
A New Analytical Method for Parallel,

Diffusion-type Load Balancing

Petra Berenbrink1, Tom Friedetzky2, and Zengjian Hu3

1,3Simon Fraser University 2Durham University

School of Computing Science Department of Computer Science

8888 University Drive Science Labs, South Road

Burnaby, BC, V5A 1S6, Canada Durham, DH1 3LE, England, U.K.

{petra,zhu}@cs.sfu.ca tom.friedetzky@dur.ac.uk

Abstract

We propose a new proof technique which can be used
to analyze many parallel load balancing algorithms.
The technique is designed to handle concurrent load
balancing actions, which are often the main obstacle in
the analysis. We demonstrate the usefulness of the ap-
proach by analyzing various natural diffusion-type pro-
tocols. Our results are similar to, or better than, previ-
ously existing ones, while our proofs are much easier.

The key idea is to first sequentialize the original,
concurrent load transfers, analyze this new, sequential
system, and then to bound the gap between both.

1 Introduction

In this paper we study the following neighbourhood
load balancing problem. We have n identical nodes that
are connected by a network with maximum degree δ.
Nodes are allowed to communicate with each other only
if they are connected by an edge. Initially, each node
stores some number of tokens (tasks, jobs, . . .). The
total number of tokens is time-invariant, i.e., neither
do new tokens appear, nor do existing ones disappear.
The objective is to distribute the tokens as evenly as
possible among the nodes whilst minimizing the num-
ber of load balancing steps.

The load of a node at time t is the number of tokens
the node stores at that time. At each time step, nodes
compare their current load with the load of a subset of
their neighbours, possibly with all of them. If the own
load exceeds the load of such a neighbour by a certain
amount, then they send a certain number of tokens to

that neighbour. Clearly, it will take a “long” time until
the system is balanced if the number of tokens sent is
“small” compared to the load difference. On the other
hand, if this amount is too big, then load might bounce
back and forth. To prevent that, the amount of load
that a node is allowed to forward to a neighbour is
typically upper bounded by a function of the difference
d and the maximum degree, δ, e.g., d/(δ + 1).

A common classification of neighbourhood load bal-
ancing schemes is the distinction between diffusion and
dimension exchange methods. In the case of diffusion
methods every node balances its load concurrently with
all neighbours. In the case of the dimension exchange
method, each node communicates with only one neigh-
bour per time step. For the latter case it remains
to specify the method of choosing balancing partners.
Here, some well-known approaches are either to ran-
domly generate a matching of the underlying network
in every time step ([12]), or to fix the balancing part-
ners in a round robin-like predetermined order ([3]).
Another classification is that between discrete and con-
tinuous load balancing methods. In the former, tokens
can not be split, and balancing partners are allowed
to exchange only integer amounts of load. In the lat-
ter, load can be split into arbitrarily small pieces, and
balancing partners are allowed to exchange fractional
amounts of load.

So far, the analysis methods for diffusion and di-
mension exchange methods were quite different. For
dimension exchange methods, potential functions [3,
12, 13, 15] are a widely used approach. In that ap-
proach, a suitable potential function is chosen that as-
signs a potential to every possible state of the system.
Simplifying matters somewhat, it is then shown that
the potential decreases in every time step. However, it

1-4244-0054-6/06/$20.00 ©2006 IEEE

turns out to be more challenging to use this method for
diffusion type algorithms (see [13, 15]). This is mainly
due to the concurrent load balancing actions which can
change the load situation in one step drastically. Diffu-
sion methods are normally analyzed with an algebraic
approach (see [3, 18, 15]) that only works for the con-
tinuous case. See Section 2 for an overview of this
approach.

In this paper we propose a very simple potential
function technique to analyze discrete diffusion load
balancing schemes. First, we sequentialize the load bal-
ancing actions of the diffusion approach in a suitable
way, and then we show that the potential decreases
after each of these sequential load balancing actions.
We use the potential drop of the sequentialized load
balancing scheme to lower bound the potential drop of
the original system with concurrent load balancing ac-
tions. In more detail, we show that under certain con-
ditions the potential drop of both the sequentialized
and the concurrent system differ by only a constant
factor. Our proof method simply neglects the concur-
rency in the original load balancing approach and maps
the problem to the corresponding sequential load bal-
ancing method. To analyze the related sequential load
balancing algorithm, we can using existing ideas, e.g.,
from [12].

We use our technique to analyze the standard diffu-
sion algorithm in the continuous and the discrete case.
Then we apply our technique to get results for the dy-
namic model of [10], where the network can change over
the time. Again, we get results for the discrete and the
continuous case. Finally, we step aside from the tra-
ditional neighbourhood load balancing approach and
allow nodes to randomly choose their load balancing
partners from among set set of all other nodes. Note
that in this setting, a node can easily be forced to bal-
ance its load with many other nodes, such that many
of concurrent load balancing actions will take place.
Note also that this setting can be regarded as neigh-
bourhood load balancing where the network topology
is randomly chosen and changes from step to step. We
call such a network random in the following. To our
best knowledge, the results for discrete version of the
dynamic network, and the random network are new.

The remainder of the paper is organized as follows.
Section 2 introduces related work. We sketch our tech-
nique, and compare our results to previous ones in Sec-
tion 3. Section 4 deals with continuous and discrete
load balancing in the fixed network model. Section 5
deals with continuous and discrete load balancing in
the dynamic network model, and Section 6 does the
same for the random network model. Finally, Section
7 concludes the paper.

