
RAPID: An End-System Aware Protocol for Intelligent Data Transfer
over Lambda Grids

Amitabha Banerjee1, Wu-chun Feng2, Biswanath Mukherjee1, and Dipak Ghosal1

1University of California Davis 2Virginia Tech
Dept. of Computer Science Dept. of Computer Science

Davis, CA 95616, USA Blacksburg VA 24061, USA
abanerjee@ucdavis.edu feng@cs.vt.edu

{mukherje, ghosal}@cs.ucdavis.edu

Abstract

Next-generation e-Science applications will require
the ability to transfer information at high data rates
between distributed computing centers and data reposi-
tories. To support such applications, lambda grid net-
works have been built to provide large, on-demand band-
width between end-points that are interconnected via
optical circuit-switched lambdas. It is extremely im-
portant to develop an efficient transport protocol over
such high-capacity, dedicated circuits.

Because lambdas provide dedicated bandwidth be-
tween endpoints, they obviate the need for network
congestion control. Consequently, past research has
demonstrated that rate-based transport protocols, such
as RBUDP, are more effective than TCP in trans-
ferring data over lambdas. However, while lambdas
eliminate congestion in the network, they ultimately
push the congestion to the endpoints — congestion that
current rate-based transport protocols are ill-suited to
handle. In this paper we introduce a “Rate-Adaptive
Protocol for Intelligent Delivery (RAPID)” of data that
is lightweight and end-system performance-aware, so as
to maximize end-to-end throughput while minimizing
packet loss. Based on self monitoring of the dynamic
task-priority at the receiving end-system, our protocol
enables the receiver to proactively deliver feedback to
the sender, so that the sender may adapt its sending
rate to avoid congestion at the receiving end-system.
This avoids large bursts of packet losses typically ob-
served in current rate-based transport protocols. Over a
10-Gigabit link emulation of an optical circuit, RAPID
reduces file-transfer time, and hence improves end-to-

end throughput by as much as 25%.

1. Introduction

Many e-Science applications, particularly in large-
scale scientific computing, must transfer large volumes
of data at very high data rates. For example, data may
be aggregated from distributed information reposito-
ries that are physically located in different parts of the
world, for subsequent analysis at a computing center.
Alternatively, results generated at a supercomputer
may be transferred to remote client sites for visual-
ization. In each of these cases, the volume of data may
be hundreds of terabytes, and in some cases, petabytes,
transferred at very high speeds (e.g., OC-192: 10 Gbps)
and oftentimes across long distances (e.g., intra- as well
as inter-continental). OptIPuter [13] is one example of
a project that aims to couple computational resources
over lambda grid networks.

In order to connect distributed resources in a unified
manner, middleware researchers have developed the
concept of a Grid, where each link in a grid is a high-
capacity bandwidth pipe. A Lambda Grid is a specific
incarnation of a Grid, which offers dedicated, optical,
circuit-switched, point-to-point connections (lambdas),
which may be reserved exclusively for an application.
Such dedicated connections avoid the problems of net-
work congestion at intermediate routers. Examples of
networks that enable Lambda Grids include National
LambdaRail (NLR) [2] and DOE’s UltraScience Net [4]

The experiments reported in this paper were supported by and
conducted at the Los Alamos National Laboratory, Los Alamos,
NM 87544 where Amitabha Banerjee served as a student intern
and Dr. Feng served as Team Lead of RADIANT.

1-4244-0054-6/06/$20.00 ©2006 IEEE

in the United States, CANARIE’s CA*net in Canada
[1], and NetherLight in the Netherlands [3].

The problem of how to transport data through such
“fat” dedicated pipes is a challenging problem for grid
researchers. The Transmission Control Protocol (TCP)
is used in traditional packet-switched networks for ad-
justing the sending rate, depending on the state of net-
work congestion. In a lambda grid, the network itself
does not experience congestion, given that dedicated
bandwidth is provided per connection. Optical circuits
in lambda grids span large intra-continental or inter-
continental distances, thus having a large bandwidth-
delay product (BDP). TCP and its variants are not
very efficient in such networks because of their aggres-
siveness in rate and congestion control. GridFTP[8]
sets up multiple TCP connections between the source
and the destination so as to achieve higher aggregate
bandwidth relative to that achieved by a single TCP
stream.

