
An Efficient and Scalable Parallel Algorithm for Out-of-Core
Isosurface Extraction and Rendering

Qin Wang1, Joseph JaJa1, Amitabh Varshney2

1University of Maryland 2University of Maryland
Institute for Advanced Computer Studies Institute for Advanced Computer Studies

Dept. of Electrical and Computer Engineering Dept. of Computer Science
College Park, MD 20742 USA College Park, MD 20742 USA

{qinwang, joseph}@umiacs.umd.edu varshney@cs.umd.edu

Abstract

We consider the problem of isosurface extraction
and rendering for large scale time varying data. Such
datasets have been appearing at an increasing rate espe-
cially from physics-based simulations, and can range in
size from hundreds of gigabytes to tens of terabytes. We
develop a new simple indexing scheme, which makes
use of the concepts of the interval tree and the span
space data structures. The new scheme enables isosur-
face extraction and rendering in I/O optimal time, us-
ing more compact indexing structure and more effective
bulk data movement than the previous schemes. More-
over, our indexing scheme can be easily extended to
a multiprocessor environment in which each processor
has access to its own local disk. The resulting parallel
algorithm is provably efficient and scalable. That is, it
achieves load balancing across the processors indepen-
dent of the isovalue, with almost no overhead in the to-
tal amount of work relative to the sequential algorithm.
We conduct a large number of experimental tests on
the University of Maryland Visualization Cluster using
the Richtmyer-Meshkov instability dataset, and obtain
results that consistently validate the efficiency and the
scalability of our algorithm.

1. Introduction

During the past few years, we have seen an in-
creasing trend towards the generation and analysis of
very large time-varying datasets in scientific simula-
tion. Such datasets are characterized by their very
large sizes ranging from hundreds of gigabytes to tens
of terabytes with multiple superposed scalar and vector

fields, demanding an imperative need for new interac-
tive exploratory visualization capabilities. As an exam-
ple of such a dataset that will be referred to extensively
in this paper, consider the fundamental mixing process
of the Richtmyer-Meshkov instability in inertial con-
finement fusion and supernovae from the ASCI team
at the Lawrence Livermore National Labs [1]. This
dataset represents a simulation in which two gases, ini-
tially separated by a membrane, are pushed against a
wire mesh. These are then perturbed with a superpo-
sition of long wavelength and short wavelength distur-
bances and a strong shock wave. This simulation took 9
days on 960 CPUs and produced about 2.1 terabytes of
simulation data. The data shows the characteristic de-
velopment of bubbles and spikes and their subsequent
merger and break-up over 270 time steps. Each time
step is simulated over a 2048×2048×1920 grid, has iso-
surfaces exceeding 500 million triangles with an average
depth complexity of 50. Such high resolution simula-
tions allow elucidation of fine scale physics; in particu-
lar, when compared with coarser resolution cases, the
data allows observations of a possible transition from a
coherent to a turbulent state with increasing Reynolds
number. Although there are a large set of visualiza-
tion systems and techniques, they are usually targeted
for several orders of magnitude smaller datasets, con-
sider the issues of data representation, and visualiza-
tion in a fragmented manner, and do not scale to the
terabyte-sized datasets. Visual interaction with large
databases of dynamic simulation datasets requires the
development of a high-performance graphics software
infrastructure running on powerful visualization plat-
forms with access to large scale storage. In this paper,
we develop provably scalable and efficient strategies for
the parallel out-of-core isosurface extraction and ren-

1-4244-0054-6/06/$20.00 ©2006 IEEE

dering of time-varying scalar fields. Compared with
other published algorithms, our approach has the fol-
lowing advantages:

• Our serial algorithm achieves the same asymptotic
bounds as the optimal algorithms based on the
external memory version of the interval tree, but
with a much smaller indexing structure, a more
effective bulk data movement, and without incur-
ring the significant overhead of the external inter-
val tree.

• Our scheme can be implemented on a multiproces-
sor environment such that the data distribution
across the local disks of the different processors
results in a provably balanced workload irrespec-
tive of the isovalue. As a result, our parallel algo-
rithm is linearly scalable with optimal I/O com-
plexity and no communication is required except
for the final phase of compositing the frame buffers
from the different nodes to generate the final dis-
play. Moreover, the total amount of work across
the different processors is about the same as that
required by our efficient serial algorithm.

