
Collective Operations in NEC’s High-performance MPI Libraries

Hubert Ritzdorf, Jesper Larsson Träff

C&C Research Laboratories, NEC Europe Ltd.

Rathausallee 10, D-53757 Sankt Augustin, Germany

{ritzdorf,traff}@ccrl-nece.de

Abstract

We give an overview of the algorithms and implementa-

tions in the high-performance MPI libraries MPI/SX and

MPI/ES of some of the most important collective opera-

tions of MPI (the Message Passing Interface). The infras-

tructure of MPI/SX makes it easy to incorporate new al-

gorithms and algorithms for common special cases (e.g.

a single SX node, or a single MPI process per SX node).

Algorithms that are among the best known are employed,

and special hardware features of the SX architecture and

Internode Crossbar Switch (IXS) are exploited wherever

possible. We discuss in more detail the implementation of

MPI Barrier, MPI Bcast, the MPI reduction collec-

tives, MPI Alltoall, and the gather/scatter collectives.

Performance figures and comparisons to straightfor-

ward algorithms are given for a large SX-8 system, and

for the Earth Simulator. The measurements show excel-

lent absolute performance, and demonstrate the scalability

of MPI/SX and MPI/ES to systems with large numbers of

nodes.

1 Introduction

As usage of MPI, the Message Passing Interface [5, 14],

in applications is maturing, also the so-called collective op-

erations are gaining in importance, and MPI libraries should

strive to incorporate the best possible algorithms with the

best possible implementations. This is reflected in much re-

cent activity on improving the performance of the collective

operations in both public domain and vendor MPI libraries,

see for instance [1, 3, 10, 15, 16, 17]. From the outset the

NEC MPI/SX implementation for the SX series of parallel

vector supercomputers has emphasized efficient, hardware

specific implementations of the MPI collectives [4, 8], and

in this respect MPI/SX is among the most advanced imple-

mentations of the MPI standard. In this paper we summa-

rize recent developments to the implementation of the MPI

collectives in MPI/SX and MPI/ES, and illustrate the per-

formance of basic collective operations on recent NEC sys-

tems, namely the 72 node SX-8 system at HLRS (Hochleis-

tungsrechenzentrum Stuttgart, Germany, and the Earth Sim-

ulator (ES) in Yokohama, Japan.

MPI/SX is developed at the NEC C&C Research Labo-

ratories in St. Augustin, Germany, in collaboration with 1st

Computers Software Division in Fuchu. The starting point

for MPI/SX in 1997 was the then current MPICH imple-

mentation [7], but MPI/SX has since then evolved in its own

directions. Since 2000 MPI/SX implements the full MPI-2

standard [23].

2 Principles and techniques

The collective operations of MPI perform synchroniza-

tion, communication, and computation operations over

given sets of MPI processes which in MPI are repre-

sented by distributed objects called communicators. Each

collective operation must be called by all processes in

the given communicator, and upon return the operation

is completed from the returning process’ point of view.

Examples of such collective operations are barrier syn-

chronization (MPI Barrier), broadcast (MPI Bcast),

in which data from a given root process are distributed to

the other processes in the communicator, all-to-all com-

munication (MPI Alltoall), in which all processes ex-

change data with all other processes, and reduction-to-root

(MPI Reduce). The MPI standard has 16 collective oper-

ations [14], capturing common communication and reduc-

tion patterns on both regular (i.e. same amount of data per

process) and irregular data sets.

Multi-node SX systems are clustered systems of shared

memory nodes with 8 vector processors per node, intercon-

nected by the high-performance Internode Crossbar Switch

(IXS) for communication between processors on different

nodes. Processors on the same shared memory node com-

municate via the shared memory, and the memory system is

sufficiently powerful that all processors can read and write

1-4244-0054-6/06/$20.00 ©2006 IEEE

MPI/SX on SX-8

Comm. Buf. Latency Bandwidth

Intra local 1.6µs 28.1GBytes/s
global 1.6µs 30.7GBytes/s

Inter local 4.7µs 11.7GBytes/s
global 4.7µs 15.0GBytes/s

MPI/ES on Earth Simulator

Comm. Comm. buf. Latency Bandwidth

Intra local 2.0µs 14.4GBytes/s
global 2.0µs 15.8GBytes/s

Inter local 5.2µs 9.3GBytes/s
global 5.2µs 12.2GBytes/s

Table 1. Communication latency/bandwidth
for intra- and inter-node communication with
MPI/SX and MPI/ES. Communication buffers
are placed either in MPI process local memory or

in special, non-swappable global memory.

to/from memory at the same time. The shared memory

nodes are not cache-coherent, but vector loads read directly

from memory, which can be exploited to implement the nec-

essary MPI level coherence. The IXS is a full, single-stage

bidirectional crossbar across the nodes. For the SX-8 the

nodes can be equipped with either one or two Remote Con-

trol Units (RCU), which control the IXS. With one RCU,

a node can be involved in one ingoing and one outgoing

data transfer at a time, and any two processors on different

nodes can communicate simultaneously with all other such

pairs of processors on different nodes. With two RCU’s the

communication capability is doubled. The ES has a single

RCU on the nodes. The shared-memory communication

latency is lower and bandwidth higher than for communi-

cation via the IXS. The MPI communication bandwidths

achieved with MPI/SX and MPI/ES are shown in Table 1,

with communication buffers allocated either in process lo-

cal memory (by malloc) or in special, non-swappable

global memory by the MPI-2 MPI Alloc mem function.