An alternate approach is a transport protocol based
on the User Datagram Protocol (UDP) such as Reli-
able Blast UDP (RBUDP) [10]. In RBUDP, the sender
transmits UDP packets at a fixed rate, specified by the
user. After all the data has been transmitted, the re-
ceiver sends the error sequence numbers corresponding
to the data packets it did not receive (due to network
or end-system congestion) to the sender via a TCP con-
nection. The sender then transmits the error sequence
data packets via UDP. The above continues until the
receiver has received all data packets successfully. In
this manner, a reliable mechanism of packet delivery is
imposed on top of the unreliable connectionless UDP.

Although RBUDP has been demonstrated to per-
form well, its chief weakness is its inability to adapt
the sending rate. This leads to unwanted packet
losses, particularly when the receiving end-system is
congested. Though dedicated optical connections as in
lambda grids avoid network congestion at intermedi-
ate routers, the network throughput in such connec-
tions (namely 10 Gbps for an OC-192 connection) of-
ten exceed the capabilities of data processing at the
end-system, as has been noted by researchers [14, 15].
In addition to receiving the data, the receiving end-
system is expected to be running othercomputationally
intensive processes such as visualization and analysis
of the received data [15]. In such a case, the receiv-
ing end-system’s operating system (OS) has to sched-
ule a computationally (CPU) bound process (visual-
ization and analysis), and an I/O bound process (re-
ceiving data), simultaneously. Since the Network Inter-
face Card (NIC) buffer size is usually bounded, packets
may get dropped due to buffer overflow if the receiving
data process is not scheduled by the operating system

at the appropriate times to transfer the packets from
the line card buffer to physical memory. When data
is transmitted to such an end-system at a fixed rate
relentlessly as RBUDP does, it only exacerbates the
problem of end-system congestion. Thus, one of the
major challenges of high-performance distributed com-
puting is how to handle the network and computational
processes simultaneously.

LambdaStream [15], the successor to RBUDP,
adapts the sending rate to dynamic network conditions
by monitoring the inter-packet receiving time interval
at the end-system, and sending a feedback to the sender
to adapt the sending rate accordingly. This is a clever
scheme because it avoids polluting the network with
probing packets.

In this work, we propose the idea of a lightweight
end-system performance-monitoring-based protocol to
improve the performance of data transport on a lambda
grid. We emphasize on probing various end-system
performance metrics such as the dynamic priority of
various tasks at the receiving end-system, so that po-
tential end-system congestion may be detected early,
and an appropriate feedback may be sent to the send-
ing end-system to take evasive action to avoid packet
losses. One example of such an evasive action is to sus-
pend transmissions at times when the receiving end-
system is congested. Appropriately integrating the
above features results in a prototype protocol that
we call RAPID, short for Rate-Adaptive Protocol for
Intelligent Delivery. In our experiments over a 10-
Gigabit Ethernet network emulation of an optical cir-
cuit in a lambda grid, RAPID reduces file-transfer
time, and hence, improves end-to-end throughput by
as much as 25%.

The remainder of the paper is organized as follows.
In Section 2, we provide an insight to the end-system
behaviour when it is subjected to computational and
network loads simultaneously. In Section 3, we de-
scribe our protocol. Section 4 discusses the results on
a 10-Gigabit Ethernet network emulation. Section 5
presents our conclusions.

2. Analysis of the Receiving End-system

In order to emulate a lambda grid circuit, we de-
ployed the following experimental setup. We con-
nected two machines (configurations used are shown
in Table 1) back-to-back with Chelsio 10-Gigabit Eth-
ernet adapters [6]. The Iperf [7] measurements re-
port the maximum bandwidth achieved by a TCP con-
nection between two machines of the same configura-
tion connected back-to-back with 10 Gigabit Ethernet
adapters. The Maximum Transfer Unit (MTU) was

Table 1. System Configuration.

Configuration I Configuration II
Processor Intel Pentium 4 AMD Opteron
Processor 2.8 GHz 2.2 GHz
Speed
Cache size 512 KB 1024 KB
RAM 2 GB DDR RAM 1 GB DDR RAM
Iperf 1.92 Gbps 3.65 Gbps
measurement

1500 bytes. TCP offloading was not enabled on the
Chelsio adapters. Since hard-drive speeds are substan-
tially slower to support a transfer rate of 10 Gbps, we
emulated an end-system to end-system file transfer by
transferring a file between two RAMdisks (which use
the RAM for storing data). RAMDisks allow for RAM
access times, and because the Linux OS considers the
RAMDisk as a separate disk, the OS functionalities of
copying data from memory to a disk are not by-passed
in our experimental setup.