• Our experimental results show that we can gener-
ate and render isosurfaces at the rate of 3.5 ∼
4.0M triangles per second on the Richtmyer-
Meshkov dataset using our algorithm on a single
processor. On an 8-node cluster, we achieve scal-
able performance across widely different isovalues
with speed-ups up to 7.83 relative to the serial al-
gorithm.

We make use of the University of Maryland visu-
alization cluster in which each node consists of a 2-
way symmetric multiprocessor with 8GB of main mem-
ory, an NVIDIA GPU (Graphics Processing Unit), cou-
pled with a 60GB of local disk. The nodes are inter-
connected via a 10 Gbps InfiniBand, with four nodes
reserved for compositing the buffer outputs of other
processors and displaying the results on a tiled multi-
projector wall-sized screen.

2. Previous Work

Many improvements to the initial Marching Cubes
algorithm [2] have been reported in the literature.
Some algorithms attempt to reduce the number of cells
examined by using spatial data structures such as oc-
tree [3, 4], while others determine a collection of “seed
cells” and perform contour propagation from these cells
[5, 6], or partition the span space [7]. A theoretically
optimal algorithm was described in [8], and involves

building an interval tree that enables the exploration
of only the active cells (cells that intersect the isosur-
face). This algorithm was later generalized to a the-
oretically optimal out-of-core isosurface extraction in
[9, 10]. As for parallel algorithms for the case when
the data fits within the main memories of the differ-
ent processors, several algorithms have been reported
in [7, 11, 12, 13, 14, 15]. Of more interest to us, are the
out-of-core parallel algorithms such as those reported
in [16, 17, 20, 22, 23]. We proceed to briefly discuss
some of the most recent algorithms and relate them to
the work described in this paper.

A parallel out-of-core algorithm has to deal with (i)
data indexing and layout among the parallel disks avail-
able through the parallel system; (ii) determining ac-
tive cells and generating the corresponding triangles
using the available processors; and (iii) rendering and
displaying the output. Critical factors that influence
the performance include the amount of work required
to generate the index and organize the data (prepro-
cessing step); the relative computational loads of the
different processors corresponding to an arbitrary iso-
value; and the performance of the rendering and raster-
ization into a single display. The preprocessing step de-
scribed in [10, 17, 18] involves partitioning the dataset
into metacells, where each metacell is a cluster of neigh-
boring cells and occupies about the same number of
disk blocks, and building a B-tree like interval tree,
called Binary-Blocked I/O interval tree (BBIO tree).
The computational cost of this step is similar to an ex-
ternal sort, which is not insignificant. The isosurface
generation requires that a host traverses the BBIO tree
to determine the indices of the active metacells, after
which jobs are dispatched on demand to the available
processors. A significant bottleneck with this scheme is
the host overhead in coordinating and dispatching jobs,
and the access pattern to the available disks is quite un-
predictable. The algorithm described in [21] attempts
to solve the load balancing problem by distributing the
data based on a range space partition. The range of
possible field values is partitioned into a number of in-
tervals. Blocks are then assigned to triangular matrix
entries depending on which intervals a block spans. An
external interval tree (BBIO tree) is then built sepa-
rately for the data on each processor. It is easy to see
that one can have a case in which the distribution of
active cells among the processors for a given isovalue
could be extremely unbalanced. The query processing
described in that paper is somewhat similar to ours
but we provably achieve load balancing for any iso-
value using an indexing scheme that is in general more
efficient than the external interval tree. The extracted
local surface is streamed to parallel rendering servers,

followed by compositing the outputs of the different
frame buffers to a tiled-display. The preprocessing al-
gorithm described in [22] is based on partitioning the
range of scalar values into equal-sized subranges, creat-
ing afterwards a file of subcubes for each subrange. The
blocks in each range file are then distributed across the
different processors, based on a work estimate of each
block. As in [22], the preprocessing is computation-
ally non-trivial and load-balancing is not guaranteed
in general.

