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Abstract 

The prediction of protein 3D structure has become a 

hot research area in the post-genome era, through which 

people can understand a protein’s function in health and 

disease, explore ways to control its actions and assist 

drug design. Many protein structure prediction 

approaches have been proposed in past decades. Among 
them, Rosetta is one of the best systems. However, the 

huge time complexity of Rosetta, e.g. a few days to predict 

a protein, limits its wide use in practice. 

To accelerate the prediction of protein 3D structure in 

Rosetta, this paper presents three different approaches, 

i.e., non-interactive, periodic interactive and 

asynchronous dynamic interactive scheme, to parallelize 

Rosetta. The asynchronous interactive scheme, with the 

adaptation of dynamic solution interaction, outperforms 

the other two, delivering much faster convergence speed 

and better solution quality. Detailed measurements and 

performance analysis also indicate that parallel Rosetta 

with asynchronous dynamic interactive scheme scales 

well.

1. Introduction 

Prediction of protein 3D structures is one of the most 
important problems in Molecular Biology, which can be 
simply stated as: given the sequence of amino acids of a 
protein, what is the three dimensional structure? 
Biochemists have established that a protein’s spatial 
structure dominates its function. In attempting to 
understand a protein’s function in health and diseases and 
explore ways to control its actions, scientists often first 
determine its spatial structure. 

In biology, the lineal amino acid sequences first fold to 
nonlinear secondary structures (alpha helix, beta sheet and 
loops) and then form tertiary and quaternary structures. 
The protein 3D structure is typically obtained by x-ray 
crystallography or nuclear magnetic resonance 
spectroscopy (NMR), which is costly and very time 

consuming for high-throughput production. Therefore a 
computational solution of this problem, i.e. “protein 
structure prediction”, has been an active research field 
over the last forty years [1,2,3,4,5]. 

Prediction of protein 3D structures directly from their 
amino acid sequences is referred to as “ab initio” method. 
Among existing “ab initio” systems, Rosetta is one of the 
best in the international competition of “Critical 
Assessment of Techniques for Protein Structure 
Prediction” (CASP). Rosetta is developed by the Baker 
laboratory of University of Washington, which uses 
simulated annealing optimization algorithm (SA) to find 
optimum protein tertiary structures[5,6,7]. One of the key 
ingredients of Rosetta is score function that assigns an 
evaluation score to the 3D structure and guides the protein 
structure search toward a protein-like fold by simulated 
annealing. Figure 1 shows one prediction example of 
Rosetta [7]. 

       
Figure 1. Prediction result of Rosetta for T087 

Although Rosetta can predict protein 3D structures 
more accurately, the complex elevation scores and very 
large protein structure search space, or in other words, the 
huge computational requirement inhibits its wide use in 
practice, e.g., it will take a few days to perform a structure 
prediction per protein. In literature, there are little efforts 
to optimize and parallelize Rosetta so as to finish a given 
task in a reasonable time scale. Baker lab of Washington 
Univ. employs a simple parallel scheme, running Rosetta 
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programs independently on 80 machines simultaneously, 
to shorten the computation time. Each machine predicts a 
list of possible protein structures. Then the server node 
clusters all the resulting candidates (roughly 2000~10000 
structures), and selects the largest cluster as the highest 
confidence prediction. This scheme, though simple 
enough in implementation, is not very effective in terms 
of parallel efficiency. One reason is the time to get the 
candidate structures varies a lot for each machine, and all 
the other machines have to wait the one with the longest 
running time before clustering. It incurs a lot of load 
imbalance among the computing machines, and as a 
result, under-utilizes the computation powers. The other 
reason is that some machines may perform useless 
computations when they trap in a local optimal solution of 
the protein structure search of simulated annealing, which 
slows down the whole execution time. 

The contributions of this paper are as follows. 
1) In order to overcome the limitations in the 

existing parallel scheme, we present three 
different data level parallelization schemes to 
improve Rosetta performance based on parallel 
simulated annealing, where the asynchronous 
dynamic interactive scheme exhibits the best 
performance in terms of speed and protein 3D 
structure prediction quality; 

2) The three parallel schemes are implemented with 
the OpenMP parallel programming model and 
measured on a 16-way shared memory 
multiprocessor machine. The experiments show 
that asynchronous interactive scheme is the best 
among all the three schemes. We also conduct 
detailed performance analysis on this scheme. 
The analysis results indicate that the 
asynchronous dynamic interactive scheme has 
very low parallel overhead, delivering a very 
good scaling performance on shared memory 
multiple processor systems. 

