
Exploiting Dataflow to Extract Java Instruction Level Parallelism

 on a Tag-based Multi-Issue Semi In-Order (TMSI) Processor

Hai-Chen Wang, Chung-Kwong Yuen

Dept. of Computer Science
School of Computing

National University of Singapore
3 Science Drive 2, Singapore 117543

{wanghaic, yuenck}@ comp.nus.edu.sg

Abstract

To design a Java processor with traditional modern
processor architecture, the Instruction Level Parallelism
(ILP) is not readily exploitable due to stack operands
dependencies. This paper presents a dataflow-based
instruction tagging scheme. With instruction tagging, the
independent bytecode instruction groups with stack
dependences are identified. The different bytecode
instruction group can be executed in parallel because
there are no stack dependences among them. With the
instruction tagging scheme, we propose a tag-based multi-
issue semi-in-order (TMSI) Java processor. The processor
takes advantage of instruction-tagging and stack-folding to
generate the tagged register-based instructions. When the
tagged instructions are ready, they are bundled out-of-
order depending on data availability to form VLIW-like
instruction words and issued in-order. To achieve high
performance, a VLIW engine is employed. We have
conducted some experiments in our TMSI simulation
environment using SPECjvm98 and Linpack workload.
The results indicate that the proposed processor has good
performance gain.

1. Introduction

The feature of the machine independence distribution
format of programs with the Java Virtual Machine (JVM)
[5] makes Java technology extremely popular, which is
found in a variety of systems, ranging from embedded
systems to high performance server systems.

Java bytecodes may be executed on various platforms
by interpretation or Just-In-Time (JIT) compiling. The first
Java virtual machine (VM) available was interpreter-based,
but it was neither efficient nor well-suited to high
performance applications. The JIT compiler translates
bytecodes to the native code of the host machine
dynamically. Several variants of the JIT concept [22, 23]
have been proposed. However, the JIT approach incurs
runtime overhead in translating bytecodes to native code,
although acceptable performance for Java applications can
be provided. To further improve the performance of JIT,
adaptive dynamic compilation [24] is proposed. In this
scheme, methods that are most heavily used are compiled
and optimized in traditional compiler technique in order to
obtain more efficient native machine code.

Hardware processors to execute bytecode directly are
also becoming popular. The designs of Java processors,
such as picoJava [10], are mainly based on stack
architectures, and the Java VM is used as their instruction
set architecture. A major issue in this architecture is the
existent limitation of ILP by the stack dependence.

Several techniques to extract ILP in Java bytecode have
been investigated [11, 13, 17, 18]. Stack operation folding
is one technique to reduce the limitation by converting a
set of bytecodes into a register-based instruction [8, 9, 10,
11, 12, 14]. In Sun’s picoJava-II processor, simple
instruction folding in hardware is done by using pattern
matching at decode stage of its pipeline [10, 11], and the
stack folding is supported by the stack cache as a register
file for parallel access of stack operands to eliminate
redundant stack operations. More sophisticated folding
techniques, such as nested folding [8, 9, 12, 14], may
further reduce stack operand dependence but need complex
hardware to support. Combining multiple in-order issue
with stack folding can further exploit ILP [11], but ILP is
limited when execution is restricted in program order. To

1-4244-0054-6/06/$20.00 ©2006 IEEE

support out-of-order execution, SMTI [17] is proposed
with software involved to extract independent bytecode
trace and implement bytecode folding, but special fetch
logic is needed to identify independent traces from
instruction cache.

To meet the requirement of high-performance network
application with Java, thread level parallelism (TLP) is
exploited to extract coarse-grained parallelism. Sun’s
MAJC processor adopts a vertical multithreading
technique, in which Java methods are treated as a thread in
hardware and speculative execution of multiple threads is
included to exploit TLP [18]. But MAJC needs a JIT
compiler to convert bytecodes to the native codes. The
Java Multi-Threaded Processor (JMTP) architecture is a
similar hardware implementation, which is a single-chip
CPU containing an off-the-shelf general purpose processor
core coupled with an array of Java Thread Processors
(JTPs) [13]. But an intelligent compiler is needed to
identify the set of concurrent threads that can be forked as
JTP threads. DAISY [19] is another VLIW architecture,
which combines JIT with native compilation techniques by
appropriate hardware primitives designed to execute Java
efficiently. It dynamically translates Java bytecodes with
JIT into VLIW instructions and exploits a VLIW engine.
This approach can take advantage of the increased ILP
possible in VLIW machines to achieve high performance
[6].

