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Abstract— Anycast is a communication paradigm that was first
introduced to the suit of routing protocols in IPv6 networks. In
anycast, a packet is intended to be delivered to one of the nearest
group hosts. k-anycast, however, is proposed to deliver a packet
to any threshold k members of a set of hosts. In this paper, we
propose three k-anycast routing schemes for mobile ad hoc networks.
Our research work is motivated by the distributed key management
services using threshold cryptography in mobile ad hoc networks in
which the certification authority’s functionality is distributed to any
k servers. However, security is not the main focus of this paper.
Our goal is to reduce the routing control messages and network
delay to reach any k servers. The first scheme is called controlled
flooding. The increase of flooding radius is based on the number of
responses instead of increasing radius linearly or exponentially. The
second scheme, called component-based scheme I, is to form multiple
components such that each component has at least k members. We
can treat each component as a virtual server as in anycast, thus,
we simplify the k-anycast routing problem into an anycast routing
problem. For the highly dynamic network environment, we introduce
the third scheme, called component-based scheme II, in which the
membership a component maintains is relaxed to be less than k.
The performances of the proposed schemes are evaluated through
simulations.

Keywords: Anycast, k-anycast, mobile ad hoc networks, routing,
simulation.

I. INTRODUCTION

Network routing provides a means to find a path between a
source node and a destination node. The routing protocols can
be roughly classified into unicast, broadcast, multicast, and
anycast. Figure 1 illustrates different types of communication
services. Figure 1 (a) shows unicast where the message is sent
to a particular receiver D (also called one-to-one model). In
broadcast (one-to-all), as shown in Figure 1 (b), the message is
sent to all network hosts, namely hosts A, B, and C. Figure 1
(c) illustrates multicast (one-to-many), where the message is
sent to all members of a particular group, for instance, host A
and host C. In anycast, which is also referred to as a one-to-
any model, the message is sent to any member out of a group,
either A1, A2, or A3, preferably the nearest member, as shown
in Figure 1 (d). Anycast is a communication paradigm that
was first introduced to the suit of routing protocols in IPv6
networks [8]. In k-anycast as proposed in this paper, however,
the message is sent to any k members out of a particular group,
as opposed to anycast where there is only one receiver, as
illustrated in Figure 1 (e). The cardinality of each group is
at least k. For instance, when k = 2, {A1, A2}, {A1, A3},
{A2, A3}, and {A1, A2, A3} are the possibilities. Unicast and
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Fig. 1. Different routing services.

broadcast are two special cases of multicast with the number
of members equal to 1 and n, respectively. Similarly, anycast
is a special case of k-anycast with k = 1.

It is a common practice to deploy replicas of service
providers in networks under certain circumstances. The po-
tential advantages of this scheme are fault tolerance, load
balancing, security, and improvement in system performance.
For instance, server replication provides load balance by
deploying multiple copies of servers and sharing client load
across the replicas. Such schemes are used in domain name
systems (DNS), mirrored web sites, and ftp servers. In this
scenario, a user can locate any one server among the replica
and not necessarily be concerned about which one actually
provides the service. In mobile ad hoc networks (MANETs),
anycast can provide easier service in a dynamic and distributed
environment. For instance, in a situation where the network is
partitioned because of host mobility or function failure, the
host can still get service within the local component.

Further, in a network configuration where any threshold
number of servers can provide particular services, a user needs
to locate any k servers out of a server group. In this case,
a k-anycast scenario appears. Here, we systematically study
k-anycast in MANETs. It should adapt to the characteristics
of the mobile and ad hoc environment. While unicast and
multicast routing in MANETs has been extensively studied in
recent literature, the research on anycast routing in MANETs
has only recently been introduced. Most of the anycast routing
protocols proposed for MANETs are extensions to the current
unicast routing protocols [5][6], such as AODV, DSR, and
TORA. To the best of our knowledge, this is the first literature
on k-anycast routing in MANETs, though the term appears in
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[11]. There are possible network configurations where there
are a group of hosts with different capabilities, yet a threshold
number of hosts can provide equivalent functionalities and
efficient k-anycast protocols are necessary to realize such
needs. For instance, in a distributed public key management
framework using threshold cryptography [12][13], a user can
“assemble” a key from shares of any k servers. In fact, this
assembly process can be done through a k-any-gathering pro-
cess, where different shares are collected through the reverse
searching tree built from k-anycast.

In this paper, we propose three k-anycast routing schemes.
The first scheme is called controlled flooding. The increase in
flooding radius is based on the number of responses and not
merely increased linearly or exponentially. The second scheme
is to form multiple components such that each component
has at least k members. The third scheme also maintains
components, however, each component can have number of
members less than threshold k. In the second approach, we
can treat each component as a virtual server as in anycast,
thus, we simplify the k-anycast routing problem into an
anycast routing problem. In the third scheme, service from
multiple components can be aggregated instead of forcing
each component to maintain k members, thus, it could reduce
the invocation of the costly component recovery procedures,
such as component merging. The major contributions of our
research work are the following:

1) We introduce the k-anycast concept and its applications
in MANETs.