In order to analyze the end-system performance,
we used MAGNET (Monitoring Apparatus for Gen-
eral kerNel-Event Tracing) [9]. MAGNET is a low-
overhead tool that provides fine-grained monitoring of
kernel- and user-space events by allowing any event to
be monitored, and by time stamping each event with
the CPU-cycle counter which is the highest-resolution
time source available on most machines. Optionally,
additional information can be exported to give a more
detailed look at kernel operation.

We used MAGNET to monitor the context-switch
times between the different processes at the receiv-
ing end-system. We transferred a 500-MB file via the
RBUDP transport protocol, using the experimental
setup described above. For this experimental setup,
we used the Intel Pentium 4 based machines (Configu-
ration I). For the RBUDP protocol, we measured that
the end-system to end-system transfer time was the
fastest when the sending rate was 1.6 Gpbs. The receiv-
ing end-system was under no additional computational
load. We did not enable the TCP offload engine sup-
port on the Chelsio adapters. It is important to note
that the above line rate is for a RAMDisk-to-RAMDisk
transfer. A memory-to-memory transfer may be sup-
ported at a much higher line rate, as may be noted
from the higher Iperf numbers in Table 1.

In order to emulate a computational load on the
receiving end-system, we used two different processes.
One process is an infinite “for” loop, which is expected
to have constant computational overhead at all times.
We hereafter refer to this as a synthetic workload. The

Table 2. Optimal sending data rate for RBUDP.

Computational Load Sending rate for
best transfer time

No load 1.6 Gbps
Single infinite loop 800 Mbps
Two infinite loops 650 Mbps
Three infinite loops 550 Mbps
Iso-surface extraction 800 Mbps

other is an isosurface extraction visualization process of
a knee joint image, which is expected to impose varying
computational and I/O load, depending on the stage
of computation of the process. We hereafter refer to
this as a visualization workload.

When the receiving end-system is under some com-
putational load, we observed that packets are dropped
if the sending rate of 1.6 Gbps is maintained. The losses
are lower if the sending rate is reduced. Table 2 shows
the sending rate for which the fastest transfer time was
measured, when the receiving end-system is under dif-
ferent computational loads. As may be inferred, as the
computational load increases, the sending rate must be
decreased to lower packet losses.

We shall now report our observations from the
MAGNET traces. Figure 1(a) shows the duration of
the time slices that the OS allocates to the synthetic
workload, while the end-system is also receiving data.
For simplicity, we show results for only the time dura-
tion of the first UDP blast (iteration of transmitting
UDP packets) of RBUDP. We observe that a majority
of the time slices allocated by the OS to the synthetic
workload is of duration 10 ms. Most of the packets
arriving at the receiving end-system in such a time in-
terval when the synthetic workload is running would be
lost, because the NIC does not support enough buffer
to store the arriving packets. At a line rate of 1.6 Gbps,
2 MBytes of data would be lost in a duration of 10 ms,
if not handled by the end-system.

We define the time intervals when no packet losses
occur at the receiving end-system as a lossless time
interval. We measure the duration of the lossless time
interval by comparing losses reported by RBUDP with
the MAGNET traces. Figure 1(b) shows the duration
of the lossless time intervals. We observe that most of
the lossless time intervals are of duration of 10ms. The
very first lossless time interval is of duration 125 ms.

We explain the results as follows. Most OS sched-
ulers differentiate between a I/O-bound process and a
CPU-bound process. One of the goals of the OS sched-
uler is to improve the interactivity and response time
of the system. To achieve this, the OS tries to favour

(a) Time slice allocated by the OS

(b) Lossless time interval duration

Figure 1. Context-switch time analysis for the
synthetic workload.

the I/O process while scheduling. Different OSs have
different means of classifying I/O and CPU processes,
and favoring the I/O-bound process. For example, the
Linux 2.6 scheduler classifies between the above two,
based on the average sleep time of a process, which is
updated every time the process is context switched [5].
Moreover, a dynamic bonus proportional to the average
sleep time is awarded to the task prority. I/O-bound
processes which have higher average sleep time than
CPU-bound processes are thus favored.