There are another two dynamic-translation-supported
Java processors: Femtojava [3] and Delft-Java [4]. The
FemtoJava processor is a stack-based architecture with
replicated functional units and instruction decoders, and
employs a VLIW as its execution engine. In FemtoJava [3],
the bytecodes in the entire Java program are divided into
the instruction groups, and the instructions within the same
group are translated into VLIW word to be executed. The
grouping algorithm is to find those instructions that depend
on the result of the previous one, and group them in one
instruction block. The Delft-Java [4] processor provides
hardware assisted dynamic translation, and the bytecodes
are translated on-the-fly into the Delft-Java instruction set.
Hardware support for Java language constructs is
incorporated into the processor’s ISA. This allows
application level parallelism inherent in the Java language
to be utilized as instruction level parallelism.

1.1 Overview of Our Work

Dataflow [1, 2] is an alternative architecture that
directly contrasts with the traditional von Neumann
architecture. Although dataflow has been studied for more
than two decades, actual implementations of the model
have failed to deliver the promised performance. Most
modern processors utilize complex hardware techniques to

detect data and control hazards and dynamic parallelism in
order to bring the execution engine closer to an idealized
dataflow engine [21]. In this paper, we propose the
architecture of Java ILP processor, in which dataflow is
exploited to identify stack dependence, reduce redundant
stack operations and extract ILP in Java programs. In the
proposed processor, stack instruction tagging may enable
out-of-order instruction execution and extract most of ILP
in Java programs. After bytecode tagging, stack
dependences are identified by tags, and the availability of
operands (or tags) is used to help issue instructions similar
as in dataflow machines. Within an instruction window,
the instructions without data dependences may be issued
simultaneously and executed in parallel. By combining the
EPOC folding [12] method with the tagging scheme, we
implemented a new tag-based POC scheme. By means of
bytecode folding, stack instructions are converted to
tagged register-based instruction formats (two source
operands, one destination operand), then bundled and
formed as VLIW wide words to be executed on a VLIW
engine.

We executed the Benchmark suite of Spec JVM 98 [16]
and Linpack [20] to conduct the performance evaluation
and achieved the performance gain in an average ILP
speedup of 59% over the base in-order single-issue Java
processor.

1.2 The organization of the Paper

The remainder of this paper is organized as follows.
Section 2 introduces our tag-based dataflow scheme (TDS)
with one example. Section 3 discusses the bytecode
folding scheme implemented with instruction tagging in
the processor. Section 4 illustrates the architecture of our
proposed Java ILP processor and some related issues. The
performance evaluation and results are presented in
Section 5. Section 6 summarizes our work.

2. Motivation -- Exploiting Dataflow in Stack

Architecture

In some ways it is easier to parallelize execution of
stack programs on stack machines, because those operands
on execution stacks are erased once they are used by an
operator. Hence, an operand only needs to be supplied to
one operator which can be uniquely identified by a tag.
Once a tag is used, its new result is immediately discarded
without being actually stored into the stack; in contrast to
GPR machines, new register contents must be written back
to physical registers from the reorder buffer even if they
may already have been superseded by later writes. To

exploit the feature of the tag in stack machines, we propose
a tag-based dataflow scheme to extract ILP and implement
out-of-order bytecode instruction execution in stack
programs. This scheme exploits a stack of tags rather than
a stack of values.

We explain our scheme as follows. If we want to
compute an expression: g = a*b+(c+d), its corresponding
stack program can be:

 - LD A, LD B, MUL, LD C, LD D, ADD, ADD, ST G

In Table 1, we will describe how the parallelism can be
achieved after renaming stack location with tags, using
Operand Tag Stack (OTS) to identify source operands with
operators that consume them. Here, the renaming unit uses
a new tag for every instruction that leaves a result on the
stack instead of an operand value. The tags on OTS are
used for attachment to a later instruction that consumes the
operand. As shown in Table 1, the tagged instructions are
dispatched after an instruction is executed in a load/store
or ALU unit and the result is delivered to the later
instruction that carries its result. For example, the first two
loads deliver their operands to the mul operator, and the
last two loads to the add operator, then they will execute
and deliver their results to the second add operation, in the
same manner as in superscalar machines. From this
example, we can see that using a stack of tags makes it
easy to attach operand tags to an operator.