2) We propose three k-anycast routing schemes in
MANETs.

3) We present detailed operations of the k-anycast proto-
cols.

4) We evaluate the performance of the proposed routing
schemes in both static and dynamic network environ-
ments.

This paper is organized as follows: Section II reviews related
work. Details of the k-anycast routing protocols are described
in Section III. In Section IV, we present the experiment results.
We conclude the paper and discuss the possible future work
in Section V.

II. RELATED WORK

A. Anycast

The notion of anycast was introduced by Partridge, Mendez,
and Milliken in RFC 1546 in 1993 [3][8]. It was designed for
anycast service within the IP Internet. Since then, providing
anycast service to be used in IPv6 has been studied mainly
in wired networks. Most of the research focused on anycast
addressing, router selection, and server load balancing in wired
networks. Jia [9] proposed an integrated anycast algorithm.
The basic idea of this approach is that some routers execute
multiple path routing (MPR) and the other routers execute
single path routing (SPR). The assignment of routers to deter-
mine whether to execute SPR or MPR is based on the network
topology and servers’ load. However, such determination of
routers in a distributed and dynamic network environment

is not applicable without substantial modifications. Several
extensions of anycast routing can be found in [10].

Recently, anycast was introduced in MANETs [2][4][7].
Although it is promising for anycast protocols to provide
services in the dynamic, resource constrained, and distributed
environment, anycast protocols are still at the relatively early
stage of study in wired networks, and much less work has been
done in MANETs. Park and Macker described anycast routing
for mobile services [2]. Their idea is to extend the existing
unicast protocols for the anycast service, such as extensions
from link-state routing, distance vector routing, or link-reversal
routing.

Likewise, Wang, Zheng, and Jia proposed an AODV-based
anycast routing protocol in MANETs [6]. Similar to the unicast
protocol AODV, whenever a new RREQ message is received,
the RREP message is replied if there is a match of the anycast
address, or there is a path in the routing table cache. The path
with the least hop count could be selected in case there are
multiple replies (routes). Wang, Zheng, Leung, and Jia [5]
also proposed an extension of DSR-based anycast protocols
in MANETs. Similar to the unicast DSR routing protocol, a
node replies with the anycast route discovery message and
includes its own address when there is a match of the anycast
address or it has a route to the group address. While extension
from existing unicast routing protocols to support anycast is
straightforward, it does not, however, take advantage of the
semantics of anycast for bandwidth efficiency.

B. Multicast

Many MANET applications need the mobile nodes to work
together closely as a group to perform a task. Multicast
provides a useful means for group communications. Some
scalable multicast protocols have been proposed [14][15]. Al-
though the multicast service can be achieved based on unicast,
it is not efficient and could cause much unnecessary network
traffic. The traditional multicast protocols can be classified
into tree-based (such as DVMRP [16] and MAODV [17]) and
mesh-based approaches (such as ODMRP [15] and FGMP
[18]). In the former, all the routes form a tree infrastructure
with the source node as the root, thus there is only one single
path between every pair of sender and receiver. In the latter,
a mesh infrastructure is maintained, thus, more than one path
could exist between each sender and receiver pair.

Recently, some efforts have been made in the design of mul-
ticast routing protocols in MANETs for better performance by
using overlay networks or a backbone to constrain the spread
of state information. These protocols can be classified into
the overlay-based, backbone-based, stateless, and hierarchical
approach [1]. In overlay multicast, a virtual infrastructure is
built on top of the underlying physical links among group
members. The virtual network deals with the multicast func-
tionalities while the underlying physical links provide a best-
effort unicast datagram service. The backbone-based multicast
protocols construct the state information by selecting some
nodes to form a virtual backbone and by including state
information being held in the backbone nodes. For the stateless
multicast protocol, the routing information is not required to
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Fig. 2. Illustration of component architecture and k-anycast model.

be kept at forwarding nodes to further reduce overhead. Some
of those protocols can be found in [19][20][21].

C. Our approach

In this paper, we introduce another type of group commu-
nication - k-anycast for MANETs, in which an application (or
task) needs the collaboration of any k servers to complete.
We introduce three k-anycast routing schemes for MANETs.
A simple and obvious solution is flooding. In this approach,
whenever a node needs to contact any k servers out of a server
group, it floods the request. This can be done through the
traditional linear or exponential expanding ring searching ap-
proach to limit the scope of flooding. As a baseline approach,
we first introduce a controlled flooding scheme by adjusting
the flooding scope according to the number of responses for
a request. In addition, we also propose two advanced multi-
component schemes. The basic idea of the first advanced
scheme is to form multiple components with each component
maintaining at least k members. Whenever a node demands
service, it can contact any one of these components. In the
second advanced scheme, components may have less than
k members maintained. During service request, the service
from multiple components could be aggregated instead of
forcing each component to maintain k members, thus, it could
reduce the cost for the invocation of costly component merging
procedures. We present the detailed operations of the k-anycast
routing in next section.