In the above example, when RBUDP receive starts,
it is classified as an I/O process. Interrupts are fre-
quently generated with the incoming packets arriving
at 1.6 Gbps. While the OS is handling these inter-
rupts, the CPU-bound synthetic workload is not han-
dled. After some time (125 ms in this case), the OS
begins to treat RBUDP receive as a CPU-bound pro-
cess as it has run continously. Thereafter, both pro-

(a) Time slice allocated by the OS

(b) Lossless time interval duration

Figure 2. Context-switch time analysis for the
visualization workload.

cesses are handled equally. Comparing Figures 1(a)
and 1(b), it is evident that after the first 125ms, the
OS context switches between receiving data, and the
synthetic workload every 10 ms.

In the above results, most time-slices are equal be-
cause the computational load is constant throughout.
Figure 2 shows the equivalent results for the visual-
ization workload. From Figure 2(a), we observe that
the time slices allocated by the OS to the visualiza-
tion workload are concentrated to be either less than
2 ms or approximately 10 ms. From Figure 2(b), the
first lossless time interval is of duration 280 ms. There-
after, it varies between 10 ms and 240 ms. Thus, for
a general application whose computational load may
vary between stages of computation and I/O, it is not
trivial to predict the time slices allocated by the OS to
the different processes, and the lossless time interval
durations.

It is clear that the network performance may be
substantially improved, if packet losses were avoided
when the receiving end-system OS is handling an al-
ternate process. We considered the following possible
solutions:

1. A Real-Time OS (RTOS) may be employed. A
Real-Time OS allows one to specify hard deadlines
for tasks. The RBUDP receive process may be
classified as a real-time task with periodicity spec-
ified to handle the packets at the incoming data
rate. However, a RTOS is expensive to maintain,
and may not be suitable for all applications. De-
vice driver and hardware support is not common-
place for a RTOS. For example, we did not find it
easy to build support for the Chelsio 10-Gigabit
adapters on Real Time Linux OS.

2. The buffer capacity in the NIC may be increased,
so that packets are not dropped at the NIC when
the OS is not ready to handle them. But this is an
expensive hardware solution. It is not common to
have a NIC with a large capacity, and NIC man-
ufacturers may not be willing to provide it. The
Chelsio 10-Gigabit line cards that we used had 256
MB RAM, but that is shared between transmitting
and receiving queues, as well as for other tasks.

3. Various parameters of the OS scheduler such as
maximum allocated time slice, maximum dynamic
bonus priority granted to an I/O process, etc., may
be adjusted, so as to favor the RBUDP receive
process, and thus reduce packet losses. We stud-
ied the effect of altering the maximum dynamic
bonus priority granted to an I/O process by Linux
2.6. The file-transfer times improved significantly.
We do not report the results here due to space
constraints. We believe that this is not a good
solution, as it would lead to custom kernel builds
highly tuned to the application. Scientists dealing
with high-performance computing or visualization
applications would rather not deal with custom
kernel configurations or kernel patches designed
specifically to tune the network performance.

4. The times at when the lossless time interval ends,
and when the OS allocates a much larger time
slice to an alternate process, may be predicted in
advance, so that timely feedback may be sent to
the sending end-system to suspend or slow down
the sending rate. We may thus achieve an ef-
ficient interleaving between the CPU-bound and
I/O-bound process.

In this paper, we concentrate on solution (4), be-
cause it appears to be the most acceptable and generic

out of all the solutions. We aim to build an end-system
performance-monitoring tool, which may deliver the
appropriate feedback to the sending end-system, so
that the packet-transfer throughput may be improved.
In the next section, we present our end-system perfor-
mance aware rate adaptive protocol.

3. End-System Performance-Aware
Rate-Adaptive Protocol

Our objective is to monitor the receiving end-
system’s performance, so as to identify durations of
end-system congestion. We aim to predict the time
at which the receiving end-system’s OS may allocate a
large time slice to an alternate process, as a result of
which it may not handle interrupts and packets from
the NIC. If the sending end-system does not transmit
during such time durations, then packets will not be
lost at the receiver end-system, thereby improving the
data-transfer performance. For the purpose of moni-
toring, we considered the following system metrics: av-
erage CPU load, NIC card buffer occupancy, and task
interactivity. Out of the above, we found task inter-
activity to be the most helpful indicator, because this
may be easily monitored by inserting a simple probe in
the kernel code as we illustrate below, and also because
this knowledge may be easily applied in a prediction
scheme.