2 Related Work

In this section we review some related results. We
partition the work into the two categories continuous
and discrete load balancing strategies.

2.1 Continuous Load Balancing

Continuous load balancing is the “ideal” case in
which tokens can be split arbitrarily. Hence it is pos-
sible to balance the load perfectly.

Diffusion. Cybenko [3] and, independently, Boillat
[2], were the first to study the diffusion method. In
the diffusion model of Cybenko, the work distribu-
tion at time step t is quantified by an n vector, Lt =
(�t

1, . . . , �
t
n), where �t

i is the load of node i at time t ≥ 0.
In each round t, node i and node j compare their load.
If �t

j > �t
i, node j sends αij

(
�t
j − �t

i

)
tokens to node i.

α is called the diffusion factor and is set to 1/(δ + 1),
where δ is the maximum degree of the network. We
can write Lt+1 = M ·Lt, where M = (mij) is a matrix
defined as

mij =

{
αij , if i �= j
1 −∑k αik if i = j.

M is commonly referred to as diffusion matrix. Cy-
benko [3] (see also [18, 15]) shows a tight connec-
tion between the convergence rate of his diffusion al-
gorithm and the second largest eigenvalue of M . Let
� =

∑n
i=1 �t

i/n be the average load and let b = (�, . . . , �)
be the balanced distribution. For each t ≥ 0, define the
error e(t) to be �(t) − b. Let −1 ≤ µ1 ≤ µ2 ≤ . . . ≤
µn = 1 be the set of eigenvalues of M and denote γ =
maxµi �=1 |µi| to be the second largest eigenvalue of M .
Let ||e(t)||2 be the �2 norm of the error vector e(t). It
can be shown that ||e(t+1)||2 = ||M ·e(t)||2 ≤ γ · ||e(t)||2,
which implies ||e(t)||2 ≤ γt · ||e(0)||2,

Subramanian and Scherson [18] observe similar re-
lations between convergence time and the properties
of the underlying network. They obtain the following
bound on the convergence time T : Ω(log(σ)/Γ) ≤ T ≤
O(nσ/Γ) and Ω(log(σ)/Λ) ≤ T ≤ O(σ/Λ2). where n is
the size of the network, σ is the standard deviation of
the initial load distribution. Γ and Λ are the network’s
electrical and fluid conductance, respectively.

Ghosh et al. [15] refer to the above diffusion model
as the first order scheme and further generalize it
to the so called second order scheme, where Lt =
β ·MLt−1 + (1 − β) ·Lt−2, with β a constant. Lt does
not only relate to Lt−1 but also Lt−2, hence the name
second order. They show that the second order scheme

converges much faster than the first order scheme for
suitably chosen values of β. Diekmann et al. [7] extend
the idea of [15] and propose a general framework to
analyze the convergence behaviour of a wide range of
diffusion type methods. They introduce the so called
Optimal Polynomial Scheme (OPS), which can deter-
mine an optimal balancing flow within m steps, where
m is the number of distinct eigenvalues of the graph.

In [11] the authors analyze the diffusion algorithm
for dynamically changing networks. The results are
stated in Theorem 7. The proof method is similar to
the one in [7].

2.1.1 Dimension Exchange

In [12], Ghosh and Muthukrishnan study the dimen-
sion exchange method for an arbitrary network G. To
avoid concurrent load balancing actions they randomly
generate a matching Mt in every step t. The nodes of
the matching are then allowed to balance their load
by exchanging half the load difference between every
pair. They use a standard potential function argument.
They first show that the probability for an edge to be
included in the matching Mt is at least 1/8δ. Next,
they estimate the expected potential drop by summing
over all edges. The show that in each round the ex-
pected drop of φ is at least λ2/16δ. Here, λ2 is defined
as the second smallest Eigenvalue of the Laplacian ma-
trix of G. The Laplacian matrix of G is defined as
L = D − A, with A denoting the adjacency matrix of
G and D = (dij) with dij = 0 if i �= j and dii the
degree of node i.

2.2 Discrete Load Balancing

Discrete load balancing, in which only integer to-
kens are allowed to be transferred, is a more realistic
model than continuous load balancing. In this case the
network can not be completely balanced. To see that
consider the line as a network where the load of node i
is simply i. The load is certainly not totally balanced
but no neighbouring pair of nodes would balance their
load. Unfortunately, discrete load balancing can not
be analyzed using the algebraic technique of [3].

Quite often, the continuous model is used to bound
the convergence time of discrete load balancing. Since
the approximation error is mainly caused by rounding,
it is not significant when the system is far from the
balanced state (see [12, 15]). For the discrete version
of their random matching based algorithm, by care-
fully calculating how much error can be introduced by
rounding, Ghosh and Muthukrishnan [12] prove that,
as long as φ ≥ 2δn/λ2, the rounding can at most slow

down the convergence time by a factor of two.

Besides, using the same rounding technique as
above, Muthukrishnan et al. [15] show that in the case
of the discrete version of their first order scheme, the
initial potential ϕ0 can be reduced to O(δ2n2/ε2) in
O
(
log ϕ0/(1 − (1 + ε)γ2)

)
steps.