III. k-ANYCAST ROUTING SCHEMES

A. k-anycast model

We define a MANET as a graph G = (V,E), where V
is the set of all mobile nodes and E is the set of all edges
between pairs of nodes. The routing request of k-anycast is to
find the paths from a source to at least k destination nodes out
of a group A, with A ⊆ V . Here, k ≤ |A|, and |A| denotes the
cardinality of the set A. For instance, if there are 100 network
nodes, and among them there are 40 server nodes, then, for
k = 5, a node needs to contact any 5 servers out of the 40
servers and get the full service in combination from 5 servers.

B. Overview of k-anycast schemes

The basic idea of the first approach is quite straightforward.
Whenever a node needs to contact any k servers out of a

server group, it floods the request to the network with a
limited TTL. The TTL keeps increasing until a node receives
responses from at least k servers. The traditional approach
for increasing the TTL is either linearly or exponentially.
However, the traditional approach does not take the number
of responses that a node has received (its current state) into
account. Obviously, this approach can be improved in many
ways. Here, we first introduce a simple extension in which
a node predicts its future searching radius when necessary
based on the number of responses it received. Obviously, in
this scheme a node does not need the maintenance of any
network structure.

The basic step of our second and third approaches is to
initiate and maintain multiple components in a distributed way.
To form a component, a server decides to act as a leader and
sends out inviting messages (join component) with its identity
as the identifier of the component. The inviting messages
propagate until the TTL is down to 0. The replies from servers
propagate back to the leader. These processes repeat until the
number of replies reaches k, which is a predetermined thresh-
old value. The component formation phase is the same for both
schemes. The difference between the second and third schemes
is the component maintenance strategy. For the component-
based scheme I, each component needs to maintain at least k
members. Whenever affiliated members drop below k, certain
procedures (such as sending inviting message, reconnecting
broken link, or even merging components) are invoked. But for
the component-based scheme II, components could have less
than k members maintained and the service requesting nodes
could aggregate service from multiple components, thus, no
costly recovery procedures would be invoked.

Here, we use the term component instead of the term
cluster. Although there are some similarities between the
structure of a component and a cluster, there are fundamental
differences. First, in our k-anycast protocols, a component
leader is randomly selected in a distributed way, while in
the clustering scheme, a clusterhead is elected through either
an identifier-based or a connection-based process. There is a
communication delay and overhead for the election process.
Second, members of the component can be more than 1 hop
away from the component leader, and the distance between
members can be more than 2 hops away from each other,
while cluster members are at most 2 hops away from each
other and 1 hop away from the clusterhead.

From Figure 2 we can see that each component has a leader,
chosen from the servers. Some non-server nodes might be
needed to forward the inviting and replying message, and
so become part of the component tree. For the component-
based scheme I, since each component maintains at least
k members, an ordinary node outside all components can
query any component (any one of the three components in
Figure 2). Each k-component can be treated as a virtual
server as in the anycast model. Any existing anycast routing
protocol proposed in MANETs can be utilized, or a traditional
expanding ring searching scheme can be applied. A node
inside component can query through the component tree. For
the component-based scheme II, since each component could
maintain less than threshold k members, an ordinary node
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outside all components can query some of the components
and aggregate responses from them. In subsequent discussion,
we refer to the component-based scheme I as Scheme I and
the component-based scheme II as Scheme II and use them
interchangeably.

C. Controlled flooding k-anycast routing scheme

The first k-anycast routing scheme that we propose is a
controlled flooding scheme. Whenever a node needs to contact
any k servers out of a server group, it floods the request to
the network with a limited TTL. When a node does not have
enough responses for the flooded request it will increase the
next TTL based on the current number of responses (pi) it
receives assuming pi < k. For simplicity, we assume that
nodes are uniformly distributed in the network area, then we
can estimate the next expected TTL (ri+1) as below,

πr2
i

pi
=

πr2
i+1

pi+1
⇒ ri+1 =

√
pi+1

pi
ri

Figure 3 illustrates the controlled flooding procedure. In
this scheme a node does not need to maintain any network
structure. While this scheme is simple and easy to implement,
however, it produces relativly high network searching over-
head.

D. Component-based k-anycast routing scheme I

Our second approach for k-anycast routing is to form
and maintain multiple components in networks. The design
of this component-based k-anycast routing scheme needs to
answer the following basic questions. 1) How to initiate the
component. 2) How to maintain the component. 3) How
to perform k-anycast routing. 4) What is the advantage of
this component-based scheme. Our description of the second
scheme follows the order of answering above questions.