3. Computational Model

Due to their electromechanical components, disks
have two to three orders of magnitude longer access
time than random-access main memory. In order to
amortize the access time over a large amount of data,
a single disk access reads or writes a block of contigu-
ous data at once, typically of size 4KB or 8KB. We will
use the standard model [24] to measure the I/O perfor-
mance of our algorithms. We denote the input size by
N , the disk block size by B, and the size of the main
memory by M . In this work, we are assuming that N
is much larger than M , which is in turn much larger
than B. The performance of an external memory al-
gorithm is measured by the number of I/O operations,
each such operation involving the reading or writing of
a single disk block. As a result, scanning contiguously
the input data requires O(N/B) I/O operations.

An I/O optimal algorithm for extracting isosurfaces
has been reported in [9, 10]. Its I/O complexity is
O(logB(N/B) + T/B), where T is the total size of the
cells satisfying the query relative to the given isovalue.
The first term of the I/O complexity reflects the num-
ber of I/O accesses required to traverse the external
version of the interval tree corresponding to the in-
put data, and the second term captures the minimum
number of I/O accesses required to read the active cells.
We will next describe our indexing structure, called the
compact interval tree, which is in general much smaller
than the standard interval tree and can also be used to
achieve asymptotically optimal I/O complexity.

4. Compact Interval Tree Indexing
Scheme

Our algorithm can handle both structured and un-
structured grids and makes use of the metacell notion
introduced in [10]. In general, a metacell consists of
a cluster of neighboring cells. All the metacells are
about the same size, which is a small multiple of the
disk block size. In particular, for the regular grid of

the Richtmyer-Meshkov dataset, our metacell consists
of a subcube of size 9 × 9 × 9, represented by a list
of the scalar values appearing in a predefined order.
Our indexing structure and isosurface query algorithm
are designed upon the concept of metacells. With each
metacell, we associate an interval (vmin, vmax) corre-
sponding respectively to the minimum and maximum
values of the scalar field over the metacell. Our com-
pact interval tree structure makes use of the span space
data structure to compact the data layout. Before in-
troducing this structure, we begin with a brief review
of the standard binary interval tree.

Given a set of intervals, we store the median of the
the endpoints of the intervals at the root and assign
all the intervals containing that value to the root . We
then recursively build the left and right subtrees cor-
responding respectively to the intervals completely to
the left and the right of the value stored at the root.
More specifically, each node of the tree holds a split-
ting value vm and two secondary lists of the intervals
(vmin, vmax) satisfying the condition vmin ≤ vm ≤ vmax,
one list in increasing order of vmin values and the sec-
ond in decreasing vmax values. The remaining intervals
with vmax < vm are assigned to the left subtree while
the intervals with vm < vmin are assigned to the right
subtree.

Our compact interval tree is similar to the interval
tree except that we don’t store the two sorted lists of
intervals at each node. Instead, we store the distinct
values of the vmax endpoints of these intervals, sorted
in decreasing order, and associate with each such value
a list of the left endpoints sorted in increasing order.
We now explain the compact interval tree in the con-
text of the isosurface problem and its relationship to
the metacells generated from the input data. Consider
the span space consisting of all possible combinations
of the (vmin, vmax) values of the scalar field. With each
such pair we associate a list containing the metacells
whose minimum scalar field value is vmin and whose
maximum scalar field value is vmax. The essence of
the scheme for our compact interval tree is illustrated
through Figure 1 representing the span space, and Fig-
ure 2 representing the compact interval tree built upon
the n distinct values of the endpoints of the intervals
corresponding to the metacells. Let vm0 be the me-
dian of all the endpoints. The root of the interval tree
corresponds to all the intervals whose vmin values fall
in the range [v0, . . . , vm0], and whose vmax values fall in
the range [vm0, . . . , vn]. Such intervals are represented
as points in the square of Figure 1 whose bottom right
corner is located at (vm0, vm0). We group together all
the metacells having the same vmax value in this square,
and store them consecutively on disk from left to right

Figure 1. Span Space Partitioning Scheme for
Our Indexing Structure.