Rabani, Sinclair and Wanka [16] propose a more
general technique to study the discrete load balancing.
Their idea is to approximate the discrete system by ide-
alized Markov chains. Let M be the diffusion matrix of
a diffusion algorithm, and let γ, µ = 1− |γ| be the sec-
ond largest eigenvalue and the eigenvalue gap of M , re-
spectively. Furthermore, let K = maxi,j |�i− �j | be the
discrepancy of the initial load vector �. They show for

the idealized Markov chain that r = 2
µ ln

(
Kn2

x

)
rounds

are sufficient to reduce the discrepancy to x. Next, to
quantify the deviation of the actual load and the distri-
bution generated by the Markov chain, they propose to
use a natural quantity, the local divergence Ψ, which is
the sum of load differences of the two systems across all
edges of the network, aggregating over time. They ob-
tain the following bound for Ψ: Ψ(M) = O(δ log N/µ).
Finally, applying the knowledge of the second largest
eigenvalue and of r from above, they get fairly tight
convergence results for various network topologies, e.g.,
line graph, de Bruijn network, degree-d expander etc.

Using a Markov chain based approach, Elsässer and
Monien [8] propose a new discrete diffusion scheme
which is fully randomized and distributed. Let K be
the initial discrepancy (defined as above) and δ be the
maximum degree of the underlying graph. They show

that, after O
(

δ
λ2

(log n log log n + log K)
)

steps, the al-

gorithm can reduce the error bound ||e(k)||2 to O(
√

n).

3 Our Results

The main contribution of this paper is a new proof
technique which can be used to analyze many diffusion-
type load balancing algorithms, where the concurrent
load balancing actions are the main challenge to the
analysis. We demonstrate that our approach can be
used to analyze diffusion discrete and continuous load
balancing in a variety of underlying network models.

The key idea is to first sequentialize the concur-
rent actions in a diffusion algorithm, and then check
to which extent the concurrency can degrade the algo-
rithm performance. We can show that under certain
conditions, the potential drop of both the sequential-
ized system and the concurrent system differ by a con-
stant factor only. Hence, one can simply “neglect” the
concurrency, and the remaining analysis can be easily
done using existing techniques like in [12]. To illus-

trate how the idea works, we first analyze Algorithm 1,
a classic diffusion algorithm similar to the ones studied
in [3, 18, 15]. Next, we consider Algorithm 2, which
allows every user to randomly find its balancing part-
ner. We again analyze it using the same proof idea;
this shows that our technique is quite general.

Specifically, Section 4 analyzes a diffusion algorithm
(Algorithm 1) with concurrent load balancing actions.
For the proof, we use a standard potential function Φ
(similar to the ones defined in [3, 12, 15, 18]). We can
show that at each step, the potential drop of Algorithm
1 is at least some constant (0.5) times that of the corre-
sponding sequentialized algorithm. In other words, the
concurrency can degrade our algorithm performance by
at most a factor of two. Finally, we adopt the proof
idea in [12] to analyze the sequentialized algorithm so
as to obtain the main convergence result (Theorem 4)
for Algorithm 1.

Note that most existing results for diffusion-type
algorithms consider the corresponding diffusion ma-
trix of the network (see [2, 3, 18, 15]), while our re-
sult is expressed in terms of network parameters (e.g.,
the second-smallest eigenvalue of the Laplacian ma-
trix, the maximum degree). Moreover, our approach is
much simpler. Furthermore, due to the concurrent load
balancing actions, our algorithm converges a constant
times faster than the dimension exchange algorithm in
[12].

Next, we analyze the discrete version of Algorithm
1 and obtain similar results to the ones in [12, 15].
We prove that as long as the potential is larger than
a certain threshold (i.e., the system is “far” from the
well-balanced state), the discrete case has similar con-
vergence behaviour to the continuous case. For the
same discrete diffusion algorithm, our result (Theorem
6) is stronger than the one in [15], as it only requires the
potential to be larger than a term linear in n instead
of quadratic. Furthermore, compared to the discrete
dimension exchange algorithm in [12], our algorithm is
still a constant times faster.

In Section 5 we use our proof method to get similar
results similar to the ones in [11] for a dynamic network
model where the active edges can change from round
to round. In contrast to [11], we get also results for the
discrete load balancing model.

In Section 6, we analyze Algorithm 2, which allows
nodes to randomly to choose balancing partners. Note
that Algorithm 2 also contains concurrent load bal-
ancing actions since a node may have been chosen by
many other nodes. Using the same proof idea to handle
the concurrency, one can show that Algorithm 2 also
converges quickly, as in each round the system poten-
tial drops by at least a constant factor in expectation.

This implies that Algorithm 2 has a strict logarithmic
convergence time which does not rely on any network
parameters. Note that our results for this model are
stronger that the ones that we would get by simply
applying our results for the dynamic model. To our
best knowledge this is the first time that the diffusion
scheme is analyzed in a model where nodes are allowed
to randomly to choose balancing partners.

4 Diffusion Algorithm on Fixed Net-

works

In this section we present our results in the standard
diffusion model for arbitrary networks. The next sec-
tion deals with the continuous case, where tokens can
be arbitrarily split. In section 4.2 we show how to use
our technique to obtain results for the discrete case.

4.1 Continuous Case

First we need some more notation. G = (V, E) is
the underlying network. Let {e1, e2, . . . e|E|} be the set
of edges of G. For each node i ∈ V , let di be the degree

of i, and let δ = maxi∈V di. α = min
S⊂V

|E(S,S)|

min(|S|,|S|)
is the

edge expansion of G, with S = V/S, and E(S, S) the set
of edges with one endpoint in S and the other endpoint
in S. Furthermore, let N(i) = {j ∈ V |(i, j) ∈ E}
denote the set of all neighbours of node i. Let �t

i be
the load of node i at the end of round t. Whenever
clear from the context we will simply write �i in the
following. Then the vector L = {�1, . . . , �n} represents
the entire load distribution. Now we are ready to define
the load balancing algorithm we are considering in this
section.