1) Component initialization: The basic strategy is that
some servers decide to act as leaders locally, and each server
should act as a leader alternatively from a long term view
of the operation. The advantage is that it avoids the commu-
nication overhead and delay of the leader election process.
A percentage is defined as � (0 < � < 1). Initially, every
server i generates a random number αi between 0 and 1
and a threshold value �. If αi ≤ �, this server will become
a component leader. Thus, there are about �|A| component
leaders in the network, where A is the server group and � could
be set so that �|A| = |A|

k ⇒ � = 1
k . Note that �|A| determines

only the initial number of components. If this number is set
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Fig. 4. Illustration of component initialization.

to be too large, it will be reduced through a component merge
process. If this number is set to be too small, more components
will be formed dynamically after a time out.

Once a server decides to act as a component leader, it issues
message joinComponent to invite servers to join its group.
The component leader uses its identity as the component
identifier. For simplicity, we use the notation joinComponent i
to indicate the inviting message sent by component leader i,
and memberCount i is the total affiliated servers in component
i. The inviting message includes the number of members so
far, the number of hops from the leader, the TTL of the
message, and the sequence number. Initially the number of
members affiliated is 1, the number of hops is 0, and the TTL
is set to 2. The sequence number is to eliminate duplicate
packets and routing loops.

The non-leader servers wait for the inviting message. They
will reply to the first inviting message and ignore the sub-
sequent messages. The TTL value decreases by 1 when the
message is passed through. The message will be dropped if it
is duplicated, or TTL is down to 0. The leader ignores inviting
messages from other components. The non-server nodes need
to forward the inviting and replying messages and become the
component tree members of multiple components if they are
on the path. If a server does not receive any inviting messages
within the predetermined time, it will decide to serve as a
component leader and send out inviting messages.

After a certain period of time, the leader will get some
replies from servers. The leader counts the number of members
memberCount i. If memberCount i ≥ k, it notifies all
members of the total number of affiliations. However, if
memberCount i < k, the leader will expand the searching
ring. The increase of search radius is bounded by the network
diameter and may follow the same scheme as the controlled
flooding that we described above. In case after the maximum
number of tries, or search radius reaches network diameter, if
memberCount i < k, a merge procedure needs to be invoked.
The merge procedure is described later.

2) Component maintenance: As we know, in MANETs
nodes could move around, switch on and off at will and
possibly cease to function. All these factors make the network
topology dynamic. Thereafter, member servers of a compo-
nent could move away, a new server could join in, and the
forwarding tree nodes in a component could switch to non-



T

k=3

T

T

T

T
T

T

Partition leader

Merge request Merge reply

Component link

(b)(a)

Fig. 5. Illustration of the component merge procedure.

forwarding component tree members. Thus, certain procedures
are required to maintain the structure of a component.

The leader of a component sends out refreshMember mes-
sages periodically along the component tree structure instead
of broadcasting and all member servers of the component reply
to the message through the component tree links. We can
use the notation refreshMember i to indicate a member-refresh
message sent by component leader i. This periodic member-
refresh message is used for a leader to count members which
are still in the component. It also helps member servers to
detect their affiliation status. If a member server or a new
server has not heard the periodical messages within the prede-
termined time, it will decide to serve as component leader and
send out inviting messages the same way as in the initialization
phase. Based on the replies, if the memberCount i < k, the
leader knows that the component is partitioned, and need to
invoke a merge procedure.

As we described above, when a component does not invite
enough members or a component is partitioned and causes
the number of component members to be less than k for a
period of time, the leader of the component will issue a request
to merge with neighboring component(s). Here, each single
server that does not belong to any component can be treated
as a component during the merge process. The merge request
is broadcast with TTL set to the current maximum hops of the
component and could increase if necessary as the approach
described in the controlled flooding scheme. The increasing
TTL is bounded by the network diameter. A merge request is
replied by other component members. Once a component is
involved in the merge process, it should not respond to another
request. Based on replies received, the requesting leader can
choose the component from which the combined members are
more than k, otherwise, the largest component is selected.
When there are multiple components available, the requesting
leader can use the ID to break the tie (such as the smallest
ID), or choose the nearest one, etc. The requesting leader will
decide on one component and send a confirmation message
back. The confirmation message should be forwarded to the
leader of the other side. Meanwhile, an agreement must be
made to decide the new leader of the merged component
and notify all members. A simple solution is that the leader
with the smallest ID becomes the new leader; of course, other
options exist. Thereafter, two components are merged together

and a new component is formed. This merge process may
need to repeat until the total number of member servers is
at least k. The maximum search range is still constrained
by the network diameter. Figure 5 illustrates the operation
of merging components. Figure 5 (a) shows one component
leader sends out a merge request. Figure 5 (b) shows the
component architecture after the merge procedure.

Note that as we mentioned in the component initialization
and maintenance phases, servers that do not receive inviting
messages or the periodical member refresh messages for a
predetermined time will decide to act as leaders. Thus, in
sparse networks, there could be more leaders than what is
initially expected. However, through the component merge
procedure, some leaders will change their status from leader to
regular server. Thus, the total number of leaders will decrease.
On the other hand, because of the merge procedure, the size
of some components might keep increasing. However, some
servers will switch to leaders because of node mobility, and
then the size of the component will shrink. Therefore, the total
number of components in the network will be balanced at |A|

k
and the member servers of a component will be maintained to
be at least k dynamically.