The rest of the paper is organized as follows. Section 2 
gives an overview of Rosetta’s structure prediction 
algorithm. Section 3 proposes our parallel Rosetta 
schemes. The experimental results and workload 
characteristics are reported in section 4. Finally, section 5 
summarizes the paper. 

2. Overview of Rosetta 

According to homogeneous theory in biology, similar 
amino acid sequences generally are likely to have the 
similar protein structure. The Rosetta method of ab inito

structure prediction is based on the assumption that the 
local structure of a protein is similar to the structures of a 
segment of amino acid sequences in known protein 
structure database (PDB). As shown in figure 2, each 
amino acid segment may have many possible 3D 

structures called fragments. Rosetta uses “fragment 
insertion technique” to assemble these local structure 
segments into a whole protein structure. Simulated 
annealing optimization algorithm searches the assembled 
optimum structure by an evaluation score that favors a 
protein-like fold, e.g., compact structures and buried 
hydrophobic residues etc. Since the searched protein 
structure space is very large and complex, Rosetta carries 
out a large number of independent simulations. Then 
these resulting structures about 2000~10000 candidates 
are clustered and the centers of the largest clusters are 
selected as the highest confidence predictions. 

(a)Structure fragment library  (b) fragment insertion by SA 

Figure 2. Protein structure prediction by Simulated 
Annealing of Rosetta 

2.1 Evaluation scores 

In biology, a lower energy normally means better 
stability in structure. Given a possible protein structure, 
score functions are used to evaluate whether the structure 
is better than another structure. The score function of 
Rosetta is based on the probability of the structure being 
the native structure given the sequence of amino acids. It 
captures sequence dependent features of protein 
structures, such as the burial of hydrophobic amino acid 
in the core, as well as universal sequence independent 
features, such as the assembly of beta-strands into 
beta-sheets. The main components of score functions are 
defined as following: 
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where aai is the ith amino acid of a protein, rij is the 
distance between the centroids of amino acid i and j, and 
Ei is the structural environment at position i which is 
usually defined in terms of solvent accessibility and 
secondary structure.  

In practice, Rosetta has five main evaluation scores, 
i.e., score0, score1, score2, score3 and score5. Each score 
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consists of weighted sub scores, e.g. score0 = 
vdw_weigth*vdw_score+ env_weight*env_socre+…. 
The scores and their weights are shown in table 1. For 
more information, it can be referred in [5, 6]. 

Table 1. Weights of Score0,1,2,3,5 in Rosetta 

2.2. Simulated Annealing 

The searched protein structure space is very large and 
complex with many local minimums. Rosetta adopts 
simulated annealing algorithm to discover the global 
optimum protein structure. Simulated annealing (SA) is a 
heuristic optimization algorithm for difficult 
combinatorial optimization problems, especially ones 
where a desired global extremum is hidden among many 
poor local extrema[8,9]. 

Figure 3. Simulated Annealing 

The basic idea of SA is to track a Markov chain in the 
feasible solution space of the given optimization problem 
as shown in figure 3. Starting with an initial solution, SA 
repeatedly generates succeeding solutions using a local 
search procedure. The succeeding solution will be accept 
or rejected according to the Boltzmann acceptance 

probability
TCe /

. After some iterations of the local 
search procedure, the temperature is decreased and the 

optimization continues on a new temperature level. When 
the system is frozen to zero temperature, the best solution 
found during the optimization is outputted. An outline of 
the SA algorithm is described as following: 

For Rosetta, S defines the searched protein structure 
space, Cost(.) uses score functions of section 2.1 to 
evaluate how good a protein-like structure is. Perturb(.) 
gets a succeeding structure s* from s by randomly 
replacing the fragment at sequence position i with a new 
local structure fragment. The search path of SA can be 
observed as a Markov chain transition path, i.e., current 
solution only depends on the last previous solution. After 
enough annealing iterations, the discovered best solution 
is outputted as a candidate structure. Since the searched 
protein structure space is very large with many local 
minimums, Rosetta generates enough candidate 
structures, e.g. 2000~10000 structures and selects the 
centers of the largest clusters as the predicted protein 
structures. 