Figure 2. Binary Tree Structure and the Asso-
ciated Metacell lists.

in increasing order of their vmin values. We will re-
fer to this contiguous arrangement of all the metacells
having the same vmax value within a square as a brick.
The bricks within the square are in turn stored consec-
utively on disk in decreasing order of the vmax values.
The root will contain the value vm0, the number of
non-empty bricks in the corresponding square, and an
index list of the corresponding bricks. This index list
consists of at most n/2 entries corresponding to the
non-empty bricks, each entry containing three fields:
the vmax value of the brick, the smallest vmin value
of the metacells in the brick, and a pointer that indi-
cates the start position of the brick on the disk. Each
brick contains contiguous metacells in increasing order
of vmin values, and each metacell consists of its vmin

value, its location information such as metacell ID, and
a list of the scalar field values of the vertices(in a prede-
fined order) within the metacell. We recursively repeat
the process for the left and right children of the root.
We will then obtain two smaller squares whose bottom
right corners are located respectively at (vm10, vm10)
and (vm11, vm11) in the span space, where vm10 and
vm11 are the median values of the endpoints of the in-
tervals associated respectively with the left and right
subtrees of the root. In this case, each child will have at
most n/4 non-empty index entries associated with its
corresponding bricks on the disk. This recursive pro-
cess is continued until all the intervals are exhausted.
At this point we have captured all possible (vmin, vmax)
pairs and their associated metacell lists.

Note that the size of the standard interval tree is
at least twice the size of our indexing structure, and is
usually much larger. We can upper bound the size of
our compact interval tree as follows. There are at most
n/2 index entries at each level of the compact interval
tree and the height of the tree is no more than log2n.
Hence our compact interval tree consists of O(n log n)
index entries, each entry having three fields. Therefore
the total size of our compact interval tree is O(n log n),
while the size of the standard interval tree is Ω(N),
where N is the total number of intervals and hence
can be as large as Ω(n2). Note that the size of the
preprocessed dataset will not increase relative to the
original data size. In fact, it may be smaller as we do
not include any of the metacells whose maximum and
minimum scalar field values are equal. As we demon-
strate later, this is indeed the case for the Richtmyer-
Meshkov dataset, which results in a processed data set
almost half the size of the original data set.

5. Efficient and Scalable Isosurface Ex-
traction Algorithm

Let’s first consider the case when the compact in-
terval tree fits in main memory, i.e., M = O(n log n).
Given a query isovalue λ, consider the unique path from
the leaf node labeled with the largest value ≤ λ to the
root. Each internal node on this path contains an in-
dex list with pointers to some bricks. For each such
node, two cases can happen depending on whether λ
belongs to the right or left subtree of the node.

Case 1: λ falls within the range covered by the
node’s right subtree. In this case, the active meta-
cells associated with this node can be retrieved from
the disk sequentially starting from the first brick until
we reach the brick with the smallest value vmax larger
than λ.

Case 2: λ falls within the range covered by the
node’s left subtree. The active metacells are those
whose vmin values satisfy vmin ≤ λ, from each of the
bricks on the index list of the node. These metacells
can be retrieved from the disk starting from the first
metacell on each brick until a metacell is encountered
with a vmin > λ. Note that since each entry of the
index list contains the vmin of the corresponding brick,
no I/O access will be performed if the brick contains
no active metacells.

It is clear that the performance of our algorithm is
I/O optimal under the assumption that the compact
interval tree fits in main memory. This assumption is
very likely to hold given the small size of our indexing
structure and the ever increasing sizes of main memo-
ries. Note that for one, two, or three-byte scalar fields,
the compact interval tree will fit in the main mem-
ory of any of today’s processors regardless of the size
of the collection and the variations in the scalar field
values. This is not the case for the standard interval
tree, even for two-byte scalar fields. In Table 1 below
we compare the sizes of the two indexing structures
for some well-known data sets, including the datasets
Bunny, MRBrain, and CTHead from the Stanford Vol-
ume Data Archive [25]. As can be seen from the table,
our indexing structure is substantially smaller than the
standard interval tree, even in the case of N ≈ n such
as Pressure and Velocity data sets.

In the unlikely case when the compact interval tree
does not fit in main memory, we use the same strat-
egy as in [10] and group each B nodes of the binary
tree into one disk block thereby reducing the height
of the tree to O(logB n), which is then stored on the
disk. As in [10], we can then retrieve the active meta-
cells in asymptotically optimal I/O time but using a
significantly more complex algorithm.

Once an active metacell is in memory, any of the sev-
eral variations of the Marching Cube algorithm can be
used to precisely determine the active cells within the
metacell and generate the appropriate triangles defin-
ing the isosurface.