Efficient implementations of the MPI collectives must

take these system characteristics into account. Since MPI

processes running on the same node can simultaneously

read/write to the shared memory, whereas only one pro-

cess at a time can be involved in inter-node communication,

different algorithms are applicable for intra-node than for

inter-node collective communication. Furthermore, inter-

node collective communication algorithms must take into

account that MPI processes can be arbitrarily distributed

over the nodes with, for pure MPI applications, typically

more than one MPI process per node. Communication al-

gorithms must aim to schedule communication across the

IXS to keep the switch busy without causing contention or

starvation, at the same time exploiting as much as possible

the more powerful intra-node communication capabilities.

IXS traffic should be minimized by efficiently distributing

data and computation e.g. for the reduction collectives, and

by avoiding redundant communication. To reduce the im-

pact of latency for small messages, data to be exchanged

between nodes can be combined. The following sections

will show concrete examples of these techniques.

The NEC SUPER-UX operating system does not give

an MPI process direct access to the user memory of other

MPI processes, whether on the same node or on different

nodes. Thus, instead of direct memory copy between the

MPI processes, MPI communication of user data in pro-

cess local memory is via specially allocated, non-swappable

global memory segments. For processes on the same node a

single extra copy is required per block transferred, whereas

for the IXS transfer the blocks on both sending and re-

ceiving node have to be in global memory segments which

entails a memory copy by both sending an receiving pro-

cess. For large buffers pipelining is employed, and the ex-

tra memory copies can be effectively hidden. For data in

non-swappable, global memory MPI communication can

in most cases be done by a single memory copy opera-

tion. This is exploited by the algorithms for the collectives.

To reduce collective latency a pre-allocated global memory

buffer is used for small messages. To reduce global mem-

ory consumption dynamically allocated buffers are used for

long messages, up to a certain limit. Beyond the limit the

collective operations have to break data into blocks, and re-

vert to pipelined or blocked algorithms. The actual sizes of

static and dynamic buffers have been fine-tuned for the SX

architecture.

Across nodes, the collective communication algorithms

use point-to-point communication. The low-level commu-

nication primitives for this have the same, and in some cases

extended functionality as the standard point-to-point prim-

itives of MPI. The primitives realize communication be-

tween the aforementioned global memory segments by a

single IXS read operation, and revert to the otherwise used

methods for point-to-point communication if the communi-

cation buffers are not placed in global memory. Extended

functionality can track completion of send and receive op-

erations by message counters that are incremented upon

successful completion of the operation. Further commu-

nication primitives makes it possible to perform operations

concurrently with the IXS communication, like for instance

preparing the next block for a pipelined algorithm. By this

design porting the collective algorithms of MPI/SX to new

systems is at first a matter of adapting these low level prim-

itives. An example of such a communication primitive is

MPIR_Recv_func(buffer,count,type,

rank,tag,

comm,status,func,state);

which performs a blocking receive exactly as the

MPI Recv call. To save latency, no argument error check-

ing is performed, and data type and communicator argu-

ments are pointers instead of MPI objects in need of deref-

erencing. The argument func is a pointer to a function

that is executed on the state argument, which (for inter-

node communication) can be done concurrently with the

IXS read.

The MPI/SX collectives have a component based design

to further reduce latency and ease maintainability. Since the

allocation of MPI processes to processors is static, some

amount of case analysis can be performed at communica-

tor creation time instead of at invocation time. New com-

municators are classified into cases according to whether

the communicator spans only a single SX node, whether

only one process per node is assigned (flat case), whether a

global barrier counter has been assigned to the communica-

tor (see Section 3.2), and others. Each of these special cases

has a corresponding set of collective implementations, rep-

resented by a function table, which is assigned to (or built

for) the communicator. Since the algorithms for the spe-

cial cases are sufficiently different (single-node, flat case,

multi-node), there is only a limited amount of code replica-

tion, and the code for each case can be kept simple(r) since it

does not have to cater for all possible situations. Some cases

are important enough that it makes sense to implement al-

gorithms that might be difficult or less efficient for arbitrary

communicators (see discussion in Section 3.4). One such

case is the flat case, where the communicator contains only

a single MPI process per node. This is a frequent case in

applications using a hybrid programming style like for in-

stance OpenMP coupled with MPI.