2.3. Flowchart of Rosetta 

There are five main score functions, i.e., score0, 
score1, score2, score 3 and score 5 illustrated in section 
2.1. The kernel module Fold_abinitio of Rosetta uses 
these evaluation scores respectively in four simulated 
annealing processes to refine a 3D protein structure in 
serial. For convenient description, we name the four SAs 
as SA0, SA1, SA2, and SA3. As a whole, Figure 4 shows 
the Rosetta flowchart. Firstly, the Initialize_decoy module 
initializes the parameters and buffers. Then the module 
SA0 generates an initial 3D structure with score0 by 
assembling local fragment structures of known amino 
acid segments. SA1, SA2 and SA3 perform similar 
calculations with different score functions. Each of them 
refines the structure generated in the previous module by 
repeatedly executing the fragment assembly and score 
evaluation until the termination condition is satisfied. The 
Reasonable_structures module filters out impossible 
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PROCEDURE Sequential SA 
BEGIN 
  s  Initial Solution in S 
  T  Initial Temperature T0

  DO 
    DO 
      s*  Perturb(s) 
      C  Cost(s*) - Cost(s) 

      IF C< 0 OR (.)/ randome TC
 THEN 

s  s*

      END IF 
    UNTIL Equilibrium 
    T  Decrement(T) 
  UNTIL Frozen 
END PROCEDURE 



structures by rules. After Fold_abinitio module generates 
enough candidate structures, Clustering module classifies 
these large numbers of candidate structures into a few 
clusters. And the centers of the largest clusters are 
selected as the predicted protein structures. 

(a) Flowchart of Rosetta    (b) Flowchart of fold_abinitio() 

Figure 4. Flowchart of Rosetta 

3. Parallelization of Rosetta 

With the booming of multi-core processor and the 
prevalence of shared memory processing, it is important 
to exploit thread level parallelism within application to 
fully take advantage of multi-core or multi-processor 
processing capability. As experimental data indicates, 
Rosetta spends 99.9% of time in the four simulated 
annealing(SA) processes of Fold_abinitio module. 
Therefore, parallelizing the four SA processes is a 
straightforward way to enhance the whole application’s 
performance.  

Task and data level decomposition are two primary 
schemes to parallelize an application. Specifically, in 
Rosetta, we don’t exploit task level parallelism within 
each SA process due to the strong loop carried data 
dependency between consecutive iterations. Also, we 
don’t exploit task level parallel scheme between adjacent 
SA processes due to dependency. Furthermore, the 
solution quality achieved by task level parallelization is 
not as good as data parallelization scheme, where single 
Markov search path of task level parallelization in global 
search space is more likely to trap in a local optimum than 
multiple Markov search paths in the data level 
parallelization[11]. In addition, task level parallelization 
scheme is more prone to have high communication cost 
due to frequent solution exchanges. 

In order to improve both the execution speed and 
solution quality, we propose a novel data-level 

parallelization scheme, tracing multiple Markov-chain 
search paths within one global search space at the same 
time and allow solution communicate with each other to 
avoid local minimum. First, each processor initializes a 
random selected structure individually, assembles and 
evaluates its temporal solution in one Markov-chain 
search path of the global space. Then, during the process 
of each path searching, each processor communicates 
with each other by exchanging their solutions periodically 
or dynamically. Finally, the best solution among these 
processors is chosen and outputted. According to the 
interaction mode, they can be categorized into 
non-interactive, periodic interactive and asynchronous 
dynamic interactive parallel schemes as shown in figure 
5. 

Figure 5. Parallel Rosetta schemes 

There are several advantages of data parallel scheme 
over the task level decomposition and the naïve parallel 
scheme mentioned before. First, unlike the frequent 
communication pattern in the task level parallelization, all 
the working processors in this scheme are not 
close-coupled with each other. The communications only 
occur in some regular period of iterations, thus 
significantly reducing the high communication cost to 
transfer the state and score among all the processors. 
Second, tracing multiple search paths simultaneously is 
less likely to cause system trapping in a local optimum, 
which makes Rosetta more robust, achieving a much 
quicker convergence speed and better solution quality 
than task level parallelization. Following sections 
describe these three data-level parallelization schemes in 
detail, trying to exploit different communication patterns 
among the working threads. Since asynchronous dynamic 
interaction decreases much communication overhead 
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through asynchronous interaction and has lower 
probability of entering the local minimum, it achieves 
faster convergence speed and better solution quality than 
others. 

