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Abstract 

To design a Java processor with traditional modern 
processor architecture, the Instruction Level Parallelism 
(ILP) is not readily exploitable due to stack operands 
dependencies. This paper presents a dataflow-based 
instruction tagging scheme. With instruction tagging, the 
independent bytecode instruction groups with stack 
dependences are identified. The different bytecode 
instruction group can be executed in parallel because 
there are no stack dependences among them. With the 
instruction tagging scheme, we propose a tag-based multi-
issue semi-in-order (TMSI) Java processor. The processor 
takes advantage of instruction-tagging and stack-folding to 
generate the tagged register-based instructions. When the 
tagged instructions are ready, they are bundled out-of-
order depending on data availability to form VLIW-like 
instruction words and issued in-order. To achieve high 
performance, a VLIW engine is employed. We have 
conducted some experiments in our TMSI simulation 
environment using SPECjvm98 and Linpack workload.  
The results indicate that the proposed processor has good 
performance gain.       

1. Introduction 

The feature of the machine independence distribution 
format of programs with the Java Virtual Machine (JVM) 
[5] makes Java technology extremely popular, which is 
found in a variety of systems, ranging from embedded 
systems to high performance server systems.   

Java bytecodes may be executed on various platforms 
by interpretation or Just-In-Time (JIT) compiling. The first 
Java virtual machine (VM) available was interpreter-based, 
but it was neither efficient nor well-suited to high 
performance applications. The JIT compiler translates 
bytecodes to the native code of the host machine 
dynamically. Several variants of the JIT concept [22, 23] 
have been proposed. However, the JIT approach incurs 
runtime overhead in translating bytecodes to native code, 
although acceptable performance for Java applications can 
be provided. To further improve the performance of JIT, 
adaptive dynamic compilation [24] is proposed. In this 
scheme, methods that are most heavily used are compiled 
and optimized in traditional compiler technique in order to 
obtain more efficient native machine code.     

Hardware processors to execute bytecode directly are 
also becoming popular. The designs of Java processors, 
such as picoJava [10], are mainly based on stack 
architectures, and the Java VM is used as their instruction 
set architecture. A major issue in this architecture is the 
existent limitation of ILP by the stack dependence.   

Several techniques to extract ILP in Java bytecode have 
been investigated [11, 13, 17, 18]. Stack operation folding 
is one technique to reduce the limitation by converting a 
set of bytecodes into a register-based instruction [ 8, 9, 10, 
11, 12, 14]. In Sun’s picoJava-II processor, simple 
instruction folding in hardware is done by using pattern 
matching at decode stage of its pipeline [10, 11], and the 
stack folding is supported by the stack cache as a register 
file for parallel access of stack operands to eliminate 
redundant stack operations. More sophisticated folding 
techniques, such as nested folding [8, 9, 12, 14], may 
further reduce stack operand dependence but need complex 
hardware to support.  Combining multiple in-order issue 
with stack folding can further exploit ILP [11], but ILP is 
limited when execution is restricted in program order. To 
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support out-of-order execution, SMTI [17] is proposed 
with software involved to extract independent bytecode 
trace and implement bytecode folding, but special fetch 
logic is needed to identify independent traces from 
instruction cache.   

To meet the requirement of high-performance network 
application with Java, thread level parallelism (TLP) is 
exploited to extract coarse-grained parallelism. Sun’s 
MAJC processor adopts a vertical multithreading 
technique, in which Java methods are treated as a thread in 
hardware and speculative execution of multiple threads is 
included to exploit TLP [18]. But MAJC needs a JIT 
compiler to convert bytecodes to the native codes. The 
Java Multi-Threaded Processor (JMTP) architecture is a 
similar hardware implementation, which is a single-chip 
CPU containing an off-the-shelf general purpose processor 
core coupled with an array of Java Thread Processors 
(JTPs) [13]. But an intelligent compiler is needed to 
identify the set of concurrent threads that can be forked as 
JTP threads. DAISY [19] is another VLIW architecture, 
which combines JIT with native compilation techniques by 
appropriate hardware primitives designed to execute Java 
efficiently. It dynamically translates Java bytecodes with 
JIT into VLIW instructions and exploits a VLIW engine. 
This approach can take advantage of the increased ILP 
possible in VLIW machines to achieve high performance 
[6].   