5.1. Parallel Processing

Our indexing scheme can be easily adapted to a mul-
tiprocessor environment in which each node has access
to its own local disk. Assume that we have p proces-
sors, each with its own local disk, and the processors
are interconnected with a high-speed interconnection
network. We now show how to distribute the meta-
cells among the local disks in such a way that the ac-
tive metacells corresponding to any isovalue are spread
evenly among the processors. For each index in our

structure, we stripe the metacells stored in a brick
across the p disks, that is, the first metacell on each
list is stored on the disk of the first processor, the sec-
ond on the disk on the second processor, and so on
wrapping around as necessary. For each processor, the
indexing structure will be constructed as before except
that each entry contains the vmin of the metacells in
the corresponding local brick and a pointer to the local
brick.

It is clear that, for any given isovalue, the active
metacells are spread almost evenly among the local
disks of the p processors. The isosurface query can be
carried out simultaneously by all the p processors using
their own local index lists. As a result roughly the same
number of triangles is generated by each processor,
which are then rendered locally. The p frame buffers
will then be merged using their depth information to
create the final output. Except for the very last step,
we have provably split the work equally among the
processors, without increasing the total work relative
to the sequential algorithm. For large scale datasets
such as the Richtmyer-Meshkov dataset, the last step
involves the movement of data that is orders of mag-
nitude smaller than the total size of the triangles, and
hence can be done extremely quickly given a high-speed
interconnection network as will be illustrated later.

5.2. Extension to Time-varying Data

Our scheme can be easily extended to deal with large
scale time-varying data as follows. We have shown that
the size of our indexing structure is O(n log n) for a
single time step during which there are n distinct val-
ues of the endpoints of the intervals corresponding to
the metacells. To index time-varying data of m time
steps, we can use the same indexing scheme for each

time step separately resulting in an indexing structure
of size O(mn log n). Note that the size of the indexing
structure depends only on the number of time steps,
which is typically small, say in the order of hundreds
and rarely in the thousands, but independent of the
total number of cells of the given dataset. For exam-
ple, one-byte scalar data with hundreds of time steps
will require an indexing structure of size at most 1MB,
which can easily fit in the main memory of any of to-
day’s processors. Similarly for two-byte scalar data,
the size of the indexing structure increases to hundreds
of Megabytes, which is still reasonable and can easily
fit in today’s processors’ main memory. In the case of
Richtmyer-Meshkov data set, we have 270 time steps
with 7.5GB per time step, which amounts to a total
of about 2.1TB. However the total size of our indexing
structure is only 1.6MB.

6. Experimental Setup

Our platform consists of a 16-Node visualization
cluster, each node consists of a 2-way SMP Dual-CPU
running at 3.0 GHz, an 8GB main memory, a 60GB
local disk that can achieve 50 MB/sec I/O transfer
rate, and one NVIDIA FX6800Ultra GPU card with
bi-directional 4Gbps data transfer rate to memory via
PCI-Express (×16) Bus. The GPU communicates with
CPU and RAM via MCH(Memory Controller Hub).
These 16 Nodes are inter-connected through 10 Gbps
Topspin InfiniBand network. In addition, four nodes
are connected to four projectors for a four-way tiled
wall-sized display via their GPU card’s DVI port. The
architecture of a single node is illustrated in Figure 3.
As a visualization cluster, each node of the system
can run graphics programs and dispatch OpenGL com-
mands to its GPU for rendering. The system software
configuration includes Redhat Linux Enterprise 3.0,
MPI, and the Chromium package to enable the parallel
rendering among multiple rendering nodes. Chromium
intercepts OpenGL command calls from the processors
and sends them to proper rendering servers according
to the tiled-display layout [28, 29]. For parallel render-
ing, we use the sort-last method [30]. The essence of
this method is to have each node render its triangles lo-
cally using the on-board GPU, after which the output
is read back from the GPU’s frame buffer and sorted
according to the display server’s tile layout. Different
regions of the frame buffer including the z-buffer con-
tent are forwarded to the appropriate rendering servers,
each of which will be responsible for displaying a spe-
cific region on the wall-sized display. At each render-
ing server, the components of the frame buffers from
various processors are composited using their z-buffer

contents and rendered to the display device connected
to server’s GPU. In our experiments, the time of sort-
ing and shuffling the frame buffers among various nodes
via 10 Gbps InfiniBand doesn’t cause a noticeable over-
head compared to time it takes to extract and render
the triangles at each node.