3) k-anycast routing in Scheme I: Multiple components
are formed and maintained in the network and each has at
least k server members. Thus, every component can provide
equivalent service. Therefore, each component can be regarded
as an anycast server as in anycast protocols. Any existing
anycast routing scheme could be utilized, or a simple ex-
panding ring search can be made to locate any one of those
components. Figure 6 (a) illustrates the component-based k-
anycast routing model of Scheme I. When a node outside
any components requests service, it can broadcast a request
if no path has been discovered before. When a service request
message arrives at a component, the component member who
receives the request can send a reply message back to the
requesting node, meanwhile, it could forward the request to
the component leader. If the requesting node receives multiple
replies it could select a component based on the response time,
distance, or the number of members, etc. Inside a component,
messages can flow through the tree structure efficiently.

E. Component-based k-anycast routing scheme II

Our third approach for k-anycast routing is similar to the
second scheme as described above. In both component-based
scheme I and scheme II, multiple components are formed
and maintained in the network. In Scheme I, each component
leader tries to maintain k members through a sequence of
maintenance procedures which could be very costly when
the topology is highly dynamic. In contrast, in Scheme II,
a component leader may not necessarily maintain k members.
Though the component leader selection is the same and the
initialization phase is also similar with minor difference, the
strategy of maintaining components between Scheme I and
Scheme II is different. Therefore, in the description of Scheme
II, we only give an outline of the initialization phase, and
present details of component maintenance.
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1) Component initialization: The initialization phase of
component-based scheme II is quite similar to Scheme I.
A predetermined number of servers will act as leaders and
broadcast inviting messages. The TTL field of the inviting
message can be set as described in the controlled flooding
scheme. The maximum TTL is bounded by a predetermined
value or the network diameter. Some of the major differences
between Scheme I and Scheme II in this phase are: 1) If
a component leader cannot invite enough servers to join its
group, no merge procedure will be invoked in Scheme II.
2) In Scheme II, a server that has not received any inviting
messages will not decide to be a leader, instead, it will
move around and wait for incoming messages (the inviting
messages in the initialization phase, or the periodical member
reenforce messages in the maintenance phase). Therefore, no
additional servers will function as component leaders during
these phases.

2) Components maintenance strategy: In the component-
based scheme I, relatively costly component maintenance pro-
cedures are required in order to make sure that each component
has maintained at least k members. Obviously, when the
mobility and the frequency of link breakage is very high, the
maintenance of component structure is very costly. In Scheme
II, we try to alleviate this situation. In Scheme II, a component
leader periodically sends out MemberReinforce messages. The
periodic message is broadcast with TTL set to the maximum
hops of the current component. This message helps member
servers to detect their affiliation status and also functions as
an inviting message for a new server or a “disconnected”
server. Some of the major differences between Scheme I and
Scheme II in this phase are: 1) In Scheme II there is no
component merge procedure being invoked even though total
member servers of a component is less than threshold k.
The memberCount will be updated to the current number of
members affiliated, which could be much less than threshold
k. 2) Unlike Scheme I, a “disconnected” server which has not
received the periodical MemberReinforce messages will not
decide to act as a leader, instead, it will move around and
remain in the non-server status until it receives one or more
incoming MemberReinforce messages from some components.

3) k-anycast routing in Scheme II: When a node outside
any component requests service, it broadcasts a request if
no path has been discovered before and waits for replies
propagating back. In Scheme I, every component can provide

equivalent service, thus, any existing anycast routing scheme
could be utilized, or a simple expanding ring searching can
be made to locate anyone of those components. In Scheme II,
however, since the number of replies from one component
could be less than k, which is not enough to complete a
task (we have assumed that a task can only be completed
by at least threshold k servers), the requesting node needs
to collect replies from multiple components. If replies from
multiple components are less than k, the TTL field of the
service request message will have to be increased until at
least threshold k replies are received. When there are multiple
choices, the service request node could choose the least
number of components and use ID as a general rule to break
ties. Figure 6 (b) illustrates the component-based k-anycast
routing model of Scheme II.

F. Advantages of component-based schemes

The component-based k-anycast routing schemes are based
on underlying multiple components which are maintained
as described above. Obviously, the maintenance of multiple
components presents overhead and delays. However, from a
long term point of view, the amortized cost of component
maintenance is relatively low and is more efficient than the
flooding scheme when service rate is high since it signifi-
cantly reduces the redundance of flooding messages. Second,
it is quite simple and much more efficient for servers to
coordinate with each other within the component rather than
searching for nodes scattered across the whole network. For
example, in the distributed trust management scheme deployed
in the network, servers need to work together to provide
services, i.e. updating certificates. The relatively small size
of components has obvious advantages for server cooperation.
Third, maintaining multiple small components is more reliable
and requires less maintenance overhead than maintaining one
server group as described in [12]. Depending on the mobility
of nodes, the larger the size of the component, the higher
the frequency of link breakage and the invoking of costly
maintenance procedures.