There are another two dynamic-translation-supported 
Java processors: Femtojava [3] and Delft-Java [4]. The 
FemtoJava processor is a stack-based architecture with 
replicated functional units and instruction decoders, and 
employs a VLIW as its execution engine. In FemtoJava [3], 
the bytecodes in the entire Java program are divided into 
the instruction groups, and the instructions within the same 
group are translated into VLIW word to be executed. The 
grouping algorithm is to find those instructions that depend 
on the result of the previous one, and group them in one 
instruction block. The Delft-Java [4] processor provides 
hardware assisted dynamic translation, and the bytecodes 
are translated on-the-fly into the Delft-Java instruction set. 
Hardware support for Java language constructs is 
incorporated into the processor’s ISA. This allows 
application level parallelism inherent in the Java language 
to be utilized as instruction level parallelism.   

1.1 Overview of Our Work 

Dataflow [1, 2] is an alternative architecture that 
directly contrasts with the traditional von Neumann 
architecture. Although dataflow has been studied for more 
than two decades, actual implementations of the model 
have failed to deliver the promised performance. Most 
modern processors utilize complex hardware techniques to 

detect data and control hazards and dynamic parallelism in 
order to bring the execution engine closer to an idealized 
dataflow engine [21].  In this paper, we propose the 
architecture of Java ILP processor, in which dataflow is 
exploited to identify stack dependence, reduce redundant 
stack operations and extract ILP in Java programs. In the 
proposed processor, stack instruction tagging may enable 
out-of-order instruction execution and extract most of ILP 
in Java programs. After bytecode tagging, stack 
dependences are identified by tags, and the availability of 
operands (or tags) is used to help issue instructions similar 
as in dataflow machines. Within an instruction window, 
the instructions without data dependences may be issued 
simultaneously and executed in parallel. By combining the 
EPOC folding [12] method with the tagging scheme, we 
implemented a new tag-based POC scheme. By means of 
bytecode folding, stack instructions are converted to 
tagged register-based instruction formats (two source 
operands, one destination operand), then bundled and 
formed as VLIW wide words to be executed on a VLIW 
engine. 

We executed the Benchmark suite of Spec JVM 98 [16] 
and Linpack [20] to conduct the performance evaluation 
and achieved the performance gain in an average ILP 
speedup of 59% over the base in-order single-issue Java 
processor.  

1.2 The organization of the Paper 

The remainder of this paper is organized as follows. 
Section 2 introduces our tag-based dataflow scheme (TDS) 
with one example. Section 3 discusses the bytecode 
folding scheme implemented with instruction tagging in 
the processor. Section 4 illustrates the architecture of our 
proposed Java ILP processor and some related issues. The 
performance evaluation and results are presented in 
Section 5. Section 6 summarizes our work.   

2.  Motivation -- Exploiting Dataflow in Stack 

Architecture  

In some ways it is easier to parallelize execution of 
stack programs on stack machines, because those operands 
on execution stacks are erased once they are used by an 
operator. Hence, an operand only needs to be supplied to 
one operator which can be uniquely identified by a tag.  
Once a tag is used, its new result is immediately discarded 
without being actually stored into the stack; in contrast to 
GPR machines, new register contents must be written back 
to physical registers from the reorder buffer even if they 
may already have been superseded by later writes. To 



exploit the feature of the tag in stack machines, we propose 
a tag-based dataflow scheme to extract ILP and implement 
out-of-order bytecode instruction execution in stack 
programs. This scheme exploits a stack of tags rather than 
a stack of values.  

We explain our scheme as follows. If we want to 
compute an expression: g = a*b+(c+d), its corresponding 
stack program can be:  

 - LD A,  LD B,  MUL, LD C,  LD D, ADD, ADD, ST G 

In Table 1, we will describe how the parallelism can be 
achieved after renaming stack location with tags, using 
Operand Tag Stack (OTS) to identify source operands with 
operators that consume them.  Here, the renaming unit uses 
a new tag for every instruction that leaves a result on the 
stack instead of an operand value. The tags on OTS are 
used for attachment to a later instruction that consumes the 
operand.  As shown in Table 1, the tagged instructions are 
dispatched after an instruction is executed in a load/store 
or ALU unit and the result is delivered to the later 
instruction that carries its result. For example, the first two 
loads deliver their operands to the mul operator, and the 
last two loads to the add operator, then they will execute 
and deliver their results to the second add operation, in the 
same manner as in superscalar machines.  From this 
example, we can see that using a stack of tags makes it 
easy to attach operand tags to an operator. 