Table 1: A sample of stack renaming scheme

Instruction Naming unit Operand Tag

stack (OTS)

 1 load a
 2 load b
 3 mul
 4 load c
 5 load d
 6 add
 7 add
 8 store e

T1 load a
T2 load b
T3 mul T1 T2
T4 load c
T5 load d
T6 add T4 T5
T7 add T3 T6
T8 store T7 e

T1
T1 T2
T3
T3 T4
T3 T4 T5
T3 T6
T7

The proposed tagging method is data-driven. The tags
are organized as a reorder buffer in order that can be
reused and dynamically assigned to the later coming
instructions after they are retired. The single tag entry is
composed of the instruction op-code, status bits and a
register number which points to the “destined” physical
register in the register file. Once an operator instruction is
tagged, it will identify its operands by tags. The tag can be
seen as a data token in tagged dataflow machines [1]
where the flow of data token activates instructions’
execution. In the process of instruction tagging, a data
dependence graph (DDG) is generated dynamically and

instruction execution may follow the graph. As in dataflow
machines, the availability of tagged operands of an
instruction triggers its execution and the tagged result is
passed directly as data tokens between instructions. The
tagging execution scheme supports explicit out-of-order
instruction execution.

Unlike the dataflow execution paradigm, instruction
execution is controlled by the scheduler in our
implementation. When an instruction is ready for
execution, it is first inserted to the ready-instruction queue
and then scheduled to execution. The process of instruction
issue is controlled by a scheduler. Hence the availability of
operands of the ready instructions did not immediately
“trigger” them to be executed. This execution paradigm is
similar to the scheduled dataflow [21]. With instruction
scheduler, instructions are easy to be synchronized and
managed. Designed in this way, the complexity of
instruction issue logic [21] is reduced, out-of-order
execution can be implemented and fine-grained parallelism
is achieved as in dataflow without a need of the dataflow
programming paradigm.

3. Stack Instruction Folding

Stack operation folding is one technique that eliminates
stack operand dependency by converting a set of bytecodes
into a register-based instruction [8, 9, 12, 14]. It can save
pipeline cycles by eliminating redundant stack operations.
We exploit the tagging technique and EPOC scheme [12]
to implement a tag-based POC folding scheme. In this
scheme, all bytecode instructions are categorized into three
kinds of role in instruction folding: Producer, Consumer
and Operator (POC) as in [12]. The Producer instructions
push data form local variable or constant onto operand
stack in a single cycle. The Consumer instructions pop
data from operand stack and store the data into local
variables. The Operator instructions pop data from
operand stack, execute on corresponding functional units,
and then push the result back to operand stack. We add
another foldable instruction type -- IP (intermediate
producer), which indicates that the tagging instruction will
produce a result and the result will be used by its consumer
instruction. The IP instruction type may help to implement
nested instruction folding. To identify four bytecode types,
two extra bits are needed in pre-decoding stage to help
instruction decoding.

Table 2 shows a tagged register-based instruction
format we proposed, which is similar to the RISC
instruction, and easy to implement in modern high
performance processors. Here, opcode is the bytecode
operation code, Src1,Src2 are the fields of source operand
tags, and Dest Tag is the field of destination tag. The Java
bytecodes has less than 255 instructions and the length of

bytecode is 8 bits in Java specification. If tagging unit is
set in 64 entries, it is enough to use 8 binary bits to address
the tag numbers in the field of source operand and
destination operand in Table 2.

Table 2: Tagged register-based instruction format

Opcode Src1 Tag Src2 Tag Dest Tag

The instruction tagging has analyzed and identified data
dependences among bytecode instructions. The proposed
instruction folding scheme will exploit the results of
instruction tagging to simplify the implementation. With
instruction tagging, all Operator instructions have found
their dependent operand tags and their dependent
information in tags are stored in Naming Unit illustrated in
Table 3. In Naming Unit, an Operator bytecode instruction
entry will store the tag number of its left operand and right
operand. The tag numbers can be directly used to generate
register-based instruction by folding logic. According to
the POC type and instruction dependent information, the
folding logic can generate tagged register-based
instructions and stores them in folded instruction buffer
(FIB). Only those Operator instructions can generate
corresponding register-based instructions. For Consumer
instructions, folding logic will check the POC type of its
dependent instruction. If the instruction type of the
dependent instruction is Producer or IP, only a register-
copying is needed; if it is Operator, the previous generated
tag-based instruction’s destination tag will be modified to
the tag of the Consumer instruction. Because bytecode
instructions are tagged in sequential and the tagging
process follows a stack machine’s behavior, the
correctness of our scheme could be guaranteed. The
detailed instruction folding method can be referred to [12].