3.1. Non-interactive scheme 

In the non-interactive scheme, multiple simulated 
annealing processes run independently on different 
processors. During this period, each process will work 
only on one protein structure, without any interactions 
with other processes, until all the protein structures are 
obtained. After that, the best structure is selected as the 
predicted result.  

The advantage of this parallel scheme is that there are 
multiple Markov chains can be searched at the same time, 
which significantly reduces the possibility of trapping in 
local minimum and delivers a better solution than single 
Markov chain search scheme. However, as mentioned 
before, this scheme also has several disadvantages: first, it 
suffers a lot from load imbalance especially when each 
Markov chain has different time to reach a solution, 
where some processors will be idle waiting for the 
slowest Markov chain searching. Second, some SA 
processes may still trap in local optimum although 
multiple chains provide a much larger searching space in 
practice. As shown in figure 5(a), the black blocks 
represent the time in the waste idle state. Apparently, PE1 
has the longest evaluation time, and the other three 
processes have to wait until PE1 obtains the final result. 

3.2 Periodic interactive scheme 

To overcome the inefficiencies in the non-interactive 
scheme, timely exchanging temporal solutions among 
processors is essential to diminish the load imbalance. 
One possible way is to exchange intermediate structure 
solutions among processors at fixed time interval or fixed 
step iterations, to choose current best structure as a new 
starting point for the following searches. A master node 
will decide the solutions collected from each processor 
and dispatch the best one to them for the following 
searches.  

In this scheme, periodic interaction among processors 
helps SA processes to achieve a quicker convergence time 
with a much lower probability to entering a local 
minimum. However, it still has some imbalance overhead, 
though it has successfully distributed the whole process 
into a number of periodic stages. During the interval of 
two adjacent interactions, these processes will work 
independently similar to the non-interactive scheme. 
While reaching the interaction time, all the processors 
will exchange information and the master node will 
collect all the solutions from each processor and dispatch 
the best one. There will be a mandatory synchronization 

point in the interaction time. Therefore, all the processors 
may still suffer from the load imbalance though not that 
obvious than the non-interactive one. Figure 5 (b) 
displays the periodic interactive parallel scheme. Grey 
blocks represent the stages of collecting, decision and 
dispatching solution in the master node and the black 
blocks are the waiting time in the idle state. It can be 
observed that there is a lot of idle time wasted at the 
synchronization point. 

3.3 Asynchronous dynamic interactive scheme  

As previously described, we can find two critical 
issues: load imbalance and trapping in local minima, 
which are not solved well in above two parallel schemes. 
With the in-depth understanding of the SA algorithm, 
score calculation period, and possible communication 
patterns existed in Rosetta, we propose a novel 
asynchronous dynamic interactive parallel scheme. It uses 
the running profiling information to trigger the interaction 
dynamically. For example, we collect the profiling 
information of the trial number and the acceptance ratio in 
running stage of Rosetta. When a processor’s acceptance 
ratio is below a specified threshold or runs enough trials, 
i.e. the processor arrives at a local optimum or need 
accelerating near a temporal solution for faster 
convergence, it triggers a interaction between the 
processor and the master node. Then the trial number and 
the acceptance ratio of the interacted processor are reset. 

To further reduce the communication cost, the idea of 
latency hiding technique in compiling optimization is 
used to overlap the communication with computations, 
which is called asynchronous communication. In this 
scheme, the global solution in master node saving the 
current best solution among processors is protected by a 
lock. During the interaction, if processor’s protein 
structure is better than the global solution in the master 
node, it updates the global solution with its structure. 
Otherwise it replaces its own solution with the global one. 
Since the interaction seldom occurs at the same time, each 
processor may have a different solution after interaction, 
which reduces the possibility of trapping in the local 
minimum and avoids the frequent communication 
contentions. Figure 5(c) illustrates the asynchronous 
dynamic interactive scheme. Represented by grey blocks, 
different processor adaptively interacts with the master 
node at different time. It is obvious that the black blocks, 
waste idle time, are decreased greatly than figure 5(a) and 
figure 5(b). 

In contrast, the periodic interactive scheme is 
synchronous communication, in which all processors are 
stalled to wait for the solution selection among all 
processors until the interaction completes. Therefore, the 
communication overhead is much larger than the 
asynchronous dynamic interactive scheme. Another 



potential benefit of asynchronous scheme is that each 
processor starts from a different solution, rather than the 
same solution in the synchronous scheme, resulting in a 
much lower probability of entering the local minimum. 