Algorithm 1 diff-balancing(G)

1: for every node i ∈ V in parallel do

2: for any j ∈ N(i) do

3: if �i > �j then

4: send
�i−�j

4 max (di,dj)
load from node i to j

5: end if

6: end for

7: end for

Similar to the result in [12], Theorem 4 (presented
below) is a function of the edge expansion value and the
maximum degree of G. Let 0 = λ1 < λ2 ≤ . . . ≤ λn

be the eigenvalues of the Laplacian matrix of G (for
the definition of Laplacian matrix, see Section 2.1.1).
Let Lt = {�t

1, . . . , �
t
n}, t ≥ 0 be the load vector after t

balancing steps and � =
∑n

i=1 �i/n the average load.

In the following we will assume that all load vectors
are normalized, i.e., �t

1 ≤ �t
2 ≤ . . . ≤ �t

n. To analyze the
algorithm, we will use the following potential function
Φ(Lt) =

∑n
i=1 (�t

i − �)2. Hence, Φ(Lt−1)−Φ(Lt) is the
potential drop in round t.

We assign weight wij =
∣∣�t−1

i − �t−1
j

∣∣ /4 max (di, dj)
to each edge e = (i, j) in every round. The weight wij

is the load that will be transferred over e = (i, j) in
round t. Let Et = {et

1, e
t
2, . . . e

t
|E|} be the set of edges

sorted in increasing order of their weights. For the sake
of the analysis, we now assume the edges are activated
one by one starting with the edge et

1 with the smallest

weight. Then we can define L(t,k) =
(
�
(t,k)
1 , . . . , �

(t,k)
n

)
to be the load vector right after the activation of the
first k edges et

1, . . . e
t
k in round t (applied to the load

distribution Lt−1). ∆Φt
� is the potential drop due to

the activation of edge e� in round t. The next lemma
lower bounds the potential drop due to a single edge
activation.

Lemma 1 Fix a round t. For all edges e� = (i, j) ∈ E
we have ∆Φt

� ≥ wij

∣∣�t−1
i − �t−1

j

∣∣.
Proof: Assume �t

i ≥ �t
j. Since all edges are acti-

vated in increasing order of their weights, the amount
of load that node i can send to any other neighbour
in round t before the activation of ek, is at most
wij =

∣∣�t−1
i − �t−1

j

∣∣ /4 max (di, dj). Node i has at most
di −1 additional neighbours, hence it can send at most

(di−1)· |�
t−1
i −�t−1

j |
4max (di,dj)

load to other neighbours before the

activation of edge (i, j). Consequently,

�
(t,k−1)
i ≥ �t−1

i − (di − 1) · wij

= �t−1
i − di ·

(∣∣�t−1
i − �t−1

j

∣∣
4 max (di, dj)

)
+ wij

≥ �t−1
i − 1

4

∣∣�t−1
i − �t−1

j

∣∣+ wij . (1)

Similarly, node j receives at most (dj − 1) · |�
t−1
i −�t−1

j |
4max (di,dj)

before the activation of edge (i, j). Hence,

�
(t,k−1)
j ≤ �t−1

j + (dj − 1) · wij

= �t−1
j + dj ·

(∣∣�t−1
i − �t−1

j

∣∣
4 max (di, dj)

)
− wij

≤ �t−1
j +

1

4

∣∣�t−1
i − �t−1

j

∣∣− wij . (2)

Consequently,

∆Φt
� =

(
�
(t,k−1)
i − �

)2

+
(
�
(t,k−1)
j − �

)2

−

(
�
(t,k)
i − �

)2

−
(
�
(t,k)
j − �

)2

(a)
=

(
�
(t,k−1)
i

)2

+
(
�
(t,k−1)
j

)2

−(
�
(t,k)
i

)2

−
(
�
(t,k)
j

)2

=
(
�
(t,k−1)
i

)2

+
(
�
(t,k−1)
j

)2

−(
�
(t,k−1)
i − wij

)2

−
(
�
(t,k−1)
j + wij

)2

= 2wij

(
�
(t,k−1)
i − �

(t,k−1)
j − wij

)
(b)
≥ 2wij

(∣∣�t−1
i − �t−1

j

∣∣
2

+ wij

)

≥ wij

∣∣�t−1
i − �t−1

j

∣∣ .
Here (a) holds since �

(t,k−1)
i + �

(t,k−1)
j = �

(t,k)
i + �

(t,k)
j .

(b) is due to Inequalities 1 and 2. �

Now it is straightforward to lower bound the potential
decrease in a whole round.

Lemma 2

Φ(Lt−1) − Φ(Lt) ≥ 1

4δ

∑
(i,j)∈E

(
�t−1
i − �t−1

j

)2
.

Proof:

Φ(Lt−1) − Φ(Lt)

=
∑

e�=(i,j)∈E

∆Φt
�

(a)
≥

∑
(i,j)∈E

wij

∣∣�t−1
i − �t−1

j

∣∣

=
∑

(i,j)∈E

(∣∣�t−1
i − �t−1

j

∣∣
4 max {di, dj} · ∣∣�t−1

i − �t−1
j

∣∣)

≥ 1

4δ

∑
(i,j)∈E

(
�t−1
i − �t−1

j

)2
.