For collective intra-node communication, whether for

the single-node or the multi-node case with more than one

process per node, memory accesses are synchronized us-

ing combinations of binary trees (for propagating the value

of a synchronization flag to a local root), vectorization (for

resetting flag vectors), or symmetric barrier synchroniza-

tion algorithms [9]. Synchronization across nodes is im-

plicit via the special point-to-point communication primi-

tives. Also in the case where a process fails to allocate the

global memory segment for inter-node communication, ex-

plicit synchronization between nodes is not needed. Instead,

the inter-node communication is done via memory allocated

in process local memory, and only the intra-node part need

be aware that insufficient global memory was available.

3 Algorithms, implementations and perfor-

mance

In this section we describe in some detail the algorithms

and implementation of some of the more important MPI col-

lectives. We give absolute performance for fixed numbers

of nodes, varying over the message length, and demonstrate

scalability by keeping the message length fixed, and vary-

ing instead over the number of nodes. A proprietary bench-

mark, which tries to adhere to good benchmarking princi-

ples [6, 12], has been used for performance measurement.

To get reproducible figures, the running times reported are

minimum times over a number of repetitions of the time

for the slowest process to finish. In some cases we com-

pare to the performance of a straight-forward implementa-

tion (however, implemented in the framework of MPI/SX)

as found for instance in the original MPICH implementa-

tion [7] in order to illustrate the gains possible by the use of

more sophisticated algorithms tailored to the particularities

of the SX architecture.

We let p denote the number of MPI processes in the com-

municator. We consider only regular distributions of the p
processes over the nodes, and let N denote the number of

nodes, and n the number of processes per node, such that

p = n×N . The message size per process is denoted by m
(and reported in Bytes, where for instance one GBytes is

230 Bytes). We are concerned only with data that are con-

tiguous in memory (arrays of integers). Except where noted

communication buffers have been allocated in global mem-

ory with MPI Alloc mem.

3.1 Single-node communicators

For communicators spanning only a single SX node, all

communication and synchronization is performed in shared

(global) memory. As explained, shared communication

buffers are allocated outside of the process local memory.

Synchronization flags are likewise pre-allocated in global

memory. For MPI Barrier a symmetric barrier syn-

chronization algorithm is used as described for instance

in [9] yielding an MPI software barrier time of less than

7µseconds for 8 processes on a single node. The necessary

synchronization for other collectives are either by binary

tree or by symmetric barrier synchronization algorithms.

The collective algorithms themselves can take full use of

the shared-memory, and pipelining is used for larger mes-

sages to exploit memory bandwidth better, and to limit the

size of the reserved global memory segment. For single-

node reduction operations like MPI Reduce all processes

on the node participates equally in the reduction of each

block, e.g. each block is divided into n equal-sized seg-

ments. Since single-node communicators are of lesser im-

portance for large, multi-node SX systems, this paper will

from now on deal only with collectives for multi-node com-

municators.

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35

m
ax

im
al

 l
at

en
cy

 [
u
s]

Number of nodes

Barrier, SX-8

n = 1
n = 4
n = 8

Figure 1. SX-8 barrier time with n = 1, 4, 8 pro-

cesses/node for N = 2, 4, . . . , 32 nodes.

3.2 Multi-node barrier

For multi-node communicators barrier synchronization

can rely on special hardware support with a software bar-

rier based on simultaneous binomial trees [2] as fall back.

The IXS provides a limited number of global barrier

counter/flag (GBCF) registers that can be associated with

an MPI job. The counter can be preset to a given value, and

provides a constant time (i.e. independent of the number of

processes) atomic decrement operation. When the counter

reaches zero, the flag value is toggled (from 0 to 1 or vice

versa), and the counter is set back to the preset value. To

implement MPI Barrier the counter is preset at commu-

nicator creation time to the number of nodes spanned by the

communicator. For nodes with more than one MPI process

an intra-node barrier is performed, using pairs of commu-

nication registers (CR) to emulate the functionality of the

GBCF, and the process detecting successful intra-node syn-

chronization is responsible for decrementing the global bar-

rier counter. This process waits for the global barrier flag to

toggle, and signals successful intra-node synchronization to

the other processes on the node by toggling the CR flag.

The performance of the hardware based MPI Barrier

for the SX-8 is shown in Figure 1. The synchroniza-

tion time is close to constant, and ranges from about

3µseconds for one process/node to about 6µseconds for

8 processes/node.