Table 3: Sample of Java instruction folding

Java
Bytecodes

Naming
Unit

Operand
Tag stack

Folded
Instructions

 1 iload a

 2 iload b
 3 imul
 4 iload c

 5 iload d
 6 iadd
 7 iadd

 8 istore

T1 load a

T2 load b
T3 mul T1 T2
T4 load c

T5 load d
T6 add T4 T5
T7 add T3 T6

T8 store T7 e

T1

T1 T2
T3
T3 T4

T3 T4 T5
T3 T6
T7

i1: imul, T1,T2, T3

i2:iadd, T4,T5, T6
i3:iadd, T3,T6, T8

Table 3 illustrates a basic instruction folding process for
a nested bytecode instruction sequence. Column 4
demonstrates the newly generated tagged register-based
instructions after instruction folding. They are folded into
three instructions, i1, i2, and i3 (i1, i2, i3 are only for

explanation, not be included in new instructions). The tag
number T3 and T6 are reused and treated as the IP type in
instruction i3. In line 7, the destined tag (underlined) is
changed from original Tag 7 to Tag 8 (the tag number of
the istore). From Table 3, we can see that without
instruction folding, 8 cycles are needed to sequential
execute the listed bytecodes. With instruction folding, only
3 cycles are needed. If multiple-issue is supported, only 2
cycles are needed (because tag-dependence exists in the
three new generated instructions).

4. Tag-Based Multi-Issue Semi In-Order

(TMSI) Processor

A Java processor is able to execute Java bytecode
instructions directly in hardware, which makes it possible
to entirely bypass the need for dynamic translation and
reestablish a simple, direct execution model for Java code.
We propose a Java ILP processor with a six-stage pipeline,
including instruction-fetch, decode, stack folding, issue,
execute and commit stages. Because instruction folding is
on the critical path of the pipeline [11], one individually
decoding stage for instruction folding is needed in the
design of our pipeline. With instruction folding, the
bytecode instructions are converted to the tagged register-
based instructions. And the data dependences among the
tagged instructions are identified by the tags. In the
processor, Tagging Unit (TU) and Tag Matching Unit
(TMU) are responsible for controlling the instruction
tagging, matching tags and updating the status of tags.
When a bytecode instruction enters the decoding unit, TU
assigns a tag to it. After the instruction execution is
completed, the related tags are released to the free tag pool
by TU, where the tags can be reused.

When the operands of a tagged instruction are ready,
the tagged instruction is added to the ready instruction
queue for scheduling. The multiple tagged instructions are
bundled out-of-order depending on data availability to
form VLIW-like instruction words, the instruction bundles
are put in the issue buffer and issued by the Scheduler in-
order. Although the instruction bundles are issued in-order,
at the time they are bundled, they may be not in program
order. Hence, our processor worked in multiple-issue semi
in-order style. The Stack Cache as a register file is
provided [9] in the processor to eliminate inefficiencies
typically associated with stack-based instruction
processing, and the temporary results in the instruction
execution are stored in it. The schematic block diagram is
shown in Figure 1.

Figure 1: The proposed TMSI processor architecture

4.1 Instruction Fetch and Decode

The Java bytecode instructions are fetched from a
method cache. The bytecode fetch logic controls the
instruction fetching from the same bytecode method
according to the program counter values. After fetching all
the instructions of a basic block, fetch logic selects the
next basic block as predicted by the branch predictor. With
Operand Tag Stack (OTS) support, the Decoding / Tagging
Unit (DTU) and TMU are together to handle both
instruction tagging and folding. When one bytecode is
decoded, an entry in TMU is allocated, and the tag number
of the entry is assigned to the bytecode. The policy of tag
allocation is first come first service (FCFS).

The entry in TMU is to hold the control-related
information, which contains the left / right operand tag
number, the valid bit, the status bit and the address of a
physical register in Stack Cache. A mapping table is used
to manage the mapping from tags to registers. The Register
File (RF) is a global temporary storage, responsible for
storing stack operands and local variables to speed up
memory access. The organization of TMU is similar to that
of a reorder buffer in superscalar processor [26], but TMU
holds more functions than a reorder buffer does. Whenever
a result is produced in RF, the corresponding tag number is
simultaneously sent to TMU to update the instruction
status and wake up the waiting consumer instructions.