Here (a) is due to Lemma 1. �

We shall use the following lemma.

Lemma 3 (From [12].)

λ2 = min
x

(
xTLx

xT x
| x ⊥ v1, x �= 0

)
.

where v1 = (1, 1, . . . , 1)T and x ⊥ v1 means that x is
orthogonal to v1.

Proof: Application of the the Courant-Fischer Mini-
max Theorem, see [12] for the full proof. �

It is now easy to derive the following theorem.

Theorem 4 For any ε > 0, after T = 4δ ln(1/ε)
λ2

steps,

we have Φ(LT) ≤ ε · Φ(L).

Proof: Fix a round t. First we lower bound
Φ(Lt−1)−Φ(Lt)

Φ(Lt) . The idea is similar to [12]. Define

x to be a vector of length n with xi = �t−1
i − �.

Note that
∑n

i=1 xi = 0, and that x is orthogonal to
v1 = (1, 1, . . . , 1)T . Hence,

Φ
(
Lt−1

)− Φ (Lt)

Φ (Lt−1)

(a)
≥

∑
(i,j)∈E

(
�t−1
i − �t−1

j

)2
4δ ·∑n

i=1 x2
i

=

∑
(i,j)∈E (xi − xj)

2

4δ ·∑n
i=1 x2

i

=
1

4δ

(
xTLx

xT x
|

n∑
i=1

xi = 0, x �= 0

)

≥ 1

4δ
min

x

(
xTLx

xT x
|x ⊥ v1, x �= 0

)
(b)
=

λ2

4δ
. (3)

Here, (a) holds by Lemma 2. (b) is due to Lemma 3.
Hence, the potential drops by a constant factor in every
round and we obtain

Φ(LT) ≤
(

1 − λ2

4δ

)T

Φ(L0)

=

((
1 − λ2

4δ

) 4δ
λ2

)ln(1/ε)

· Φ(L)

<

(
1

e

)ln(1/ε)

Φ(L) = ε · Φ(L),

where the second inequality is due to ∀0 < x < 1,
(1 − x)1/x < 1/e. �

4.2 Discrete Case

In this section we analyze the discrete version of
Algorithm 1 under the assumption that only integral
amounts of tokens can be transferred. This means that
for each edge (i, j), we transfer

⌊
|�i−�j |

4 max(di,dj)

⌋
tokens.

Theorem 6 upper bounds the balancing time for the
discrete process. Note that it is no longer possible to
balance the load completely. (See the example in the
introduction.) Compared to the continuous version of
the protocol, it takes longer for the discrete protocol
converge against a “nearly balanced state”, but the
difference is only a multiplicative constant.

Lemma 5 Fix a round t. If Φ
(
Lt−1

) ≥ 64δ3n/λ2,
Φ(Lt−1)−Φ(Lt)

Φ(Lt−1) ≥ λ2/8δ.

Proof:

Φ
(
Lt−1

)− Φ (Lt)

Φ (Lt−1)

(a)
≥

∑
(i,j)∈E

⌊ ∣∣�t−1
i − �t−1

j

∣∣
4 max(di, dj)

⌋
· ∣∣�t−1

i − �t−1
j

∣∣

≥
∑

(i,j)∈E

(∣∣�t−1
i − �t−1

j

∣∣
4 max(di, dj)

− 1

)
· ∣∣�t−1

I − �t−1
j

∣∣
≥ 1

4δ

∑
(i,j)∈E

(
�t−1
i − �t−1

j

)2 − ∑
(i,j)∈E

∣∣�t−1
i − �t−1

j

∣∣
(b)
≥ 1

4δ

∑
(i,j)∈E

(
�t−1
i − �t−1

j

)2 −
√
|E|

∑
(i,j)∈E

(
�t−1
i − �t−1

j

)2
(c)
≥ 1

8δ

∑
(i,j)∈E

(
�t−1
i − �t−1

j

)2
.

Here (a) is due to Lemma 2. (b) follows from
∑m

i=1 ai ≤√
m
∑

i a2
i . For (c), by Lemma 3, we get∑

(i,j)∈E

(
�t−1
i − �t−1

j

)2 ≥ λ2Φ
(
Lt−1

) ≥ 64nδ3.

Moreover, since |E| ≤ nδ, we have√
|E| ·

∑
(i,j)∈E

(
�t−1
i − �t−1

j

)2

≤ 1

8δ

∑
(i,j)∈E

(
�t−1
i − �t−1

j

)2
.

�

Remark. Lemma 5 is slightly stronger than Theorem 4
of [15], in that we only require the potential to be linear
in n, while Theorem 4 of [15] requires the potential to
be at least quadratic in n.

Theorem 6 After T =
8δ ln

“
λ2Φ(L)

64δ3n

”

λ2
steps, Φ

(
LT
)

<

64δ3n/λ2.

