to see that the optimal assignment gives
c2i+1 to a2i and c2i to a2i+1. The corresponding cost is
CostOPT = n

2 q(δ+ε/4). On the other hand, algorithm
Balance assigns c2i to a2i and c2i+1 to a2i+1, with a
corresponding cost CostB = n

2 q(3δ − ε/4). As for the
approximation factor, we get

CostB
CostOPT

=
3δ − ε

4

δ + ε
4

=
3
(
δ + ε

4

)
δ + ε

4

−
3ε
4 + ε

4

δ + ε
4

= 3− 4ε

4δ + ε
.

Theorem 13 proves that the analysis produced for
algorithm Balance is tight. However, if we are willing
to pay something in message complexity, we can get a
2-approximation algorithm.

Corollary 14 Algorithm Balance can be transformed
into a 2-approximation algorithm, by paying an addi-
tional multiplicative O(log p) factor in message com-
plexity.

Proof. Given round r and for every color cj in Mr,
let aj′ be the agent with maximum Qj,j′ between all
agents a such that p/2r+1 ≤ Qj,j′ < p/2r.

We modify Algorithm Balance to have color cj as-
signed to agent aj′ even if aj′ is not the agent closest to
the leader. Any agent selecting color cj adds the infor-
mation concerning Qj to the outgoing message. This
requires O(log p) extra bits per color and each message
is now a set of pairs (cj , q), such that cj is a color and
there is an agent a for which Qj,j′ = q. The cost anal-
ysis for the modified algorithm is straightforward.

The algorithm and the proof of the approximation
factor (and tightness of approximation) can be modi-
fied to work for any base of the logarithm, giving us
the following result.

Theorem 15 For every 0 < ε < 1, there is a (2 +
ε)-approximation algorithm for the distributed balanced
color assignment with running time O(n log1+ε n) and
message complexity O(mn).

Proof. Use Algorithm Balance with the following
changes: lr =

{
p

(1+ε)r+1

}
, ur =

{
p

(1+ε)r

}
, and

{a

b

}
=

{ �a
b � if a

b > 1
1+ε ;

0 otherwise.

Statements of Lemma 11 becomes

Qj,OPT (j) ≤ max{(1 + ε) · Qj,B(j), Qk,B(k)}

and following the same reasoning as in Theorem 12
we get the (2 + ε) approximation factor.

6. Conclusion

In this paper we have considered the Distributed
Balanced Color Assignment problem, which models
problems where distributed agents search a common
space and need to rearrange or organize the retrieved
data. The question addressed here is intimately related
to different matching problems.

Our results indicate that these kinds of problems can
be solved quite efficiently in a distributed setting, and
that the loss incurred by the lack of centralized control
is not significant. We have focussed our attention to
distributed solutions tailored for a ring of agents. A
natural extension would be to consider more general
topologies, and analyze how our techniques and ideas
have to be modified in order to give efficient algorithms
in these more general settings.

Acknowledgements. The authors wish to thank
Bruno Codenotti for many helpful comments and dis-
cussions.

References

[1] Y. Amir, B. Awerbuch, A. Barak, R.S. Borgstrom,
A. Keren: An Opportunity Cost Approach for Job
Assignment and Reassignment in a Scalable Com-
puting Cluster. IEEE Trans. on Parallel and Dis-
tributed Systems 11:760-768, 2000.

[2] G. J. Chang, P. H. Ho: The β-assignment Prob-
lems. European J. Oper. Research 104:593-600,
1998.

[3] R. S. Chang, R. C. T. Lee: On a scheduling prob-
lem where a job can be executed only by a limited
number of processors. Computers and Operation
Research 15:471-478, 1988.

[4] C. Cramer, T. Fuhrmann, K Kutzner: Scalable
source routing - protocol specification, version 1.0.
Tech. Rep. 2005-4, Faculty of Informatics, Univer-
sity of Karlsruhe, 2005.

[5] D. Dolev, M. Klawe, M. Rodeh, An O(n log n)
Unidirectional Distributed Algorithm for Extrema
Finding in a Circle, J. of Algorithms 3:245-260,
1982.

[6] M. Hanckoviak, M. Karonski, A. Panconesi: On
the distributed complexity of computing maximal
matchings. Proc. of SODA 98, the Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms,
pages 219-225, 1998.

[7] M. Hanckoviak, M. Karonski, A. Panconesi:
A faster distributed algorithm for computing
maximal matchings deterministically. Proc. of
PODC 99, the Eighteenth Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed
Computing, pages 219-228, 1999.

[8] J. E. Hopcroft, R. M. Karp: An n
5
2 Algorithm for

Maximum Matchings in Bipartite Graphs. SIAM
J. Comput. 2:225-231, 1973.

[9] H. W. Kuhn: The Hungarian Method for the
Assignment Problem. Naval Research Logistics
Quarterly 2:83-97, 1955.

[10] J. Könemann, R. Ravi: A Matter of Degree:
Improved Approximation Algorithms for Degree-
Bounded Minimum Spanning Trees. Proc. of
Thirty-Second Annual ACM Symposium on The-
ory of Computing, pages 537-546, 2000.

[11] N. Lynch, Distributed Algorithms. Morgan Kauf-
mann Publishers, San Mateo, CA, 1996.

[12] L. Lovasz, M. D. Plummer: Matching Theory. An-
nals of Discrete Mathematics 29, North-Holland
Mathematics Studies 121, 1986.

[13] D. Peleg: Distributed Computing: A Locality-
Sensitive Approach. SIAM Monographs on Dis-
crete Math. Appl., Philadelphia, PA, 2000.

[14] B. Schieber and S. Moran: Parallel Algorithms for
Maximum Bipartite Matching and Maximum 0-1
Flows. J. of Parallel and Distributed Computing
6:20-38, 1989.

[15] J. S̆ilk, B. Robic̆: Processor Allocation Based on
Weighted Bipartite Matching Scheduling. Techni-
cal Report CSD-97-1, Computer System Depart-
ment, Joz̆ef Stefan Institut, Ljubljana, Slovenia.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
H. Balakrishnan: Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. Proceed-
ings of the 2001 ACM SIGCOMM Conference,
pages 149-160, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