3.3 Multi-node broadcast

Two different algorithms are used for multi-node com-

municators depending on the size of the message to be

broadcast. For small messages the best possible algorithm

is a binomial tree, whereas a pipelined binary tree algorithm

is used for messages beyond a certain threshold. To reduce

 10

 100

 1000

 10000

16Mi4Mi1Mi256Ki64Ki16Ki4Ki1Ki25664321684

m
ax

im
al

 l
at

en
cy

 [
u
s]

amount of data that is communicated (per process) [byte]

Bcast, N = 32, SX-8

n = 1
n = 4
n = 8

Figure 2. SX-8 broadcast time for fixed N = 32

and n = 1, 4, 8 processes/node and data size
from 4 Bytes to 16 MBytes.

inter-node traffic, broadcast trees are across nodes, not MPI

processes, with an arbitrary process chosen as local root

on each node. The pipelined binary tree algorithm is well-

suited to the case with more than one MPI process per node.

When a new block is received in a global memory segment,

it can be read by the non-root processes on the node con-

currently with the local root sending to its child nodes, and

with the reception of the next block. Thus, for longer mes-

sages the broadcast time should ideally be independent of n,

the number of processes per node. This behavior is shown

Figure 2. The difference between n = 4 and n = 8 is less

than 10%.

For the binomial tree broadcast the broadcast time is

proportional to �log
2
N�, whereas for large enough m the

broadcast time of the pipelined binary tree is independent

of N . The scalability behavior of MPI Bcast for 8 Bytes,

1 MBytes and 16 MBytes is shown in Figure 3. For m = 16

MBytes the increase from 16 to 32 nodes is less than 10%,

and this decreases as m and N increase.

Recently, an optimal algorithm which has the theoretical

potential of being a factor of two faster than the pipelined

binary tree by exploiting fully the bidirectional communica-

tion capability of the IXS has been developed [22, 21], but is

not yet included in MPI/SX. Like the pipelined binary tree

this algorithm also sends and receives the broadcast data in

smaller blocks. Copying previous and next block in and

out of the global memory segment used for communication

can be overlapped with reception of the current block (using

the MPI Recv func primitive), and other processes on the

node can concurrently read the previous block received by

the local root processes.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35

m
ax

im
al

 l
at

en
cy

 [
u
s]

Number of nodes

Scalability (Bcast, m = 8, SX-8)

n = 1
n = 4
n = 8

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 5 10 15 20 25 30 35

m
ax

im
al

 l
at

en
cy

 [
u
s]

Number of nodes

Scalability (Bcast, m = 1048576, SX-8)

n = 1
n = 4
n = 8

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30 35

m
ax

im
al

 l
at

en
cy

 [
u
s]

Number of nodes

Scalability (Bcast, m = 16777216, SX-8)

n = 1
n = 4
n = 8

Figure 3. SX-8 scalability for MPI Bcast for 8

Bytes (top), 1 MBytes (middle) and 16 MBytes
(bottom) for N = 2, 4, . . . , 32 nodes and n =

1, 4, 8 processes/node.

 10

 100

 1000

 10000

16Mi4Mi1Mi256Ki64Ki16Ki4Ki1Ki25664321684

m
ax

im
al

 l
at

en
cy

 [
u
s]

amount of data that is communicated (per process) [byte]

Reduce, N = 32, SX-8

n = 1
n = 4
n = 8

Figure 4. SX-8 reduction time for fixed N =

32, n = 1, 4, 8 processes/node and data size
from 4 Bytes to 16 MBytes. For n = 1 a spe-
cial, flat algorithm is used.

3.4 Reduction operations

The reduction-to-root collective MPI Reduce can be

thought of as an inverted broadcast, and currently similar al-

gorithms are used in MPI/SX. For small data sizes binomial

reduction trees are optimal, while pipelined binary trees are

used for longer messages. For nodes with more than one

MPI process the reduction to be performed before data are

passed upwards in the tree is done in parallel using a shared

memory algorithm like in the single-node case. As shown

in Figure 4, beyond 1 MBytes there is virtually no differ-

ence between the cases with n = 4 and n = 8 processes per

node, even less so than was the case for MPI Bcast. Scal-

ability of MPI Reduce is illustrated for 8 Bytes, 1 MBytes

and 16 MBytes in Figure 5.

For communicators spanning multiple nodes with ex-

actly one process per node (the flat case), special al-

gorithms based on recursive halving with a butter-

fly communication pattern have been implemented for

MPI Reduce (see [26] for an early application of this tech-

nique for hypercubes), as well as for MPI Allreduce

and MPI Reduce scatter with very good results [11,

20] (for arbitrary numbers of nodes, not only pow-

ers of two). Especially for MPI Allreduce (and

MPI Reduce scatter, not shown here) the correspond-

ing reduction time is significantly smaller for the flat case,

as can be seen in Figures 4 and 6. For m = 16 MBytes

the difference between the flat and the non-flat case is more

than a factor 5. These algorithms are also used for possibly

non-commutative user-defined operators, where a canonical

reduction order is mandated by the MPI standard.