Proof: By Lemma 5, the potential drops by a
constant factor in every round as long as Φ(LT) ≥
64δ3n/λ2. Hence, After T =

8δ ln
“

λ2Φ(L)

64δ3n

”

λ2
steps,

Φ(LT) ≤
(

1 − λ2

8δ

)T

Φ(L0)

=

((
1 − λ2

8δ

) 8δ
λ2

)ln
“

λ2Φ(L)

64δ3n

”

· Φ(L)

≤
(

1

e

)ln
“

λ2Φ(L)

64δ3n

”

· Φ(L)

= 64δ3n/λ2,

Here, the second inequality is due to ∀0 < x < 1,
(1 − x)1/x < 1/e. �

5 Diffusion on Dynamic Networks

In [10], Elsässer et al. considered the diffusion pro-
cess on dynamic networks, in which the set of nodes
in fixed, but the set of of communication edges may
vary from round to round. They assume that every
node knows the edges that are active in a certain time
step. The network can now be described by a sequence
of “standard” graphs (Gk)k≥0, where Gk is the under-
lying network at time step k. In this section we show
how to use our analysis approach to get results for their
network model. Similar to Section 4, we differentiate
the continuous and the discrete cases. The proofs can
be found in the appendix. Note that [10] only considers
to continuous case.

5.1 Continuous Case

For the continuous case, Elsässer et al. proved the
following theorem. We can show exactly the same re-
sult for Algorithm 1 with our proof method. In fact,
Theorem 7 can be easily derived by Theorem 4.

Theorem 7 (From [10]). Denote λ
(k)
2 and δ(k) to be

the second smallest eigenvalue and the maximum degree

of Gk respectively. Let AK =

PK
k=1

“
λ
(k)
2 /δ(k)

”

K be the

average value of λ
(k)
2 /δ(k) occurring during the first K

iterations. Algorithm 1 needs at most K steps to reduce
the system potential from Φ(L) to εΦ(L), where K =
O(ln(1/ε)/AK).

5.2 Discrete Case

For the discrete case, we combine Theorem 7 and
Lemma 5 and obtain the following theorem for the dis-
crete version of Algorithm 1.

Theorem 8 Let λ
(k)
2 , δ(k), AK be defined as above.

The discrete counterpart of Algorithm 1 needs at most
K steps to reduce the system potential to

Φ∗ = 64n · K
max
k=1

{(
δ(k)

)3

/λ
(k)
2

}

K = O

(
ln (Φ(L)/Φ∗)

AK

)
.

Similar to Lemma 5, one can show that whenever
the potential is larger than some threshold Φ∗ defined

above, the potential drops at least by a factor of
λ
(k)
2

8δ(k)

in iteration k. The rest part of the proof is similar to
that of Theorem 7, thus the detail is omitted.

6 Randomly picking balancing partners

In this section, we consider an alternative load bal-
ancing method (Algorithm 2) which allows nodes to
randomly choose their balancing partners. The algo-
rithm proceeds in the following fashion: in each round,
first every node randomly picks a balancing partner;
later, load is transferred concurrently between the cor-
responding balancing partners. Note that unlike Al-
gorithm 1, Algorithm 2 does not specify the underly-
ing network topology. Using our analyzing technique
to handle the concurrency, we can show that in each
round, the system potential drops by at least a con-
stant factor. This implies that Algorithm 2 has a strict
logarithmic convergence time. Again, we first show re-
sults for the continuous case, and then for the discrete
case.

6.1 Continuous Case

We denote by E the set of links whose endpoints
are balancing partners, i.e., if node i chooses node j as
balancing partner, we create a link (i, j) and add it to
E. Moreover, let �i, d(i) be the load and the number
of balancing partners of node i. Our algorithm is as
follows:

Below we analyze Algorithm 2. First note that
by the classic result of balls into bins games (see,
for example, [1]), there is at least one vertex having

Θ
(

log n
log log n

)
balancing partners, with high probability.

Consequently, one can not simply use the result in Sec-
tion 4, which is in terms of the maximum degree of the

Algorithm 2 Randomly picking balancing partners

1: E = ∅
2: for every node i ∈ V do in parallel do

3: pick j ∈ V uniformly at random
4: E ← E ∪ (i, j)
5: end for

6: for every node i ∈ V do in parallel do

7: for every j such that (i, j) ∈ E do

8: if �i > �j then

9: send
�i−�j

4 max (di,dj)
tokens from node i to j

10: end if

11: end for

12: end for

underlying network. Instead, we prove the following
result, which indicates that for a given link, it is un-
likely for both sides of the link to have more than a
constant number of balancing partners.

Lemma 9 For a fixed link (i, j) ∈ E,

Pr[max (di, dj) ≤ 5 | (i, j) ∈ E] > 0.5.

Proof: By symmetry, we can assume that link (i, j) is
built by node i. In this case, among the remaining n−1
nodes, there must be di−1 nodes which choose i as their
balancing partner. Since the probability for every node
to choose i is 1/n, we have di ∼ 1+B(n−1, 1/n), where
B(n, p) is the binomial distribution. Next we consider
node j. Note that node j has already connected to two
links: (i, j) and another one that node j builds. Hence
dj ∼ 2+B(n−2, 1/n) by similar reason as above. Next,
we calculate

Pr[di > 5 | (i, j) ∈ E]

= Pr[B(n − 1, 1/n) ≥ 5]

≤
(

n − 1

5

)
·
(

1

n

)5

<
(ne

5

)5
(

1

n

)5

=
(e

5

)5

< 0.05.

Similarly, we can prove that Pr[dj > 5 | (i, j) ∈ E] <(
e
4

)4
< 0.25. Using Pr[A or B] ≤ Pr[A] + Pr[B], we

can show that

Pr[max (di, dj) ≤ 5 | (i, j) ∈ E]

= 1 − Pr[di > 5 or dj > 5 | (i, j) ∈ E]

> 1 − (Pr[di > 5 | (i, j) ∈ E] +

Pr[dj > 5 | (i, j) ∈ E])

> 1 − (0.05 + 0.25) > 0.5.