Table 1: A sample of stack renaming scheme  

Instruction Naming unit Operand Tag 

stack (OTS) 

 1     load    a 
 2     load    b 
 3     mul 
 4     load    c 
 5     load    d 
 6     add 
 7     add 
 8    store    e

T1   load    a         
T2   load    b 
T3   mul    T1  T2 
T4   load    c 
T5   load    d 
T6   add    T4   T5 
T7   add    T3   T6 
T8   store  T7   e 

T1 
T1  T2 
T3                 
T3  T4 
T3  T4   T5 
T3  T6 
T7 

              

The proposed tagging method is data-driven. The tags 
are organized as a reorder buffer in order that can be 
reused and dynamically assigned to the later coming 
instructions after they are retired. The single tag entry is 
composed of the instruction op-code, status bits and a 
register number which points to the “destined” physical 
register in the register file. Once an operator instruction is 
tagged, it will identify its operands by tags. The tag can be 
seen as a data token in tagged dataflow machines [1] 
where the flow of data token activates instructions’ 
execution. In the process of instruction tagging, a data 
dependence graph (DDG) is generated dynamically and 

instruction execution may follow the graph. As in dataflow 
machines, the availability of tagged operands of an 
instruction triggers its execution and the tagged result is 
passed directly as data tokens between instructions. The 
tagging execution scheme supports explicit out-of-order 
instruction execution. 

Unlike the dataflow execution paradigm, instruction 
execution is controlled by the scheduler in our 
implementation. When an instruction is ready for 
execution, it is first inserted to the ready-instruction queue 
and then scheduled to execution. The process of instruction 
issue is controlled by a scheduler. Hence the availability of 
operands of the ready instructions did not immediately 
“trigger” them to be executed. This execution paradigm is 
similar to the scheduled dataflow [21]. With instruction 
scheduler, instructions are easy to be synchronized and 
managed. Designed in this way, the complexity of 
instruction issue logic [21] is reduced, out-of-order 
execution can be implemented and fine-grained parallelism 
is achieved as in dataflow without a need of the dataflow 
programming paradigm.     

      

3. Stack Instruction Folding  

Stack operation folding is one technique that eliminates 
stack operand dependency by converting a set of bytecodes 
into a register-based instruction [8, 9, 12, 14].  It can save 
pipeline cycles by eliminating redundant stack operations. 
We exploit the tagging technique and EPOC scheme [12] 
to implement a tag-based POC folding scheme. In this 
scheme, all bytecode instructions are categorized into three 
kinds of role in instruction folding:  Producer, Consumer 
and Operator (POC) as in [12]. The Producer instructions 
push data form local variable or constant onto operand 
stack in a single cycle. The Consumer instructions pop 
data from operand stack and store the data into local 
variables. The Operator instructions pop data from 
operand stack, execute on corresponding functional units, 
and then push the result back to operand stack. We add 
another foldable instruction type -- IP (intermediate 
producer), which indicates that the tagging instruction will 
produce a result and the result will be used by its consumer 
instruction. The IP instruction type may help to implement 
nested instruction folding. To identify four bytecode types, 
two extra bits are needed in pre-decoding stage to help 
instruction decoding.   

Table 2 shows a tagged register-based instruction 
format we proposed, which is similar to the RISC 
instruction, and easy to implement in modern high 
performance processors. Here, opcode is the bytecode 
operation code, Src1,Src2 are the fields of source operand 
tags, and Dest Tag is the field of destination tag.  The Java 
bytecodes has less than 255 instructions and the length of 



bytecode is 8 bits in Java specification. If tagging unit is 
set in 64 entries, it is enough to use 8 binary bits to address 
the tag numbers in the field of source operand and 
destination operand in Table 2.       