For large data the recursive halving algorithms are not

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35

m
ax

im
al

 l
at

en
cy

 [
u
s]

Number of nodes

Scalability (Reduce, m = 8, SX-8)

n = 1
n = 4
n = 8

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35

m
ax

im
al

 l
at

en
cy

 [
u
s]

Number of nodes

Scalability (Reduce, m = 1048576, SX-8)

n = 1
n = 4
n = 8

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5 10 15 20 25 30 35

m
ax

im
al

 l
at

en
cy

 [
u
s]

Number of nodes

Scalability (Reduce, m = 16777216, SX-8)

n = 1
n = 4
n = 8

Figure 5. SX-8 scalability of MPI Reduce for 8

Bytes (top), 1 MBytes (middle) and 16 MBytes
(bottom). For n = 1 the flat algorithm is used.

 10

 100

 1000

 10000

 100000

16Mi4Mi1Mi256Ki64Ki16Ki4Ki1Ki25664321684

m
ax

im
al

 l
at

en
cy

 [
u
s]

amount of data that is communicated (per process) [byte]

Allreduce, N = 32, SX-8

n = 1
n = 4
n = 8

Figure 6. Performance of MPI Allreduce on

the SX-8 for fixed N = 32. For n = 1 the flat

algorithm is used.

naturally well-suited to the case with more than one process

per node, although it would be possible to employ pipelin-

ing here also. For this case the tree based algorithms are

used, and MPI Allreduce is implemented as a reduction

followed by a broadcast, and MPI Reduce scatter as a

reduction followed by a(n irregular) scatter operation.

3.5 Multi-node all-to-all

Despite the different algorithms used for the reduction

collectives for the flat and the general multi-node case,

the collectives discussed so far can be reasonably imple-

mented by combining an algorithm for the flat case with

algorithm(s) for the single-node case. These simple, hier-

archical decompositions are outlined in Table 2. This is not

the case for the all-to-all communication primitives (or the

irregular collectives), where such an approach would easily

lead to significant load imbalances [13]. For the flat case

where p = N the algorithm of Bruck et.al. [2] reduces the

number of communication rounds to �log p� and thus re-

duces latency by combining messages, however at the ex-

pense of redundant transmission of a factor of �log p� more

data than in a straight-forward linear algorithm. This algo-

rithm is therefore only useful up to a certain, not too large

message size limit. Beyond that limit, a linear algorithm

that explicitly pairs nodes so as to avoid contention and star-

vation in the IXS is used. A similar pairing is used for the

general multi-node case, but over a number of rounds in

a fashion that reduces the significant load imbalance that

would arise in the case where the number of processes per

node differ significantly [13, 18]. For small data sizes, data

are collected within the nodes to reduce the latency of each

node pair data exchange. As shown in Figure 7 and Figure 8

the explicit pairing is efficient in utilizing the IXS com-

 10

 100

 1000

 10000

 100000

 1e+06

8Mi2Mi512Ki128Ki32Ki8Ki2Ki51212864321684

m
ax

im
al

 l
at

en
cy

 [
u
s]

amount of data that is communicated (per process) [byte]

Alltoall, N = 32, SX-8

n = 1
n = 4
n = 8

 100

 1000

 10000

 100000

 1e+06

8Mi2Mi512Ki128Ki32Ki8Ki2Ki51212864321684

m
ax

im
al

 l
at

en
cy

 [
u
s]

amount of data that is communicated (per process) [byte]

Alltoall, N = 32, SX-8

n = 1
n = 4
n = 8

Figure 7. SX-8 performance of MPI Alltoall

for fixed N = 32, MPI/SX (top) versus naive
(bottom) algorithm.

pared to a naive approach that simply sends and receives

data from other processes in a non-controlled fashion (us-

ing non-blocking point-to-point communication). For the

SX-8 with N = 32 and n = 8 the improved algorithm is

a factor 9 faster than the naive approach for m = 8 Bytes,

and a factor 3 faster for m = 1 MByte; similarly for the ES.

4 Other collective operations

The MPI standard has altogether 16 collective commu-

nication and computation operations, only a few of which

have been touched upon above. In addition, a number of

other important MPI calls are collective in the sense that all

processes must participate in call and collectively exchange

information. These must also be given efficient implemen-

tations, but can mostly rely on the collective communica-

tion/computation operations. We mention that in MPI/SX

the collective operations for creating new communicators

(MPI Comm split, MPI Comm create etc.) must take

care of distributing and reusing the scarce GBCF’s (see Sec-

tion 3.2).

 100

 1000

 10000

 100000

 1e+06

128Ki64Ki32Ki16Ki8Ki4Ki2Ki1Ki51225612864321684

m
ax

im
al

 l
at

en
cy

 [
u
s]

amount of data that is communicated (per process) [byte]

Alltoall, N = 300, ES

n = 1
n = 4
n = 8

 1000

 10000

 100000

 1e+06

128Ki64Ki32Ki16Ki8Ki4Ki2Ki1Ki51225612864321684

m
ax

im
al

 l
at

en
cy

 [
u
s]

amount of data that is communicated (per process) [byte]

Alltoall, N = 300, ES

n = 1
n = 4
n = 8

Figure 8. ES performance of MPI Alltoall

for fixed N = 300, MPI/ES (top) versus naive
(bottom) algorithm. Communication buffers

are in local memory.