Figure 3. The Visualization Cluster Architec-
tural diagram. (Courtesy from Intel)

7. Experimental Results

We have used the Richtmyer-Meshkov dataset to
test our isosurface extraction algorithm based on the
indexing scheme described earlier. This dataset con-
sists of 2048 × 2048 × 1920 one-byte scalar values for
each time step and spans 270 time steps. The data
amounts to 7.5GB for each time step for a total of
2.1TB. Figure 4 illustrates the isosurface generated for
the isovalue 190 at time step 250 from a down-sampled
version of the dataset with 256 × 256 × 240 one-byte
scalar values. During the data preprocessing stage, we
scan the data once and create the metacells, where each
metacell consists of a 4-byte ID indicating the location
of the metacell, 9 × 9 × 9 one-byte scalar values of the
vertices, and the minimum value of the metacell ver-
tices. At this point, the original data has been con-
verted to 256× 256× 240 metacells, each of length 734
bytes. We remove all the metacells for which all the
vertices have the same scalar value. For our dataset,
this results in a dramatic saving of approximately 50%
of disk space. Using our indexing scheme, we can create
the indexing lists and corresponding bricks and stripe
the corresponding metacells among the disks of the var-
ious processors as explained before. Each node of the
visualization cluster holds an indexing structure with

pointers to the bricks stored on its local disk. For a sin-
gle time step, this preprocessing takes about 30 minutes
to complete on a single node of our cluster. We have
done extensive testing of our algorithm using a wide
range of isovalues as well as single and multiple nodes.
A summary of our experimental results is given next.

Figure 4. Isosurface corresponding to the
isovalue 190 at time step 250 from a down-
sampled version of size 256× 256× 240 of the
Richtmyer-Meshkov dataset.

7.1. Single Time Step Case

We tested our scheme on a single time step of
the Richtmyer-Meshkov dataset using isovalues rang-
ing from 10 up to 210, in steps of 20. For each of
these cases, we ran the algorithm on one, two, four
and eight nodes. We evaluate the performance of our
isosurface extraction algorithm according to the follow-
ing three metrics: (i) the I/O time it takes to retrieve
the active metacells from the disk, referred to as Ac-
tive MetaCell(AMC) Retrieval time; (ii) the amount
of CPU time required to go through the active meta-
cells and generate the appropriate triangles, referred
to as Triangulation time; and (iii) finally the render-
ing time, which reflects the time it takes to render the
triangles on the local GPU, after which the different
frame buffers are composited to generate the final dis-
play. The actual times obtained are summarized in
Tables 2 through 7.

After preprocessing the dataset for time step 250, we
obtain 5, 592, 802 metacells that occupy a space of size
3.828GB, which is nearly 50% smaller than the original
7.5GB size.

We first consider the performance of our algorithm

on a single processor. From Table 2, we can see that
the number of generated triangles varies from 100 mil-
lion to 650 million over the range of isovalues from 10
to 210. Our indexing structure is of size 6KB, which is
quite small compared to the size of the data. As shown
in Table 2, we are able to achieve the I/O rate of about
50MB/s in retrieving the active metacells, with a lin-
ear relationship between the I/O time and the number
of triangles generated. It is clear that the triangle gen-
eration stage is the bottleneck for the whole isosurface
extraction as we need to go through each of the unit
cells within an active metacell to generate the triangles
as necessary. Once the triangles are generated, they are
rendered on the GPU very quickly. As a result we were
able to extract and render isosurfaces at the rate of al-
most 4 million triangles per second. Table 3 shows the
performance when the algorithm runs on two nodes,
while Tables 4 and 5 report the performance of each
node on a four-node and eight-node combination for
a wide range of isovalues respectively. Notice that the

overall speedup ranges from 3.54 to 3.97 on four nodes,
which is very close to the ideal linear speedup relative
to our extremely efficient algorithm on a single node.
Similarly the speedups on eight nodes range between
6.91 to 7.83.