Table 2: Tagged register-based instruction format 

Opcode Src1 Tag Src2 Tag Dest Tag 

    

The instruction tagging has analyzed and identified data 
dependences among bytecode instructions. The proposed 
instruction folding scheme will exploit the results of 
instruction tagging to simplify the implementation. With 
instruction tagging, all Operator instructions have found 
their dependent operand tags and their dependent 
information in tags are stored in Naming Unit illustrated in 
Table 3. In Naming Unit, an Operator bytecode instruction 
entry will store the tag number of its left operand and right 
operand. The tag numbers can be directly used to generate 
register-based instruction by folding logic. According to 
the POC type and instruction dependent information, the 
folding logic can generate tagged register-based 
instructions and stores them in folded instruction buffer 
(FIB). Only those Operator instructions can generate 
corresponding register-based instructions. For Consumer
instructions, folding logic will check the POC type of its 
dependent instruction. If the instruction type of the 
dependent instruction is Producer or IP, only a register-
copying is needed; if it is Operator, the previous generated 
tag-based instruction’s destination tag will be modified to 
the tag of the Consumer instruction. Because bytecode 
instructions are tagged in sequential and the tagging 
process follows a stack machine’s behavior, the 
correctness of our scheme could be guaranteed. The 
detailed instruction folding method can be referred to [12]. 

Table 3: Sample of Java instruction folding 

Java  
Bytecodes 

Naming  
Unit 

Operand 
Tag stack 

Folded 
Instructions 

 1   iload  a 

 2   iload  b 
 3   imul 
 4   iload  c 

 5   iload  d 
 6   iadd 
 7   iadd 

 8   istore 

T1   load    a         

T2   load    b 
T3   mul    T1  T2 
T4   load    c 

T5   load    d 
T6   add    T4   T5 
T7   add    T3   T6 

T8   store  T7   e 

T1 

T1  T2 
T3                 
T3  T4 

T3 T4   T5 
T3  T6 
T7 

i1: imul, T1,T2, T3

i2:iadd, T4,T5, T6
i3:iadd, T3,T6, T8

Table 3 illustrates a basic instruction folding process for 
a nested bytecode instruction sequence. Column 4 
demonstrates the newly generated tagged register-based 
instructions after instruction folding. They are folded into 
three instructions, i1, i2, and i3 (i1, i2, i3 are only for 

explanation, not be included in new instructions). The tag 
number T3 and T6 are reused and treated as the IP type in 
instruction i3. In line 7, the destined tag (underlined) is 
changed from original Tag 7 to Tag 8 (the tag number of 
the istore).  From Table 3, we can see that without 
instruction folding, 8 cycles are needed to sequential 
execute the listed bytecodes. With instruction folding, only 
3 cycles are needed. If multiple-issue is supported, only 2 
cycles are needed (because tag-dependence exists in the 
three new generated instructions).  

4. Tag-Based Multi-Issue Semi In-Order 

(TMSI) Processor  

A Java processor is able to execute Java bytecode 
instructions directly in hardware, which makes it possible 
to entirely bypass the need for dynamic translation and 
reestablish a simple, direct execution model for Java code. 
We propose a Java ILP processor with a six-stage pipeline, 
including instruction-fetch, decode, stack folding, issue, 
execute and commit stages. Because instruction folding is 
on the critical path of the pipeline [11], one individually 
decoding stage for instruction folding is needed in the 
design of our pipeline.  With instruction folding, the 
bytecode instructions are converted to the tagged register-
based instructions. And the data dependences among the 
tagged instructions are identified by the tags. In the 
processor, Tagging Unit (TU) and Tag Matching Unit 
(TMU) are responsible for controlling the instruction 
tagging, matching tags and updating the status of tags.  
When a bytecode instruction enters the decoding unit, TU 
assigns a tag to it. After the instruction execution is 
completed, the related tags are released to the free tag pool 
by TU, where the tags can be reused.     