4.1 Gather/scatter

The operations for gathering or scattering data to/from a

given root use binomial trees over the processes (not nodes),

but sorted according to the identity of the node to which

they belong. In [19] it is argued that this can give better per-

formance than algorithms which perform gather/scatter lo-

cally followed/preceded by a gather/scatter over the nodes,

which can lead to load imbalance. As data size m increases,

the trees gradually become flatter, in the limit turning into a

linear algorithm. In Figure 9 this algorithm is contrasted to

a previous, hierarchical, linear algorithm which first gath-

ers data node locally, and then uses a linear algorithm for

gathering the blocks to the global root.

4.2 Multi-node allgather

For small data sizes the (flat) catenation algorithm of

Bruck et.al. [2] which can be adopted also to the case with

more than one process per node is used for the implemen-

 10

 100

 1000

 10000

128Ki64Ki32Ki16Ki8Ki4Ki2Ki1Ki51225612864321684

m
ax

im
al

 l
at

en
cy

 [
u
s]

amount of data that is communicated (per process) [byte]

Gather, N = 300, ES

n = 1
n = 4
n = 8

 1000

 10000

 100000

128Ki64Ki32Ki16Ki8Ki4Ki2Ki1Ki51225612864321684

m
ax

im
al

 l
at

en
cy

 [
u
s]

amount of data that is communicated (per process) [byte]

Gather, N = 300, ES

n = 1
n = 4
n = 8

Figure 9. ES performance of MPI/ES binomial
tree with graceful degradation MPI Gather

for fixed N = 300 (top) versus simple, hierar-

chical, linear (bottom) algorithm. Communi-
cation buffers are in local memory. For small
data MPI/ES is more than 10 times faster than
the linear, hierarchical algorithm.

tation of MPI Allgather and MPI Allgatherv. The

algorithm collects data in a logarithmic number of rounds,

which reduces latency. For large data sizes, a linear (ring)

algorithm is used with processes ordered according to their

node identity, which ensures that exactly one process on

each node receives data from another node and exactly one

process on each node sends data to another node. The naive

algorithm which does not pay attention to the process to

node allocation is extremely sensitive to the actual ordering

of the MPI processes. Figure 10 contrasts the MPI/SX im-

plementation to a naive algorithm, which is executed over

the MPI COMM WORLD communicator and over a commu-

nicator in which the processes have been randomly per-

muted. The degradation for the naive algorithm for the ran-

dom communicator is about a factor of 7, which is as ex-

pected since almost all processes per node have their previ-

ous and next process on different nodes. The sharp decrease

 10

 100

 1000

 10000

 100000

8Mi2Mi512Ki128Ki32Ki8Ki2Ki51212864321684

m
ax

im
al

 l
at

en
cy

 [
u
s]

amount of data that is communicated (per process) [byte]

Allgather, N = 32, SX-8

n = 1
n = 4
n = 8

 100

 1000

 10000

 100000

 1e+06

8Mi2Mi512Ki128Ki32Ki8Ki2Ki51212864321684

m
ax

im
al

 l
at

en
cy

 [
u
s]

amount of data that is communicated (per process) [byte]

Allgather, N = 32, SX-8

n = 1 comm = MPI_COMM_WORLD
n = 1 comm = random
n = 8 comm = MPI_COMM_WORLD
n = 8 comm = random

Figure 10. Performance of MPI/SX
MPI Allgather for N = 32 on a random
communicator for n = 1, 4, 8 (top) com-

pared to a naive (bottom) algorithm on
MPI COMM WORLD and a random communica-
tor for n = 1, 8.

in performance at 1 KBytes is due to a protocol change in

the underlying point-to-point communication. The MPI/SX

algorithm, on the other hand, is not sensitive to the process

to processor allocation, and is more than a factor 20 faster

than the naive algorithm for small data, even on the regular

MPI COMM WORLD communicator. The logarithmic algo-

rithm of Bruck et.al. which for each process gathers all data

in a global memory buffer, has been modified to degrade

gracefully towards the linear algorithm as data grow larger

than the maximum size of the global memory buffer. This is

nicely illustrated in Figure 10, and can be contrasted to an

earlier implementation shown in Figure 11 which switches

sharply between logarithmic and linear algorithm.