�

Before we prove Lemma 11, we show the following re-
sult which shows that the potential drop at some step
t is a constant times the current system potential.

Lemma 10
∑n

i=1

∑n
j=1 (�t

i − �t
j)

2 = 2n · Φ(Lt).

Proof: Let yi = |�t
i − �|, and denote A (or B) to be

the set of indices i for which �t
i ≤ � (or �t

i > � resp.).
First observe that∑

i∈A

∑
j∈B

(yi + yj)
2 =

∑
i∈B

∑
j∈A

(yi + yj)
2, (4)

and ∑
i∈A

∑
j∈B

(yi + yj)
2

=
∑
i∈A

∑
j∈B

(
y2

i + y2
j + 2yiyj

)
= |B| ·

∑
i∈A

y2
i + |A| ·

∑
j∈B

y2
j +

2 ·
∑
i∈A

yi ·
∑
j∈B

yj . (5)

Similar to (5), we get

∑
i∈A

∑
j∈A

(yi − yj)
2 = 2 · |A| ·

∑
i∈A

y2
i − 2 ·

(∑
i∈A

yi

)2

(6)

and

∑
i∈B

∑
j∈B

(yi − yj)
2 = 2|B|

∑
j∈B

y2
j − 2

⎛
⎝∑

j∈B

yj

⎞
⎠

2

. (7)

By Equations 4, 5, 6 and 7,

n∑
i=1

n∑
j=1

(�t
i − �t

j)
2

=
∑
i∈A

∑
j∈B

(yi + yj)
2 +

∑
i∈B

∑
j∈A

(yi + yj)
2 +

∑
i∈A

∑
j∈A

(yi − yj)
2 +

∑
i∈B

∑
j∈B

(yi − yj)
2

= 2(|A| + |B|) ·
∑
i∈A

y2
i + 2 (|A| + |B|) ·

∑
j∈B

y2
j +

4 ·
(∑

i∈A

yi

)
·
(∑

i∈B

yj

)
−

2

(∑
i∈A

yi

)2

− 2

⎛
⎝∑

j∈B

yj

⎞
⎠

2

(a)
= 2 (|A| + |B|) ·

⎛
⎝∑

i∈A

y2
i +

∑
j∈B

y2
j

⎞
⎠

(b)
= 2n · Φ(Lt).

Here (a) holds since
∑
i∈A

yi =
∑

j∈B

yj , (b) is because

|A| + |B| = n and Φ(Lt) =
∑
i∈A

y2
i +

∑
j∈B

y2
j . �

Now we are ready to prove the following lemma.

Lemma 11 E[Φ(Lt+1 |Lt = L)] ≤ 19
20Φ(L).

Proof:

E[Φ(Lt+1)|Lt = L]

= Φ(L) −
n∑

i=1

n∑
j=1

(Pr[e� = (i, j) ∈ E] · ∆Φ�(L))

(b)
≤ Φ(L) − 1

n

n∑
i=1

n∑
j=1

tij |�i − �j|

= Φ(L) − 1

n

n∑
i=1

n∑
j=1

(�i − �j)
2

4 max(di, dj)

≤ Φ(L) −
1

n

n∑
i=1

n∑
j=1

[
Pr[max(di, dj) ≤ 5|(i, j) ∈ E] ×

(�i − �j)
2

4 · 5
]

(c)
= Φ(L) − 1

40n

n∑
i=1

n∑
j=1

(�i − �j)
2

(d)
= Φ(L) − Φ(L)

20
=

19

20
Φ(L).

Here (b) is from Lemma 1. (c) is due to Lemma 9. (d)
holds by Lemma 10. �

Finally, we prove the following convergence theorem.

Theorem 12 For c > 0, after T ≥ 120c lnΦ(L)
rounds, Pr[Φ(LT) ≤ e−c] ≥ 1 − Φ(L)−c/4.

Proof: For any t > 0, by linearity of expectation, we
can repeatedly use Lemma 11, and obtain

E
[
Φ
(
Lt+30

)] ≤ (19

20

)30

Φ(Lt) ≈ 0.21Φ(Lt).

By Markov’s inequality, Pr[Φ(Lt+30) < Φ(Lt)/2] ≥
1/2. Denote a stage to be 30 rounds. For any c > 0, let

k = 4 log Φ(L). For stage 0 ≤ i ≤ k, define the random
variable

Xi =

{
1 if Φ(L30(i+1)) ≤ Φ(L30i)/2.
0 otherwise.

If Xi = 1, we say stage i is successful. We use Cher-
noff’s inequality to bound the number of successful
stages. Let X =

∑k
i=0 Xi. Clearly E[X] ≥ k/2. By

Chernoff,

Pr[X ≤ c lnΦ(L)]

≤ e−E[X]0.52/2 ≤ e−k/16 ≤ Φ(L)−c/4.

Hence, after T = 30c · k = 120c · ln Φ(L) rounds, the
number of successful stages is bigger than or equal to
c ln Φ(L) with probability at least 1 − Φ(L)−c/4. Con-
sequently, for T ≥ 120c · lnΦ(L), Pr[Φ(LT) ≤ e−c] with
probability at least 1 − Φ(L)−c/4. �

Remark. The random network model of this section
can be viewed as a special case of the dynamic network
model in Section 5. For random networks we are able
to show that the potential drops by a constant factor in
each round. Theorem 7 does not give a constant factor
drop for our random networks.