When the operands of a tagged instruction are ready, 
the tagged instruction is added to the ready instruction 
queue for scheduling. The multiple tagged instructions are 
bundled out-of-order depending on data availability to 
form VLIW-like instruction words, the instruction bundles 
are put in the issue buffer and issued by the Scheduler in-
order. Although the instruction bundles are issued in-order, 
at the time they are bundled, they may be not in program 
order. Hence, our processor worked in multiple-issue semi 
in-order style. The Stack Cache as a register file is 
provided [9] in the processor to eliminate inefficiencies 
typically associated with stack-based instruction 
processing, and the temporary results in the instruction 
execution are stored in it.  The schematic block diagram is 
shown in Figure 1. 



Figure 1: The proposed TMSI processor architecture 

4.1 Instruction Fetch and Decode   

The Java bytecode instructions are fetched from a 
method cache. The bytecode fetch logic controls the 
instruction fetching from the same bytecode method 
according to the program counter values. After fetching all 
the instructions of a basic block, fetch logic selects the 
next basic block as predicted by the branch predictor. With 
Operand Tag Stack (OTS) support, the Decoding / Tagging 
Unit (DTU) and TMU are together to handle both 
instruction tagging and folding. When one bytecode is 
decoded, an entry in TMU is allocated, and the tag number 
of the entry is assigned to the bytecode. The policy of tag 
allocation is first come first service (FCFS).   

The entry in TMU is to hold the control-related 
information, which contains the left / right operand tag 
number, the valid bit, the status bit and the address of a 
physical register in Stack Cache. A mapping table is used 
to manage the mapping from tags to registers. The Register 
File (RF) is a global temporary storage, responsible for 
storing stack operands and local variables to speed up 
memory access. The organization of TMU is similar to that 
of a reorder buffer in superscalar processor [26], but TMU 
holds more functions than a reorder buffer does. Whenever 
a result is produced in RF, the corresponding tag number is 
simultaneously sent to TMU to update the instruction 
status and wake up the waiting consumer instructions.  

The operands for the instructions may be loaded from 
stack cache (register file) or the data cache. LV variables 
and intermediate results are both allocated on the register 
file. The stack intermediate results generated by ALU 
instructions can be directly written to the register file in 
parallel. The memory load operation, if it does not exist in 
load buffer, must load from the data cache. 

4.2 Instruction Issue and Schedule    

In Java JVM, some temporary data and intermediate 
values are stored in LV area to speedup their access. In our 
processor, LV variables are resident on the stack cache. 
When a folded instruction finishes execution, its result is 
first written back to the physical register the “destined” tag 
points to. Within a basic block, only the last write, e.g. 
istore_x, updates the corresponding LV variable if there 
are multiple writes to the same LV. This is similar to the 
register renaming and resolves data conflicts in case of 
multiple-writes to the same LV variable. With instruction 
tagging, WAR (write after read) and WAW (write after 
write) data dependences are removed, because both 
operations will access different registers. Thus only the 
real data dependence – read after write (RAW) needs to be 
considered. When a RAW conflict occurs, e.g. the later 
read and previous write access the same LV variable, the 
issue logic may guarantee the later read instruction cannot 
be issued until the previous write instruction completes.  

The memory access instructions, such as iastore, iaload 
etc, may issue out-of-order. Memory dependences between 
instructions are detected at run-time by the memory-
hazard-detection logic, which consists of a load buffer, a 
store buffer and address comparator circuits [26]. Store 
addresses are buffered in an address queue (FIFO). The 
hardware will check each issued load to determine if an 
earlier in-flight store instruction was issued to the same 
physical address, and if so, use the value produced by the 
store. While each issued store will check to see if a later 
load to the same physical address was previously issued, 
and if so, take corrective action.  
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4.3 Instruction Execution and Commit 

In order to achieve high performance with reduced 
hardware complexity, a VLIW execution engine is 
employed in our processor. The ready tagged instructions 
are first dynamically packed into VLIW-like wide words, 
put into an instruction issue buffer, then issued to the 
functional units on VLIW engine through a Quasi-crossbar 
[25]. The bundled instructions are issued in strict locked-
step as in VLIW machines.   