As discussed earlier, most OSs distinguish between
an interactive (I/O-bound) process and a CPU-bound
process in the system in order to improve the system
reponsiveness. We investigated the approaches taken
by various OS schedulers to achieve the above. We
present a summary for two OSs: Linux 2.6, and Free
BSD 5.0.

3.1. Linux 2.6 Scheduler

The Linux 2.6 scheduler maintains a dynamic pri-
ority for all processes, which is computed as the static
priority (related to task niceness) plus a dynamic bonus
which is granted based on the task interactivity, as
measured by the interactivity heuristics. In the Linux
2.6 scheduler [5], the static priority for user processes
ranges from 0 to 40 (corresponding to niceness values
between -20 and +20). A lower number corresponds to
higher priority. The dynamic bonus is granted by the
kernel to boost the priority of interactive tasks, and it
ranges from -5 to 5. This is computed proportional to
the average sleep time of the task. The value of the
average sleep time for each task is updated whenever
it wakes out of sleep or when it gives up the CPU vol-
untarily or involuntarily.

The scheduler allocates time slices to the task by
scaling its static priority value into the possible time
slice range. Once a time slice is awarded, the task
is placed on an active priority array. While choosing
tasks for execution from this array, the OS chooses the
one with the highest dynamic priority. After the task
has exhausted its time slice, it is awarded a new time
slice but is placed on the expired priority array. How-
ever, those tasks which are deemed to be interactive
are placed back on the active priority array even af-
ter a new time slice is generated. This step greatly
improves the performance of interactive tasks in the
Linux system. The active and expired priority ar-
rays are switched only after the active priority array
is empty.

3.2. Free BSD 5.0 Scheduler

The ULE scheduler in Free BSD 5.0 [12] has many
commonalities with the Linux 2.6 scheduler. Each task
is granted a time slice, and is assigned to the current
queue or the next queue. Once all tasks in the current
queue are executed for the duration of the allocated
time slices, the next and current queues are switched.
Interactive tasks are always inserted into the current
queue. The interactivity score of a task is calculated
using its voluntary sleep time and run time. The inter-
activity score may be computed as follows:

m =
MaximumInteractiveScore

2
(1)

if (sleep > run) score =
m

sleeptime
runtime

(2)

else score =
m

runtime
sleeptime

+ m

Tasks with interactivity score below a certain
threshold are marked interactive. Since interactive
tasks are always inserted into the current queue, they
have a faster response time.

The end-system performance aware Rate-Adaptive
Protocol for Intelligent Data-transfer (RAPID) is
shown in Figure 3. We use RBUDP as an example
of a rate-based transport protocol. Our objective is to
monitor whether the RBUDP receive process is clas-
sified as being interactive or not by the OS scheduler.
For the Linux 2.6 scheduler, probing the dynamic task
priority would indicate the degree of interactiveness,
while for the Free BSD 5.0 ULE scheduler, probing the
interactive score would be a good measure.

The end-system Performance Monitoring Process
(PMP) monitors the interactiveness of RBUDP re-
ceive at fixed polling intervals. In addition, whenever

Figure 3. Design of our end-system perfor-
mance aware Rate-Adpative protocol for In-
tellingent Data-transfer (RAPID).

RBUDP receive receives each packet, it signals to the
PMP by setting a bit. When PMP does not receive
any signals from RBUDP receive, it interpretes this as
packets being dropped. The first time this happens,
the PMP monitors the interactiveness of RBUDP re-
ceive. Subsequently, it tries to predict when RBUDP
receive may reach such a state. At the predicted time,
a feedback is sent from the PMP to RBUDP send to
suspend sending for some duration of time, which we
define as the suspend interval. The motivation is to
allow RBUDP receive to be idle for the corresponding
time, during which the OS may schedule the alternate
(CPU-bound) process. Thus, the CPU-bound process
is not starved, and when RBUDP send resumes, it re-
gains its interactive status. Via this mechanism, we
achieve an efficient interleaving between the two pro-
cesses at the end-system. The suspend interval may
be OS specific, and we demonstate in the next section
how it be calculated for Linux 2.6.