4.3 Irregular all-to-all collectives

For the remaining irregular all-to-all collectives,

MPI Alltoallv, MPI Alltoallw and to some ex-

 10

 100

 1000

 10000

 100000

8Mi2Mi512Ki128Ki32Ki8Ki2Ki51212864321684

m
ax

im
al

 l
at

en
cy

 [
u
s]

amount of data that is communicated (per process) [byte]

Allgather, N = 32, SX-8

n = 1
n = 4
n = 8

Figure 11. SX-8 allgather with a previous ver-

sion of MPI/SX for fixed N = 32 and n = 1, 4, 8
processes/node. The sharp performance de-
crease at 4 KBytes for n = 8 and 8 KBytes for
n = 4 is due to the switch from logarithmic to

linear algorithm.

tent MPI Allgatherv efficient algorithms are either not

known or complicated and would entail large overheads

(for preprocessing). MPI/SX uses algorithms derived from

the regular cases for the irregular cases also, which in ex-

treme cases can lead to load imbalance or have other un-

desired effects. For MPI/SX, efficient algorithms have

been developed and implemented for the MPI Gatherv,

MPI Scatterv and MPI Reduce scatter irregular

collectives [19, 20].

5 Concluding remarks and future work

We discussed algorithms and implementation in MPI/SX

and MPI/ES for most of the collectives of the MPI stan-

dard. Algorithms that are among the best known are em-

ployed, and the implementations efficiently utilize the SX

hardware. We also pointed out cases where performance

improvements are possible, and areas where new algorith-

mic developments are needed. The developments described

here will be transferred to NEC MPI implementations for

other platforms.

The semantics of the MPI collectives is, especially for

irregular collectives like MPI Alltoallv, a somewhat

complex issue, and give ample opportunities for the appli-

cation programmer to make mistakes. MPI/SX performs

error checks that do not require communication between

the processes (which would severely compromise a high-

performance MPI implementation), such as (locally) cor-

rect count and datatype arguments, process ranks and root

arguments in range, etc.. To assist the user, an extended

Collective Schematic implementation

MPI Barrier 1. barrier-single to root

2. barrier-node

3. barrier-single from root

MPI Bcast 1. bcast-node

2. bcast-single

MPI Reduce 1. reduce-single

2. reduce-node

MPI Allreduce 1. reduce-single

2. allreduce-node

3. bcast-single

MPI Reduce scatter

1. reduce-single

2. reduce-scatter-node

3. scatter(v)-single

MPI Allgather 1. gather-single

2. allgather-node

3. bcast-single

Table 2. Algorithm schemes for hierarchical

decomposition of collectives that can be rea-
sonably implemented as a combination of
intra-node and inter-node algorithm. The

gather/scatter and all-to-all collectives do not
have this property and are differently imple-
mented in MPI/SX. For large m pipelining is
employed in all steps.

MPI/SX library with collective verification has recently

been developed for checking non-local semantics of col-

lective calls [24, 25], including matching buffer sizes and

globally consistent use of other arguments.

Acknowledgments

We thank Takeshi Hayasaka and Masoni Tamura of 1st

CSD for continued support for the MPI/SX development.

We thank HLRS for the opportunity to perform measure-

ments on the newly installed 72-node NEC SX-8 system in

Stuttgart, Germany, and the Earth Simulator Center for the

opportunity to perform measurements on the Earth Simula-

tor in Yokohama, Japan. We also thank Joachim Worringen,

whose perfbase system was used to extract, compare and

present data [27].

References

[1] G. Almási, P. Heidelberger, C. Archer, X. Martorell, C. C.

Erway, J. E. Moreira, B. D. Steinmacher-Burow, and

Y. Zheng. Optimization of MPI collective communication

on BlueGene/L systems. In 19th ACM International Confer-

ence on Supercomputing (ICS 2005), pages 253–262, 2005.

[2] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby.

Efficient algorithms for all-to-all communications in multi-

port message-passing systems. IEEE Transactions on Par-

allel and Distributed Systems, 8(11):1143–1156, 1997.

[3] E. W. Chan, M. F. Heimlich, A. Purkayastha, and R. A.

van de Geijn. On optimizing collective communication. In

Cluster 2004, 2004.

[4] M. Gołebiewski, H. Ritzdorf, J. L. Träff, and F. Zimmer-

mann. The MPI/SX implementation of MPI for NEC’s SX-6

and other NEC platforms. NEC Research & Development,

44(1):69–74, 2003.

[5] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,

B. Nitzberg, W. Saphir, and M. Snir. MPI – The Com-

plete Reference, volume 2, The MPI Extensions. MIT Press,

1998.

[6] W. Gropp and E. Lusk. Reproducible measurements of MPI

performance characteristics. In Recent Advances in Paral-

lel Virtual Machine and Message Passing Interface. 6th Eu-

ropean PVM/MPI Users’ Group Meeting, volume 1697 of

Lecture Notes in Computer Science, pages 11–18, 1999.

[7] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-

performance, portable imlementation of the MPI message

passing interface standard. Parallel Computing, 22(6):789–

828, 1996.

[8] R. Hempel, H. Ritzdorf, and F. Zimmermann. Efficient

message passing interface implementations for NEC parallel

computers. NEC Research & Development, 39(4):408–413,

1998.