G. Summary

We described the controlled flooding scheme for the k-
anycast service first where no network components were
maintained. Then, we described the component-based Scheme
I approach. The components were initiated by the leaders
locally. The components were maintained by periodic beacons
from the leader. The membership was dynamic because of
the mobility of servers. The partitioned components could be
repaired or merged. Since the k-components were maintained
in the network, we turned the k-anycast routing problem into
a simple version of the anycast routing problem in such a
way that service requests within the component could be
handled easily while service requests outside the component
were handled by querying any one of those well-maintained
components. To adapt to the highly dynamic network environ-
ment, we introduced a lightweight version of the component-
based scheme, Scheme II, in which each component did
not necessarily maintain a threshold k members. A service



request might be served by combining replies from multiple
components when no neighboring component alone was able
to serve the task.

IV. EXPERIMENTS

In this section, we give the simulation environment first
and then present the experimental results. We also analyze the
performance of different k-anycast schemes that we proposed.

A. Simulation environment

The simulation was implemented in Matlab. The simulation
was conducted in a 100 × 100 2-D free-space by randomly
allocating a given number of nodes in the range from 50
to 200. We assume every node has fixed transmission range
r = 20. Two nodes are directly connected if their distance
is within each other’s transmission range. We conduct ex-
periments in both static and dynamic network environments.
In the dynamic environment, ρ is defined as the probability
of movement for each host (ρ is 0.5 in our simulation). For
each host in an update interval, a random number in [0...1],
is associated with each node. If the number is less than or
equal to ρ, the corresponding host moves within the range
of l units (l is 5 in our simulation) in any direction, but of
course should be in the 100 × 100 2-D free-space. If the
number is more than ρ, it represents that the corresponding
host remains stable in the corresponding interval. Since each
host has the same transmission radius, the network can be
modeled as an undirected graph. In the experiments, we
compared the cost of the flooding-based schemes (controlled
flooding and exponential flooding) and the component-based
schemes. For the component-based schemes, we evaluated the
multiple component-based scheme I and scheme II with the
one component scheme in which all servers form a single
component.

B. Cost measurement

In the experiments, the cost is measured by the number of
messages. For the component scheme the cost includes the
component formation cost cF , the component maintenance
cost cM , and the searching cost cS . cF is the average message
cost during the component initialization phase, which includes
leader inviting messages, intermediate relay messages, and
server join messages. cM is the average message cost per
round during the component maintenance phase, which in-
cludes periodical member refresh messages, merge request and
reply messages, and relay messages. cS is the average message
cost per service request during the service request phase,
which includes requesting, replying, and inside and outside
component relaying messages. For the flooding scheme, the
only cost is the searching cost c′S , which includes messages
sent by requesters, intermediate relay, and reply messages.
We compared the amortized cost for different schemes. For
the component scheme, although the cost for component
initialization and periodical maintenance is very high, the
frequency of performing these tasks is relatively low compared
to the service request rate. For instance, the cost of a one-time

component initialization phase over a long term is relatively
small. In the experiments, we defined that the frequency of
periodical component maintenance was fα, and the frequency
of service request was fβ . So, for the component scheme the
total cost over a period T is:

cT = cF + fα.cM + fβ .cS

and for the flooding scheme, the total cost is given by,

c′T = fβ .c′S

Obviously, with lower maintenance frequency fα and higher
service rate fβ , the component scheme could beat the flooding
scheme in message cost.

cF + fα.cM + fβ .cS ≤ fβ .c′S

if cF � fβ .cS ,

fα.cM + fβ .cS ≤ fβ .c′S

That is,
fα

fβ
≤ c′S − cS

cM

We also conducted experiments with different threshold
value k with k = 5, 8, and 10. The threshold k could affect
the cF , cM , and cS in component schemes as well as the c′S
in flooding schemes. In the experiments, we assumed the
server rate p (percentage of nodes that are servers) was 30%.
We first show the experimental results for the static network
environment, then follow by the experimental results of the
dynamic network settings as described in above experiment
section.

C. Result analysis

Figures 7 to Figures 8 show the results of the first experi-
ment under static network settings.

Figures 7 (a), (b) (c), and (d) show the average cost of
different flooding-based and component-based schemes when
the threshold value k is 8, the request frequency fβ is 20, and
the maintenance frequency fα is 0.5, 1, 2, and 3, respectively.
The cost is measured by the amortized number of messages.

Figure 7 (a) shows the results for different schemes with
fα = 0.5. The cost decreases as the number of nodes increase
for both flooding schemes because of the increasing node
density; however, the cost increases for the one component
scheme, and the cost for multi-component scheme does not
change significantly with the increasing number of nodes.
The difference of the cost between the flooding schemes also
decreases as the number of nodes increases. Figure 7 (a) also
shows the cost of flooding schemes is higher than component-
based schemes when the number of nodes is less than about
165 and the multi-component scheme has the least cost among
all schemes.