We emphasize the following two important design
criterion:

1. The end-system (PMP) must be scheduled as a
Soft Real-Time (Soft RT) process so that it is
scheduled by the OS at the polling times, and may
thereby monitor the task parameters at fixedtime
periods. This is important, else the monitoring
process might itself not be scheduled.

2. The end-system PMP must be a very light-load
process, particularly because it is scheduled soft
real-time, so that it does not impose any addi-
tional CPU load. Hence, we are not using a heavier
weight tool such as MAGNET for monitoring the
task priorities. Our emphasis is on a lightweight
design.

3.3. Implementation Specifics For Linux 2.6

In Figure 4, we describe our implementation specific
to the Linux 2.6 scheduler. The suspend interval is cal-
culated based on the current dynamic task priority and
average sleep value for RBUDP receive, both of which
are monitored. The priority at which packets are not
handled by RBUDP receive is noted, which is in the
variable ERROR PRIORITY . Thereafter, whenever
the monitored dynamic task priority reaches one level
higher than ERROR PRIORITY , a feedback signal
is generated to request RBUDP send to suspend for
the specified time interval. The dynamic task prior-
ity changes in increments of 1, and we observed that
sending a feedback at a priority difference of one is suf-
ficient. The suspend interval calculated in Step 2 (d)
of the algorithm is Linux 2.6 specific, and is related to
the algorithm by which Linux 2.6 computes dynamic
task priorities. The idea is to have RBUDP receive idle
long enough so that the OS assigns it the same dynamic
priority at which it started thereafter.

The Linux OS does not provide a system call to
monitor the task’s dynamic priority from a user-level
process; it only provides a system call to monitor the
static priority (niceness). Hence, we designed a simple
kernel patch to allow probing of the dynamic priority
from a user-level process. We emphasize that we do
not alter any properties of the kernel scheduler, and
are not attempting to customize the kernel code in any
way.

Since the sender suspends transmitting for brief in-
tervals of time, this may increase the jitter of data
made available to the application at the receiving end.
This may be a concern for some visualization applica-
tions which are jitter sensitive. We intend to address
this matter in future work.

3.4. Effect of Round-Trip Time (RTT)

Lambda Grids may span across large geographical
distances, and hence optical circuits on Lambda Grids
may have large RTTs. Thus, in the above protocol, any
feedback sent by the task monitoring process is delayed
by RTT/2 before it reaches the sender. Even if the
sender suspends immediately, the receiving end-system
receives packets in the pipeline for another RTT/2.
Thus, it takes at least RTT amount of time after the
feedback is transmitted for RBUDP receive to become
idle.

Hence, any feedback that is sent from the receiv-
ing end-system must be sent at least RTT before the
anticipated time of packets getting dropped. In the
approach for the Linux 2.6 OS, we attempt to keep

Linux 2.6 Task Priority Monitoring Process
(TPMP) Algorithm

1. Initialize
ERROR PRIO = −∞,
MAX PRIO = −∞,
MAX AV G SLEEP = −∞.

2. Begin polling loop:

(a) Sleep for POLLING TIME.

(b) Monitor current dynamic priority
(CURR DY N PRIO) of the receive pro-
cess. If it is greater than MAX PRIO, set
MAX PRIO to CURR DY N V ALUE. Set
MAX AV G SLEEP value to the current
value of average sleep value.

(c) Monitor packet received signals from process.
If no packet is received in the last polling
interval, set ERROR PRIO to the current
task priority. Go to (e) to compute suspend
interval, and send feedback.

(d) If CURR DY N PRIO − 1 ≤
ERROR PRIO, go to Step (e) to com-
pute the suspend interval and send the
feedback. Else go back to Step (a).

(e) Monitor the current average sleep value,
CURR AV G SLEEP value. Calculate:

SuspendInterval = MAX AV G SLEEP

− CURR AV G SLEEP

MAX PRIO − CURR DY N PRIO

Send feedback with suspend period interval.