To shed more light on the fact that we achieve a
very good load balancing across the various nodes, the
distributions of active metacells and the generated tri-
angles across four nodes are shown respectively in Ta-
bles 6 and 7 for a wide range of isovalues. Both tables
show that our scheme achieves a very good load balanc-
ing irrespective of the isovalue. The overall time spent
on the extraction and rendering of isosurfaces for vari-
ous isovalues is shown in Figure 5. The corresponding
speedups are illustrated in Figure 6. As expected, our
scheme achieves very good scalability relative to our
extremely efficient serial algorithm, independent of the
particular isovalue.

7.2. Time-varying Case

We now consider the more general case of time-
varying datasets that are to be explored by extract-
ing and rendering isosurfaces corresponding to a time
step and an isovalue. We can index the 270 time steps
of the Richtmyer-Meshkov dataset using our indexing
scheme. The size of the resulting indexing structure is
1.6MB, which easily fits into the main memory of a
node. The layout of the data of each time step will be
distributed across the processors as before. Extracting
an isosurface of a time step amounts to determining
the appropriate indexing structure for that time step,
which can easily be performed since the whole indexing
structure is in main memory. Table 8 shows the results
for time steps 180 through 195 for the isovalue of 70.
Each row of the table lists the number of active meta-
cells, the number of triangles generated, the execution
time on a four-node configuration, and the overall rate
of triangles rendered (millions per second).

Figure 5. Overall Time of up to eight proces
sors over a range of Isovalues.

8. Conclusion

In this paper, we have presented a new indexing
scheme for out-of-core isosurface extraction and render-
ing of large scale data. The indexing scheme is based
on a compact version of the interval tree that makes use
of the span space data structure. The data is arranged
in a compact layout on the disk, which enables optimal
I/O performance. The size of our indexing structure is
O(n log n) compared to Ω(N) for the standard inter-
val tree, where N is the number of all possible pairs of
scalar field values appearing in metacells and n is the
number of their distinct endpoints. We have shown
that our indexing structure can easily be adapted to
a multiprocessor environment, provably delivering an
efficient and scalable performance. The algorithm was
tested extensively on the Richtmyer-Meshkov dataset,
and its performance consistently agrees with the anal-
ysis reported in the paper.

Acknowledgements

We would like to thank Fritz McCall and Brad Erd-
man for setting up the visualization cluster, Derek
Juba and Youngmin Kim for their help in configur-
ing various software packages. We also would like to
acknowledge Mark Duchaineau at the Lawrence Liver-
more National Lab for making the Richtmyer-Meshkov
instability dataset available to us and for guiding us
through the initial stages of using it. This work was
supported by the NSF research infrastructure grant
CNS-04-03313.

Figure 6. Corresponding Speedups of up to
eight processors over a range of Isovalues.

References

[1] http://www.llnl.gov/CASC/asciturb/
[2] W. E. Lorensen and H. E. Cline. Marching Cubes:

A high resolution 3D surface construction algorithm.
In Maureen C.Stone, editor. Computer Graphics (SIG-
GRAPH ’87 Proceedings), vol. 21, pp. 161–169, July
1987.

[3] J. Wilhelms and A.Van Gelder. Octrees for faster iso-
surface generation. In Computer Graphics(San Diego
Workshop on Volume Visualization), vol. 24, pp. 57–
62, 1990.

[4] P. M. Sutton and C. D. Hansen. Isosurface extraction
in time-varying fields using a temporal branch-on-need
tree (T-BON). In IEEE Visualization ’99, IEEE Com-
puter Society Press, pp. 147–154, Oct. 25–29 1999.

[5] C. L. Bajaj, V. Pascucci, and D. R. Schikore. Fast iso-
contouring for improved interactivity. In 1996 Volume
Visualization Symposium, pp. 39–46, Oct 1996.

[6] T. Itoh and K. Koyamada. Automatic isosurface prop-
agation using an extreme graph and sorted boundary
cell lists. In IEEE Transactions on Visualization and
Computer Graphics, 1(4): pp. 319–327, Dec 1995.

[7] H. W. Shen, C. D. Hansen, Y. Livnat and C. R.
Johnson. Isosurfacing in span space with utmost effi-
ciency(ISSUE). In IEEE Visualization’96, pp. 281–294,
Oct 1996.

[8] P. Cignoni, C. Montani, D. Darti and R. Scopigno. Op-
timal isosurface extraction from irregular volume data.
In Proceedings of the 1996 symposium on Volume visu-
alization, pp. 31–38 San Francisco,USA 1996.