When a bytecode instruction completes, the result will 
be written back to register file or load/store-buffer if it is a 
memory access instruction, and the status of the related 
tags are needed to be updated. When the status updating of 
a tag is completed, and if it is no-longer used in the nearly 
future we say the tag is “committed” and can be returned 
to the free tag pool for later uses. A tag is alive from the 
time it is assigned to an instruction until the instruction is 
“committed”. If a bytecode instruction will produce an 
intermediate result after the instruction’s execution and the 
result will be used by its later instruction, the related tag 
will be reused. In this case, the reused tag is often used as a 
producer to provide data for later consumer instruction.  
The reused tag will be retained until its result is consumed 
by its later consumer instruction. When a tag is no longer 
used, it will be removed and released for later retrieval.  

5. Performance Evaluation 

5.1 Experimental Methodology 

We have done a simulation study on our proposed 
architecture. A trace-driven simulator was developed to 
model our tag-based processor architecture. The simulator 
accepts bytecode traces extracted from the execution of the 
benchmarks programs on the modified open source Java 
VM interpreter Kaffe [15]. The bytecodes are scheduled 
and run based on pipeline stages cycle-by-cycle. The 
behavior of tags follows our model.  In the simulator, we 
assume that TMU has 64 tag entries. The size of physical 
register file is larger than 64, because register file not only 
provides tag-mapping registers but also contains the LV 
storage area.   

We used SPECjvm98 [16] and Linpack [20] 
benchmarks. The benchmarks in SPECjvm98 were run 
with the s1 data set and the mtrt benchmark program is 
single-thread version. In the experiments, instruction 
schedule was limited within a basic block, only when all 
the instructions within a basic-block were issued can the 
instructions in the next basic-block be scheduled, but 

instruction prefetch is supported. The branch predictor 
used is a static predictor as in picoJava-II [11], and has a 
penalty of 3 cycles for mis-predicted branches. An ideal 
instruction cache was assumed.   

To study the gain in ILP and performance speedup with 
TMSI processor, we ran two types of simulation: one in 
which every bytecode instruction assumes at a single cycle 
latency, and the other in which the different bytecodes take 
different latency according to the picoJava specification. 
ILP gain is useful for determining ILP speedup from the 
viewpoint of multiple instruction issue, and the latter 
simulation is helpful to demonstrate the actual speedup 
compared with the existing architecture, which indicates 
the actual performance gain in TMSI processor.  Data 
caches with 100% hit rate are assumed in our experiments.  

5.2 Improvement in Exploitable Parallel 

Execution 

To detect the proportion of parallel execution 
instructions in our processor, we relax the resources 
constraints on the number of execution units and set the 
issue rate at four. When the execute stage is fed all the 
instructions within the instruction issue window, the 
processor could potentially execute at most four of them in 
parallel if there are no dependencies and resource 
constraints. If there are stack dependences or LV 
dependences, the following instructions will be executed in 
the next cycle. We execute different benchmarks on the 
simulator with above constraints and assume the issue-
window holds 64 entries.  

Table 4: Percentage of instructions executed in 
parallel in our scheme 

Instructions executed in parallel 

(percentage) BenchMarks 

1 2 3 4 

compress 67.37 15.43 10.78 6.42 

Db 79.97 14.98 3.78 1.27 

Jack 79.54 14.22 3.89 2.35 

javac 72.85 21.87 4.24 1.04 

jess 81.51 13.47 3.26 1.76 

mpegaudio 43.26 16.53 6.78 33.43 

mtrt 87.92 9.67 1.55 0.86 

Linpack 69.18 16.10 0.38 14.34 



Table 4 shows the proportion of instruction execution in 
parallel.  Let us compare it with that reported in the 
previous research work of in-order multi-issue of the 
folded Java instruction execution [11]. In [11], by using 
stack disambiguation technique, only a small number of 
three-instruction-groups are issued in parallel and no four-
instruction-groups are issued in parallel. However, the 
results of our experiments show that the percentage of 
issued three-instruction-group is from 0.3% to 10%, and 
the percentage of issued four-instruction-group is from 
0.8% to 14%, except the mpegaudio. The percentage of 
mpegaudio is around 33%. That is because the basic block 
of mpegaudio is bigger, and within a basic block there are 
more instructions which can be run in parallel. These 
results demonstrate that our proposed dataflow instruction 
tagging scheme can expose more ILP.         