6.2 Discrete Case

For the discrete case we use Algorithm 2 with one
change. In every step, whenever �i > �j , we transfer⌊

�i−�j

4max (di,dj)

⌋
tokens from �i to �j. We show the follow-

ing result indicating that whenever the potential Φ(L)
is bigger than a threshold of 3200n, the potential drops
at least by a constant factor of 1

40 in every iteration.
The proofs are omitted due to space constraints.

Lemma 13 If Φ(L) ≥ 3200n, E[Φ(Lt+1 |Lt = L)] ≤
39
40Φ(L).

Finally, similar to Theorem 12, we directly obtain
the following theorem:

Theorem 14 ∀c > 0, after T ≥ 240c ln
(

Φ(L)
3200n

)
rounds, Pr[Φ(LT) ≤ 3200n] ≥ 1 −

(
Φ(L)
3200n

)−c/4

.

7 Conclusion

In this paper we propose a new proof technique
which can be used to analyze many parallel diffusive
load balancing algorithms. The technique first sequen-
tializes a diffusion algorithm with concurrent load bal-
ancing actions, and then shows that the concurrency

only degrade the system performance by a constant
factor. We demonstrate the strength of the technique
by analyzing diffusion continuous and discrete load bal-
ancing algorithms for several network models.

References

[1] Yossi Azar, Andrei Z. Broder, Anna R. Karlin,
Eli Upfal: Balanced Allocations. SIAM J. Com-
put. 29(1): 180-200 1999.

[2] Jacques E. Boillat: Load Balancing and Poisson
Equation in a Graph. In Journal of Concurrency
- Practice and Experience 2(4): 289-314 1990.

[3] George Cybenko: Dynamic Load Balancing for
Distributed Memory Multiprocessors. In Journal
of Parallel Distributed Computing 7(2): 279-301
1989.

[4] Fan Chung:Spectral Graph Theory. American
Mathematical Society. 1997.

[5] Ana Cortés, Ana Ripoll, F. Cedo, Miquel A.
Senar, Emilio Luque: An asynchronous and it-
erative load balancing algorithm for discrete load
model. In Journal of Parallel and Distributed
Computing. 62(12): 1729-1746 2002.

[6] Ralf Diekmann. Load Balancing Strategies for
Data Parallel Applications. Ph.D Thesis, Uni-
versity of Paderborn, Germany, 1998.

[7] Ralf Diekmann, Andreas Frommer, Burkhard
Monien: Efficient schemes for nearest neighbour
load balancing. In Journal of Parallel Computing
25(7): 789-812 1999.

[8] Robert Elsässer, Burkhard Monien: Load bal-
ancing of unit size tokens and expansion proper-
ties of graphs. In Proceedings of the 15th An-
nual ACM Symposium on Parallel Algorithms
and Architectures (SPAA) 2003: 266 - 273

[9] Robert Elsässer, Burkhard Monien, Robert
Preis: Diffusion Schemes for Load Balancing on
Heterogeneous Networks. In Journal of Theory
Comput. Syst. 35(3): 305-320, 2002.

[10] Robert Elsässer, Burkhard Monien, Stefan
Schamberger: Load Balancing on Dynamic Net-
works. the 7th International Symposium on Par-
allel Architectures, Algorithms and Networks
(ISPAN’04): 193-200.

[11] Robert Elsässer, Burkhard Monien, Stefan
Schamberger: Load Balancing of Indivisible
Unit Size Tokens in Dynamic and Heterogeneous
Networks. ESA 2004: 640-651.

[12] Bhaskar Ghosh, S. Muthukrishnan: Dynamic
Load Balancing in Parallel and Distributed Net-
works by Random Matchings. In Proceedings of
the 6th Annual ACM Symposium on Parallel Al-
gorithms and Architectures (SPAA) 1994: 220-
225.

[13] Bhaskar Ghosh, Frank Thomson Leighton,
Bruce M. Maggs, S. Muthukrishnan, C. Greg
Plaxton, Rajmohan Rajaraman, Andrea W.
Richa, Robert Endre Tarjan, David Zuckerman:
Tight analyzes of Two Local Load Balancing Al-
gorithms. In SIAM J. Comput. 29(1): 29-64
(1999)

[14] Friedhelm Meyer auf der Heide, Brigitte Oester-
diekhoff, Rolf Wanka: Strongly Adaptive Token
Distribution. In Journal of Algorithmica 15(5):
413-427, 1996.

[15] S. Muthukrishnan, Bhaskar Ghosh, Martin H.
Schultz: First- and Second-Order Diffusive
Methods for Rapid, Coarse, Distributed Load
Balancing. In Theory Comput. Syst. 31(4): 331-
354, 1998.

[16] Yuval Rabani, Alistair Sinclair, Rolf Wanka: Lo-
cal Divergence of Markov Chains and the Analy-
sis of Iterative Load Balancing Schemes. In Pro-
ceeding of 39th Annual Symposium on Founda-
tions of Computer Science(FOCS) 1998: 694-
705.

[17] David Peleg, Eli Upfal: The Token Distribution
Problem. SIAM J. Comput. 18(2): 229-243 1989.

[18] Raghu Subramanian, Isaac D. Scherson: An
Analysis of Diffusive Load-Balancing. In Pro-
ceedings of the 6th Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA)
1994: 220-225.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