Figure 4. Implementation of Task Priority
Monitoring Process for the Linux 2.6 Sched-
uler.

the implementation simple and efficient, by transmit-
ting the feedback one dynamic priority level before
ERROR PRIO. We measured the interval between
which the process shifts down by one priority level,
and found it to be approximately 100 ms. Thus, for
an RTT up to 100 ms, the above mechanism would
be appropraite. For RTTs greater than 100 ms, pos-
sible solutions are to measure the times of change in
priorities, and calculate the feedback sending time to
be equal to RTT subtracted from the expected time at
which the task priority reaches ERROR PRIO.

(a) MTU=1500 bytes

(b) MTU=9000 bytes

Figure 5. File-Transfer Time for synthetic
workload for Configuration I (Pentium 4).

4. Results on a 10-Gbps Ethernet based
network

Since we did not have direct access to a live Lambda
Grid, we emulated a dedicated end-to-end optical cir-
cuit connection by connecting two machines back-to-
back using the Chelsio 10-Gigabit Ethernet Adapter
[6]. The OS on both machines was the Debian instal-
lation of Linux OS version 2.6.12. In order to visual-
ize the effects of RTT, we delay the feedback signal
from the receiving end-system by the corresponding
RTT amount. We report results for two different Max-
imum Transfer Unit (MTU) values: 1500 bytes, and
9000 bytes. Increasing the MTU reduces the number
of interrupts that will be processed at the end-system,
and therefore improves the data transfer time.

Figures 5(a) and (b) show the file-transfer time for
a 1.5-GB file transfer between two end-systems with
Configuration I (Pentium 4) (shown in Table 1). We

(a) MTU=1500 bytes

(b) MTU=9000 bytes

Figure 6. File-Transfer Time for the visualiza-
tion workload for Configuration I (Pentium 4).

first report the results for the two schemes - RBUDP
and RAPID with no additional load on the end-system.
Thereafter, the receiving end-system is under the addi-
tional computation load of handling a synthetic work-
load. We show results for RAPID, using different
RTTs. The RTT value of 50 ms corresponds to the
typical coast-to-coast RTT in the United States. The
RTT value of 120 ms would correspond to an inter-
continental link. The final measurement reported is
for the fastest RBUDP transfer at zero RTT that we
observed by tuning the sending rate. The transfer time
using different RTTs for RBUDP doesn’t vary much.
We use this result to compare RAPID with the best
possible transfer time that RBUDP can give.

It must be noted that, at no load, the sending rate
of 1.6 Gbps leads to the fastest transfer time using
RBUDP at MTU of 1500 bytes. If the MTU is in-
creased to 9000 bytes, the corresponding sending rate

(a) MTU=1500 bytes

(b) MTU=9000 bytes

Figure 7. File-Transfer Time for the synthetic
workload for Configuration II (AMD Opteron).

would be 2 Gbps. When the synthetic workload is in-
troduced, RBUDP takes substantially longer time for
the file transfer, if the sending rate were maintained the
same. Using RAPID, the file-transfer time is reduced
by as much as 25% for RTT=0. The file-transfer time
using RAPID increases marginally with higher RTT.
This is because, with increase in RTT, the feedback
signal takes a much longer time to reach the sender. If
we compare with the fastest RBUDP transfer achieved
by tuning the sending rate, RAPID compares well until
an RTT of 80 ms. One may consider that tuning the
sending rate for varying application loads would not be
a very practical solution, and thus the feedback-based
RAPID would be a favorable protocol.

If we compare RBUDP with RAPID at no load,
RAPID leads to slightly higher transfer time. This is
due to the additional overhead of end-system perfor-
mance monitoring via a soft real-time process. One of

Figure 8. Dynamic bonus granted by OS to
RBUDP receive and RAPID receive

our goals has been to design a low-overhead process.
Figure 6 shows the corresponding results for the vi-

sualization workload. The results are similar as before.
Our scheme performs well with a synthetic process with
constant CPU load, as well as a visualization applica-
tion with varying CPU load.

We demonstrate the performance on a different ar-
chitecture by running the same experiment on end-
systems with Configuration II (AMD Opteron), shown
in Table 1. A 800-MB file is transferred between the
two end-systems. At no load, the fastest transfer time
was observed at the sending rate of 2.5 Gbps when the
MTU is 1500 bytes. The corresponding sending rate
for MTU of 9000 bytes is 4 Gbps. Figure 7 shows the
results.