4. Experimental results 

We use OpenMP[13] programming model to 
implement different parallel schemes as illustrated in 
section 3. OpenMP provides a rich set of features to 
simplify the programming efforts to thread the 
application, where the natural “parallel” loops and the 
independence among all the candidate search paths make 
it an ideal case for OpenMP parallelization. Furthermore, 
we use the Intel VTune[12] performance analyzer to 
identify the hot spots in functional profiling, to guide the 
optimization with various techniques, e.g., loop splitting, 
and data structure reorganization. To characterize the 
parallel performance, Intel VTune Thread Profiler[12] is 
used to qualify the low level metrics, i.e., 
synchronization, locks, load imbalance, etc. 

The performance measurement of parallel Rosetta is 
conducted on a 16-way Intel Xeon shared-memory 
multiprocessor system. It has 16 x86 processors running 
at 3.0GHz, 4 levels of cache with each 4MB L4 cache 
shared amongst 4 CPUs. The sizes of the L1, L2 and L3 
caches are 8K, 512K and 4MB respectively. As for the 
interconnect, the system uses two 4x4 crossbars. We use 
Intel 8.0 Fortran OpenMP compiler tool chain to generate 
the executable codes with options –O3 –ipo –openmp, to 
enable the high levels of compiler optimizations. 

For the test data set, we use 4 proteins with different 
scale in protein sequence length. They are 2ptl, l557, l554 
and l560 with 60, 174, 232, and 321 amino acids, 
respectively[6,7]. Due to the random nature of this SA 
application, we use 20 iterative running for a single round 
measurement, and average the results to generate the final 
performance. Two metrics, speedup and score, are both 
used to evaluate the application’s performance, where the 
speedup is defined as follows: 

processorsNon timeProcessing

processoroneon timeProcessing
Speedup                              

Score is the evaluation score of the final solution. To 
make an equal performance comparison, different runs 
should find the equivalent protein 3D structure close to 
the native one. 

4.1. Solution quality comparison of different 

parallel schemes 

As illustrated in section 2.1, the evaluation score 
represents the quality of the predicted structure. The 
lower score, the better protein structure can be achieved. 
In this work, we conducted extensive studies on a number 

of proteins, and all of them exhibit very similar behavior 
and performance. Therefore, we only choose a typical one 
to present the data throughout the rest of the paper. 

Figure 6 shows the solution quality comparison of 
non-interactive, periodic interactive and asynchronous 
dynamic interactive parallel scheme on 16p system, where 
16P_N is the non-interactive scheme, 16P_P is the 
periodic interactive scheme, and 16P_D represents the 
asynchronous dynamic interactive scheme. With the 
incorporation of interactions among different processors, 
the score curve has some irregular behavior, not as 
smooth as the non-interactive one. As indicated from 
figure 6, the two interactive parallel implementations are 
consistently better than the non-interactive scheme, 
yielding better scores and much shorter convergence time 
due to solution interactions among multi-processors. 
Similarly, when comparing the asynchronous dynamic 
interactive scheme with the periodic interactive scheme, 
we also find that the asynchronous dynamic interactive 
scheme is more effective than the periodic interactive one 
due to asynchronous communication and different start 
solutions after interaction. It confirms that asynchronous 
communication of the asynchronous dynamic interaction 
scheme can obtain much better protein structure than 
synchronous communication of the periodic interaction. 
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In principle, each processor of parallel Rosetta 
searches a Markov chain, and multiple chains in Rosetta 
have a much larger search space than one single Markov 
chain. As a result, it can achieve lower score, better 
solution quality and much quicker convergence speed. 
Figure 7 shows the score-time curves of asynchronous 
dynamic interactive parallel scheme for different 
processor number. It uses a log2 scale on X axis. We can 
easily observe that to get the same score, Rosetta with one 
single chain requires much longer time than the parallel 
one. To summarize, parallel Rosetta achieves lower score 
with much quicker convergence with the increase of 
processor number. 

4.2 Performance analysis 

Figure 8 shows asynchronous dynamic interactive 
scheme scales well with the increased number of 
processors, and exhibits almost linear speedup 
performance. However, non interactive scheme and 
periodic interactive scheme scale poorly beyond 8 
processors. 