Figure 7 (b) shows the results for different schemes with
fα = 1. The flooding schemes have higher cost than the one
component scheme when the number of nodes is less than
140. The cost of the multi-component scheme increases slowly
with the increase of nodes. As fα increases from 0.5 to 1, the
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Fig. 7. Average cost in static settings when k = 8, fβ = 20, and (a) fα = 0.5, (b) fα = 1, (c) fα = 2, (d) fα = 3.
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Fig. 8. Average cost in static settings when fα = 0.5 and (a) k = 5, fβ = 20, (b) k = 5, fβ = 30, (c) k = 10, fβ = 20, (d) k = 10, fβ = 30.

cost for the component-based schemes increases. For instance,
when the number of nodes equals 200, the cost for the multi-
component scheme is 550 when fα = 0.5, and is 625 when
fα = 1. However, for the flooding-based schemes the cost
remains unchanged because of no cost for any maintenance
procedure.

Figures 7 (c) and (d) show similar results with maintenance
frequency fα = 2 and 3, respectively. The cost for component-
based schemes increases as fα increases. From Figure 7 (d)
we can see that when fα = 3 the flooding-based schemes out-
perform the one component scheme and the multi-component
scheme when the number of nodes in the network is 120
and 160, respectively. In summary, from Figures 7 (a) to (d)
we can see that with the increase of component maintenance
frequency fα the cost for component-based schemes increases,
and the flooding-based schemes outperform the component-
based schemes when the number of nodes in the network is
large enough.

Figures 8 (a) and (b) show the average cost of different
schemes when the threshold value k is 5, the maintenance
frequency fα is 0.5, and the request frequency fβ is 20 and
30, respectively. Figure 8 (a) shows that the cost decreases
as the number of nodes increase for both flooding schemes
when the number of nodes is less than 100. The cost increases
slightly as the number of nodes grows more than 100; however,
the cost of one component scheme increases, and the cost of
multi-component scheme does not change significantly with
the increasing number of nodes. When the number of nodes is
more than 140, the cost of both flooding schemes is almost the
same. Figure 8 (a) also shows the cost of flooding schemes is
higher than the component-based schemes when the number of
nodes is less than about 160 and the multi-component scheme
has the least cost among all schemes. When the number

of nodes is more than 160, the cost of the one component
scheme is higher than the flooding schemes. Figure 8 (b)
shows the results with fβ = 30 (fα remains 0.5). From
the figure we can see that the cost of all schemes increases
with the increasing request frequency. The cost of flooding
schemes (both controlled and exponential flooding) increases
significantly compared with fβ = 20.

Figures 8 (c) and (d) show the results when the threshold
value k is 10, the maintenance frequency fα remains 0.5, and
the request frequency fβ is 20 and 30, respectively. Figure 8
(c) shows that the cost decreases as the number of nodes
increase for both flooding schemes; however, the cost increases
for the one component scheme, and the cost for the multi-
component scheme does not change significantly with the
increasing number of nodes. Figure 8 (c) also shows the cost of
flooding schemes is higher than the component-based schemes
when the number of nodes is less than about 170 and the
multi-component scheme has the least cost among all schemes.
Figure 8 (d) shows the results with the request frequency
fβ = 30 and the maintenance frequency fα = 0.5. The cost of
flooding schemes (both controlled and exponential flooding)
increases significantly compared with fβ = 20. In summary,
from Figure 8 (a) to (d) we can see that with the increase
of request frequency fβ the cost for both flooding-based and
component-based schemes increases, and the multi-component
scheme has least message cost among all, meanwhile, the one
component scheme is also better than the flooding schemes
when fβ is 30.

The experimental results of component-based schemes un-
der dynamic network settings are shown in Figure 9 and
Figure 10.

Figures 9 (a), (b), (c), and (d) show the average cost of the
component-based schemes when the threshold value k is 8,
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Fig. 9. Average cost in dynamic environment when k = 8, fβ = 20, and (a) fα = 0.5, (b) fα = 1, (c) fα = 2, (d) fα = 3.
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Fig. 10. Average component size in dynamic environment when (a) k = 5, (b) k = 8, (c) k = 10, and (d) average number of components when
k = 5, 8, and 10.

the request frequency fβ is 20, and the maintenance frequency
fα is 0.5, 1, 2, and 3, respectively. Figure 9 (a) shows that the
cost increases for the one component scheme as well as the
multiple component scheme I and scheme II. However, the cost
of one component scheme increases faster than the multiple
component schemes. The cost of Scheme I and Scheme II
does not change significantly with the increasing number of
nodes. Compared with the static network settings, the cost of
component schemes in the dynamic network settings is higher,
meanwhile, the cost of one component scheme increases more
than the multiple component schemes (Scheme I and Scheme
II). For instance, under the dynamic network settings, when
the number of network nodes is 100, the cost of the one
component scheme increases about 18% and for the multiple
component scheme, the cost increases about 14%. Figure 9
(a) also shows the cost of Scheme I is higher than Scheme II
with increasing number of network nodes. Scheme II has the
least cost among all components schemes.