Since our protocol is based on dynamic task prior-
ity monitoring and feedback, it is important to analyze
how the dynamic bonus granted by the Linux 2.6 sched-
uler changes in the two protocols. Figure 8 compares
the dynamic bonus granted to RBUDP and RAPID.
The experimental setting uses Configuration I (Pen-
tium 4) with the MTU of 9000 bytes, and the synthetic
workload. As mentioned earlier, the dynamic bonus
granted by Linux 2.6 scheduler ranges from -5 to +5.
A lower number represents higher priority. In Figure 8,
we show the negative of the numbers, for a better illus-
tration. With RBUDP, the priority steadily decreases.
In RAPID, the dynamic priority at which errors oc-
cur is recorded, and a feedback is sent whenever the
priority reaches one level higher than ERROR PRIO.
When the sender received the feedback, it suspends
sending. Since the receiving task is then idle, the OS
handles the alternate (CPU-bound) process. On re-
sumption, the receiving task is granted a much higher

priority, because it has been idle for some time. The
dynamic priority of the receiving task does not drop
below a certain level. Thus, whenever the receiving
task is running, it is handled as an I/O process by the
OS, and interrupts are handled regularly. Packet losses
are thus avoided to a large extent.

5. Conclusion

In this work, we demonstrated the impact of the end-
system computational load on high-speed data trans-
fers. To improve the performance of data transfer when
the end-system is under additional computational load
such as a visualization process, we have proposed a
lightweight end-system performance monitoring based
transport protocol – RAPID. By performing experi-
ments on an emulated 10-Gigabit link experimental
setup, we demonstrated that using RAPID leads to
higher throughput by lowering packet losses than an-
other rate-based transport protocol, RBUDP.

6. Acknowledgements

We express our gratitude to Venkatram Vishwanath
at U. Illinois at Chicago for his helpful suggestions,
Jeremy Archuleta at LANL and Univerity of Utah for
his help with setting up the machines, and to Runzhen
Huang and Prof. Kwan-Liu Ma at UCDavis, for their
help with isosurface extraction algorithm.

References

[1] CANARIE at http://www.canarie.ca/about/index.html
[2] National LambdaRail at http://www.nlr.net
[3] NetherLight at http://www.netherlight.net/info/home.jsp
[4] DoE UltraScience Net at

http://www.csm.ornl.gov/ultranet/
[5] The Linux 2.6 scheduler, by Jos Aas, SGI Inc., at

http://josh.trancesoftware.com/linux/linux cpu scheduler.pdf
[6] Chelsio T210 10 Gigabit Ethernet Adapter, at

http://www.chelsio.com/products/T210.htm
[7] IPerf 2.0.2 - The TCP/UDP Bandwidth Management

Tool at http://dast.nlanr.net/Projects/Iperf/
[8] W. Allcock et al., “The Globus Striped GridFTP

Framework and Server,” Proc., ACM Supercomputing
2005, Seattle, Washington, November 2005.

[9] M. Gardner, W. Feng, M. Broxton, A Engelhart, and G.
Hurwitz, “MAGNET: A Tool for Debugging, Analysis
and Adaptation in Computing Systems,” Proc., CC-
Grid 2003, Tokyo, Japan, May 2003.

[10] E. He, J. Leigh, O.Yu, and T. A. DeFanti, “Reliable
Blast UDP : Predictable High Performance Bulk Data
Transfer,” Proc. IEEE Cluster Computing, Chicago,
Illinois, 2002.

[11] W. Lorensen and H. Cline,“Marching cubes: a high
resolution 3D surface construction algorithm,” Proc.,
ACM SIGGRAPH 87, 1987.

[12] J. Robinson, “ULE: A Modern Scheduler For
FreeBSD,” BSD Con 2003, San Mateo, California,
September 2003.

[13] L. Smarr et al., “The optiputer, quartzite, and
starlight projects: a campus to global-scale testbed for
optical technologies enabling lambdagrid computing,”
OFC/NFOEC Technical Digest, Los Angeles, Califor-
nia, March 2005.

[14] R. Wu and A. Chien, “GTP: Group Transport Proto-
col for Lambda Grids,” Proc. CCGrid, 2004, Chicago,
Illinois, 2004.

[15] C. Xiong et al., “LambdaStream - a Data Transport
Protocol for Streaming Network-intensive Applications
over Photonic Netwotks,” Proc., PFLDNet 2005, Lyon,
France, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