0

2

4

6

8

10

12

14

16

1p 2p 4p 8p 16p 1p 2p 4p 8p 16p 1p 2p 4p 8p 16p

Non Interactive Scheme Periodic Interactive

Scheme

Asynchronous Dynamic

Interactive Scheme

Figure 8. Speedup performance of different parallel 
schemes 

To deeply understand the scalability limiting factors, 
we characterize the parallel performance from the high 
level general parallel overheads, e.g., synchronizations 
penalties, load imbalance, and sequential sections, to the 
detailed memory hierarchy behavior, e.g., cache miss 
rates and FSB (front side bus) bandwidth.  

Figure 9 depicts the general parallel profiling metrics, 
where “Parallel” means the running time inside the 
parallel region, and “Imbalance” represents time spent 
waiting for other threads to reach the end of a parallel 
region. The higher parallel region, the potential better 
speedup can be achieved on highly-threaded architectures. 
The profiling information suggests that for the 
asynchronous dynamic interactive scheme, there is almost 
no synchronization overhead in parallel Rosetta, the 
sequential area and load imbalance goes up steadily with 
the increase of processor number, but maintains at a 
relatively low percentage. While for the periodic 
interactive scheme and non interactive scheme, as figure 9 

indicates, the load imbalance is more prominent than the 
asynchronous dynamic interactive one, limiting its scaling 
performance especially on 8 and 16 processors. Overall 
speaking, parallel Rosetta with asynchronous dynamic 
interactive scheme is a highly parallel application, and the 
general parallel limiting factors are insignificant and will 
not hinder its scalability performance on 16-way system. 
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Since asynchronous dynamic interactive scheme 
outperforms the other two in terms of speed, protein 3D 
structure prediction quality, and scalability performance, 
we will only study this scheme in the following sections. 

Besides the general scalability performance factors, 
memory subsystem also plays an important role in 
identifying the scaling performance bottlenecks. We 
profile the application with VTune, and performance 
metrics are chosen to be different level cache misses and 
system memory bandwidth. From figure 10, it is 
interesting to see that the cache miss rates vary little with 
the number of processors. Though Rosetta has several 
large data structures (private to thread) not to fit in L2 and 
L3 cache, it only works on a small portion of them. The 
data can be reused in difference phases of score 
calculation, and smaller enough to fit in the L3 cache. The 
regular data access pattern and well-organized data 
structure delivers very good cache performance though it 
has a relatively large memory footprint. 
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Generally speaking, memory bandwidth is a key factor 
which may potentially limit the speedup on more 
processors, especially for the shared memory system with 
snoopy based cache coherency model. However, due to 
the intrinsic data independencies among all search paths 
searching threads, the cache coherency traffics are 
tremendously reduced; coupled with the high cache 
locality performance on the L3 cache, it has a much lower 
memory bandwidth requirement. Figure 11 shows how 
the bus bandwidth utilization varies with the number of 
processors. For all data inputs, the bus bandwidth 
increases linearly with the number of processors, but far 
from the saturation (3.2GB/s) even with 16 processors. 
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To summarize, parallel Rosetta exhibits very good 
scaling performance on symmetric multiple processor 
systems. It is very promising to scale well on more than 
one hundred processors. 

5. Conclusion 

In this paper, we presented a novel asynchronous 
dynamic interactive parallel scheme to accelerate the 3D 
protein structure prediction of Rosetta. Experiments show 
that it has much better performance than several candidate 
parallel schemes, i.e, non-interactive and periodic 
interactive parallel schemes, in both the computation time 
and predicted 3D structure quality. In addition, the 
exploration of different parallel scheme study, in another 
aspect, reveals the effectiveness of parallel simulated 
annealing with interactions among multiple processors. 

Besides its good performance, it also delivers nearly 
linear speedup in the shared memory multi-processor 
system. Detailed performance analysis indicates that 
parallel Rosetta is a compute-bound application, 
displaying very low LLC miss rate and memory 
bandwidth requirement. The general scaling limiting 
factors, e.g., barrier and parallel overhead are almost 
negligible even with up to 16 processors. As a whole, 
parallel Rosetta exhibits a very nice scalability 
performance, which can be expected to scale well on even 
more processors.  

Our future work will include extending parallel 
Rosetta to more than 64 processors to characterize its 
performance on many-core machines, and improving 
parallel scheme by other optimization approaches, e.g. 
parallel simulated tempering and genetic algorithm. 
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