[9] Y–J. Chiang and C. T. Silva. I/O optimal isosurface
extraction. In Proceedings IEEE Visualization, pp. 293–
300, 1997.

[10] Y–J. Chiang, C. T. Silva and W. J. Schroeder. Inter-
active out-of-core isosurface extraction. In Proceedings
IEEE Visualization, pp. 167–174, 1998.

[11] C. Hansen and P. Hinker. Massively parallel isosur-
face extraction. In Proc. IEEE Visualization, pp. 77–83,
1992.

[12] P. Ellsiepen. Parallel isosurfacing in large unstructured
datasets. In Visualization in scientific computing ’ 95,
pp. 9–23, Springer Verlag, 1995.

[13] S. Parker, P. Shirley, Y. Livnat, C. Hansen and P.-P.
Sloan. Interactive ray tracing for isosurface rendering.
In IEEE Visualization ’98, pp. 233–238, Oct 1998.

[14] T. S. Newman and N. Tang. Approaches that ex-
ploit vector-parallelism for three rendering and volume
visualization techniques. In Computer and Graphics,
Vol. 24, no. 5 pp. 755–774, 2000.

[15] S. Miguet and J. M. Nico. A load-balanced parallel
implementation of marching-cubes algorithm. In Pro-
ceedings of High performance computing Symp. ’95, pp.
229–239, 1995.

[16] C. L. Bajaj, V. Pascucci, D. Thompson and X. Zhang.
Parallel accelerated isocontouring for out-of-core visu-
alization. In Proceedings of 1999 IEEE Parallel Vis.
and Graphics Symp., pp. 97–104, 1999

[17] Y–J. Chiang, R. Farias, C. Silva and B. Wei. A
unified infrastructure for parallel out-of-core isosurface
and volume rendering of unstructured grids. In Proc.
IEEE Symp. on parallel and large-data visualization and
graphics, pp. 59–66, 2001

[18] Y. Chiang and C. Silva. External memory tech-
niques for isosurface extraction in scientific visualiza-
tion. In External Memory Algorithms and Visualiza-
tion, Vol. 50, pp. 247–277, DIMACS Book Series, Amer-
ican Mathematical Society, 1999

[19] L. Arge and J. S. Vitter. Optimal Dynamic Interval
Management in External Memory (extended abstract).
In IEEE Symposium on Foundations of Computer Sci-
ence, pp. 560–569, 1996.

[20] C. Silva, Y. Chiang, J. El-Sana and P. Lindstrom. Out-
of-core algorithms for scientific visualization and com-
puter graphics. In Visualization’02, Course Notes for
Tutorial #4, 2002.

[21] X. Zhang, C. L. Bajaj and W. Blanke. Scalable isosur-
face visualization of massive datasets on cots clusters.
In Proc. IEEE Symposuim on parallel and large-data
visualization and graphics, pp. 51–58, 2001.

[22] H. Zhang and T. S. Newman. Efficient Parallel Out-
of-core Isosurface Extraction. In Proc. IEEE Sympo-
sium on parallel and large-data visualization and graph-
ics (PVG) ’03, pp. 9–16, Oct. 2003.

[23] X. Zhang, C. L. Bajaj and V. Ramachandran. Par-
allel and out-of-core view-dependent isocontour visual-
ization using random data distribution. In Proc. Joint
Eurographics-IEEE TCVG Symp. on visualization and
graphics, pp. 9–18, 2002.

[24] A. Aggarwal and J. S. Vitter. The input/output com-
plexity of sorting and related problems. In Communi-
cations of the ACM, 31(9), pp.1116–1127, 1988.

[25] http://graphics.stanford.edu/data/voldata/
[26] http://vis.computer.org/vis2004contest/data.html
[27] http://vis.computer.org/vis2006/
[28] http://chromium.sourceforge.net/
[29] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ah-

ern, P. Kirchner and J. Klosowski. Chromium: A
Stream Processing Framework for Interactive Render-
ing on Clusters. In Proceedings of SIGGRAPH 2002,
pp. 693–702, 2002.

[30] S. Molnar, M. Cox, D. Ellsworth and H. Fuchs. A
Sorting Classification of Parallel Rendering. In IEEE
Computer Graphics and Applications, Vol. 14, No. 4,
pp. 23–32, July 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