Figure 9 (b) shows the results for component-based schemes
with fα = 1. The one component scheme has higher cost than
Scheme I and Scheme II with the increasing number of nodes.
The cost of the multi-component scheme increases slower than
the one component scheme. For instance, when the number
of network nodes is 100, the cost for the one component
scheme in static and dynamic network settings is 410 and
480, respectively, which increases about 17%. For the multiple
component scheme, the cost increases about 12%. Figures 9
(c) and (d) show similar results with maintenance frequency
fα = 2 and 3, respectively. The cost of all component-based
schemes increases as fα increases. From Figure 9 (d), we
can see that when fα = 3 Scheme II outperforms Scheme I
while both multiple component schemes outperform the one

component scheme. In summary, from Figures 9 (a) to (d)
we can see that with the increase of component maintenance
frequency fα the cost of component-based schemes increases.
Meanwhile, compared with the cost in the static network
environment, the cost in the dynamic network environment
is higher and the component Scheme II outperforms other
component schemes.

Figures 10 (a), (b), and (c) show the average component size
for the component-based schemes when threshold value k is
5, 8, and 10, respectively. Here, the component size includes
the number of servers and the non-server component tree
nodes. The component tree nodes connect servers (includes
component leader) inside the component(s). From the figures
we can see that the component size increases in accordance
with the increase of network nodes. Figure 10 (a) shows the
average component size of multiple component schemes is
about 15% to 32% less than the one component scheme when
k is 5. Figures 10 (b) and (c) show similar results when k = 8
and k = 10, respectively. From Figures 10 (a), (b), and (c)
we can see that as the threshold value increases (k from 5 to
10), the component size increases while the one component
scheme remains unchanged.

Figure 10 (d) shows the average number of components.
The actual number of components maintained depends on the
number of servers, the threshold value k, and the network
topology. Figure 10 (d) shows the average number of compo-
nents when the threshold is fixed, which is k = 5, 8, and 10.
Obviously, the smaller the threshold value is, the larger the
average number of components. Meanwhile, as the number of
network nodes increases, the component size increases. For
instance, when total number of nodes is 100, there are 30
servers when server rate p is 30%. The number of components



should be at most 6 when k = 5, about 3 when k = 8, and at
most 3 when k = 10.

D. Result summary

The results of the experiments can be summarized below:
• With increase of maintenance rate fα (fixed fβ), mes-

sage cost of component schemes increases. The flooding
schemes outperform the component schemes at larger fα.

• The increase of service request rate fβ (fixed fα) causes
the cost of all schemes increase. The component schemes
outperform the flooding schemes at larger fβ .

• The increase of threshold k causes an increase of message
cost of all schemes significantly; however, it does not
affect one scheme more than the other.

• With increase of network density, the cost of component
scheme increases while the cost of flooding schemes
decreases. The cost of one component scheme increases
more quickly than the multiple component schemes.
The controlled flooding scheme has less cost than the
exponential flooding scheme in a sparse network.

• In the dynamic network environment, the component-
based schemes have higher cost than in the static en-
vironment. The cost increases from about 14% to 18%
for the one component scheme and about 11% to 14% for
the multiple component schemes under different settings,
such as threshold values, maintenance frequency, and
service request frequency. Scheme II has the least cost
and outperforms other component-based schemes.

• With increase of threshold (fixed server rate), component
size increases while the number of components decreases
in component schemes.

V. CONCLUSION

In this paper, we propose the notion of k-anycast, give three
k-anycast schemes, and describe the operational phases. In
the first approach, controlled flooding scheme, the increase of
flooding radius is predicted based on the number of responses
for a request. In the second approach, multiple components
with at least k members are maintained by the component
leader’s periodic beacons. The membership of components
can be adjusted according to changes of network topology.
Detailed procedures for handling possible component parti-
tions are also presented. In the third scheme, which is also a
component-based scheme, however, the number of members
a component must maintain is relaxed to be less than k. The
service responses from multiple components can be aggregated
instead of forcing each component to maintain k members.
The simulation results show that the multiple component
schemes are more reliable, and requires less maintenance
overhead because of reduced component size compared to
the one-component scheme. However, there is a higher cost
associated with maintaining the component structure compared
to the flooding schemes. The amortized cost of component-
based schemes is relatively low as the results show. An
effort for component-based schemes has been made to better
adapt to the dynamic network environment and to reduce the
component maintenance cost. In our future research, we will

extend the component-based k-anycast routing protocols and
integrate them with a distributed trust management service in
MANETs. In addition, some more in depth simulations are
needed, especially in a dynamic environment.
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