[9] J. M. Mellor-Crummey and M. L. Scott. Algorithms for

scalable synchronization on shared-memory multiproces-

sors. ACM Transactions on Computer Systems, 9(1):21–65,

1991.

[10] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg,

E. Gabriel, and J. Dongarra. Performance analysis of MPI

collective operations. In International Parallel and Dis-

tributed Processing Symposium (IPDPS 2005), Workshop

on Performance Modeling, Evaluation, and Optimization of

Parallel and Distributed Systems (PMEO), 2005.

[11] R. Rabenseifner and J. L. Träff. More efficient reduction

algorithms for message-passing parallel systems. In Recent

Advances in Parallel Virtual Machine and Message Passing

Interface. 11th European PVM/MPI Users’ Group Meeting,

volume 3241 of Lecture Notes in Computer Science, pages

36–46. Springer, 2004.

[12] R. Reussner, P. Sanders, L. Prechelt, and M. Müller.

SKaMPI: A detailed, accurate MPI benchmark. In Recent

Advances in Parallel Virtual Machine and Message Passing

Interface. 5th European PVM/MPI Users’ Group Meeting,

volume 1497 of Lecture Notes in Computer Science, pages

52–59, 1998.

[13] P. Sanders and J. L. Träff. The hierarchical factor algo-

rithm for all-to-all communication. In Euro-Par 2002 Paral-

lel Processing, volume 2400 of Lecture Notes in Computer

Science, pages 799–803. Springer, 2002.

[14] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-

garra. MPI – The Complete Reference, volume 1, The MPI

Core. MIT Press, second edition, 1998.

[15] J. M. Squyres and A. Lumsdaine. The component archi-

tecture of open MPI: Enabling third-party collective algo-

rithms. In V. Getov and T. Kielmann, editors, 18th ACM

International Conference on Supercomputing (ICS), Work-

shop on Component Models and Systems for Grid Applica-

tions, pages 167–185. Springer-Verlag, 2004.

[16] R. Thakur, W. D. Gropp, and R. Rabenseifner. Improving

the performance of collective operations in MPICH. Inter-

national Journal on High Performance Computing Applica-

tions, 19:49–66, 2004.

[17] V. Tipparaju, J. Nieplocha, and D. K. Panda. Fast collec-

tive operations using shared and remote memory access pro-

tocols on clusters. In 17th International Parallel and Dis-

tributed Porcessing Symposium (IPDPS03), page 84, 2003.

[18] J. L. Träff. Improved MPI all-to-all communication on a

Giganet SMP cluster. In Recent Advances in Parallel Vir-

tual Machine and Message Passing Interface. 9th European

PVM/MPI Users’ Group Meeting, volume 2474 of Lecture

Notes in Computer Science, pages 392–400. Springer, 2002.

[19] J. L. Träff. Hierarchical gather/scatter algorithms with

graceful degradation. In International Parallel and Dis-

tributed Processing Symposium (IPDPS 2004), page 80,

2004.

[20] J. L. Träff. An improved algorithm for (non-commutative)

reduce-scatter with an application. In Recent Advances in

Parallel Virtual Machine and Message Passing Interface.

12th European PVM/MPI Users’ Group Meeting, volume

3666 of Lecture Notes in Computer Science, pages 129–137.

Springer, 2005.

[21] J. L. Träff and A. Ripke. An optimal broadcast algorithm

adapted to SMP-clusters. In Recent Advances in Parallel

Virtual Machine and Message Passing Interface. 12th Eu-

ropean PVM/MPI Users’ Group Meeting, volume 3666 of

Lecture Notes in Computer Science, pages 48–56. Springer,

2005.

[22] J. L. Träff and A. Ripke. Optimal broadcast for fully

connected networks. In High Performance Computing

and Communications (HPCC’05), volume 3726 of Lecture

Notes in Computer Science, pages 45–56. Springer, 2005.

[23] J. L. Träff, H. Ritzdorf, and R. Hempel. The implementa-

tion of MPI-2 one-sided communication for the NEC SX-5.

In Supercomputing, 2000. http://www.sc2000.org/

proceedings/techpapr/index.htm#01.

[24] J. L. Träff and J. Worringen. Verifying collective MPI calls.

In Recent Advances in Parallel Virtual Machine and Mes-

sage Passing Interface. 11th European PVM/MPI Users’

Group Meeting, volume 3241 of Lecture Notes in Computer

Science, pages 18–27. Springer, 2004.

[25] J. L. Träff and J. Worringen. The MPI/SX collectives verifi-

cation library. In ParCo, 2005.

[26] R. van de Geijn. On global combine operations. Journal of

Parallel and Distributed Computing, 22:324–328, 1994.

[27] J. Worringen. Experiment management and analysis with

perfbase. In Proceedings of the IEEE International Confer-

ence on Cluster Computing, Boston, September 2005. IEEE

Computer Society Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