5.3 ILP Speedup Gain  

To compute the ILP gain, we assume all instructions 
with unit latency. Figure 2 presents the ILP speedup results 
for three different configurations: base in-order single-
issue stack machine, stack folding only in-order single-
issue stack machine and our multi-issue in-order TMSI 
machine. The stack folding used in the experiments also 
supports nested folding. With our tag-based stack folding 
scheme, the ILP gain can be seen from 20% to 90%. This 
result demonstrates that our stack folding scheme is 
effective, particularly for computing-extensive cases, such 
as Linpack and mpegaudio. The ILP gain with TMSI 
multi-issue over stack folding only single-issue in-order 
case is also observed to range from 3% to 27% for all 
applications except mpegaudio, for which the gain is 49%. 
The result also demonstrates that with tag-based scheme 

TMSI processor can improve the performance than stack 
folding single-issue in-order architecture does. The ILP 
gain with TMSI processor over base in-order single-issue 
stack machine can be seen from 21% to 115%, except for 
mpegaudio case in which the gain is 173%. This shows 
that the ILP speedup can be obtained through both stack 
folding and multi-issue instruction in Java processors.  

         

5.4 Performance Enhancement of TMSI Processor 

Architecture  

Figure 3 demonstrates the actual speedup obtained 
using the varied latency according to the picoJava-II 
specification. With the configuration of stack folding 
single-issue in-order architecture, an improvement of 2% 
to 19% is observed. With multiple-issue TMSI architecture, 
the speedup ranges from 9% to 34% for all applications, 
except mpegaudio and compress. The actual speedup of 
compress with TMSI is 49% while the actual speedup gain 
of mpegaudio is 86%.  The reason for the much higher 
performance speedup observed in mpegaudio is that more 
bytecode instructions are executed in parallel than in other 
benchmark programs. Compared with SMTI [17], the 
results obtained are as good as or even better than those in 
SMTI, except mpegaudio. This demonstrates that our tag-
based dataflow method can exploit more ILP. For 
mpegaudio benchmark, software-implemented multi-trace 
[17] may schedule instructions within a bigger instruction 
window than our scheme when bigger basic blocks exist. 
In contrast, the instruction schedule window in our 
processor is constrained by the size of Tag Matching Unit 
(TMU).  However, our architecture does not need complex 
fetch logic to support.  

Figure 2: ILP speedup gain: TMSI machine vs. the in-order single-issue stack machine 
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Figure 3:  Overall speedup of TMSI vs. in-order single-issue stack machine 

    

        

6. Conclusions 

A new approach to exploiting dataflow to extract Java-
ILP has been proposed. We presented the method of 
instruction tagging with an example. With instruction 
tagging, the independent bytecode instruction groups with 
stack dependences are identified. The different bytecode 
instruction groups can be executed in parallel based on 
different set of register segments for multiple operands 
access because there is no stack dependence among them. 
Based on the instruction tagging scheme, we proposed the 
architecture of Tag-based Multi-Issue Semi In-Order 
Architecture (TMSI) which employs a Tagging Unit and a 
Tag Matching Unit to tag bytecode instructions and 
execute the tagged instructions on a VLIW engine to 
achieve high performance. In addition, the tagging-based 
stack folding scheme has been discussed. The simulation 
experiments demonstrate that the proposed TMSI 

processor architecture is able to significantly increase the 
average ILP over a single-issue Java processor. We 
calculated the geometric mean of the ILP gain and that of 
actual gain in speedup over all the applications, the results 
showed that the ILP gain is 59% and the actual speedup 
gain is 28%.  Based on current implementation, our future 
work will focus on scheduling and executing instructions 
beyond single basic blocks. 

The proposed tag-based Java processor architecture can 
be compatible with multi-threading technique if multiple 
fetching unit and tagging unit are provided. Bytecodes 
from different threads are tagged by different tagging units, 
and then bundled to the VLIW instruction to be executed 
in parallel, and the thread-level parallelism is achieved. To 
guarantee the correctness of the program execution and to 
respect the Java Memory Model (JMM) [27], we will 
implement a memory consistency mechanism, such as 
sequential consistency or release consistency, in our future 
work in order to make our proposed dataflow instruction 
tagging scheme suitable for multi-threading computing 
environment and achieve better performance.   
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