The operands for the instructions may be loaded from
stack cache (register file) or the data cache. LV variables
and intermediate results are both allocated on the register
file. The stack intermediate results generated by ALU
instructions can be directly written to the register file in
parallel. The memory load operation, if it does not exist in
load buffer, must load from the data cache.

4.2 Instruction Issue and Schedule

In Java JVM, some temporary data and intermediate
values are stored in LV area to speedup their access. In our
processor, LV variables are resident on the stack cache.
When a folded instruction finishes execution, its result is
first written back to the physical register the “destined” tag
points to. Within a basic block, only the last write, e.g.
istore_x, updates the corresponding LV variable if there
are multiple writes to the same LV. This is similar to the
register renaming and resolves data conflicts in case of
multiple-writes to the same LV variable. With instruction
tagging, WAR (write after read) and WAW (write after
write) data dependences are removed, because both
operations will access different registers. Thus only the
real data dependence – read after write (RAW) needs to be
considered. When a RAW conflict occurs, e.g. the later
read and previous write access the same LV variable, the
issue logic may guarantee the later read instruction cannot
be issued until the previous write instruction completes.

The memory access instructions, such as iastore, iaload
etc, may issue out-of-order. Memory dependences between
instructions are detected at run-time by the memory-
hazard-detection logic, which consists of a load buffer, a
store buffer and address comparator circuits [26]. Store
addresses are buffered in an address queue (FIFO). The
hardware will check each issued load to determine if an
earlier in-flight store instruction was issued to the same
physical address, and if so, use the value produced by the
store. While each issued store will check to see if a later
load to the same physical address was previously issued,
and if so, take corrective action.

Operand
Tag Stack

Decoding
 Tagging Unit

Branch
Pred. Logic

Instruction
Fetch Unit

Method
Cache

Fetch Logic

Tag
Matching

Unit

Stack Cache
(Register File)

Ready Inst
Queue,

Multi Issue
Logic

VLIW Execution Engine
Data
Cache

Load/Store buffer
Hazard Detection

4.3 Instruction Execution and Commit

In order to achieve high performance with reduced
hardware complexity, a VLIW execution engine is
employed in our processor. The ready tagged instructions
are first dynamically packed into VLIW-like wide words,
put into an instruction issue buffer, then issued to the
functional units on VLIW engine through a Quasi-crossbar
[25]. The bundled instructions are issued in strict locked-
step as in VLIW machines.

When a bytecode instruction completes, the result will
be written back to register file or load/store-buffer if it is a
memory access instruction, and the status of the related
tags are needed to be updated. When the status updating of
a tag is completed, and if it is no-longer used in the nearly
future we say the tag is “committed” and can be returned
to the free tag pool for later uses. A tag is alive from the
time it is assigned to an instruction until the instruction is
“committed”. If a bytecode instruction will produce an
intermediate result after the instruction’s execution and the
result will be used by its later instruction, the related tag
will be reused. In this case, the reused tag is often used as a
producer to provide data for later consumer instruction.
The reused tag will be retained until its result is consumed
by its later consumer instruction. When a tag is no longer
used, it will be removed and released for later retrieval.

5. Performance Evaluation

5.1 Experimental Methodology

We have done a simulation study on our proposed
architecture. A trace-driven simulator was developed to
model our tag-based processor architecture. The simulator
accepts bytecode traces extracted from the execution of the
benchmarks programs on the modified open source Java
VM interpreter Kaffe [15]. The bytecodes are scheduled
and run based on pipeline stages cycle-by-cycle. The
behavior of tags follows our model. In the simulator, we
assume that TMU has 64 tag entries. The size of physical
register file is larger than 64, because register file not only
provides tag-mapping registers but also contains the LV
storage area.

We used SPECjvm98 [16] and Linpack [20]
benchmarks. The benchmarks in SPECjvm98 were run
with the s1 data set and the mtrt benchmark program is
single-thread version. In the experiments, instruction
schedule was limited within a basic block, only when all
the instructions within a basic-block were issued can the
instructions in the next basic-block be scheduled, but

instruction prefetch is supported. The branch predictor
used is a static predictor as in picoJava-II [11], and has a
penalty of 3 cycles for mis-predicted branches. An ideal
instruction cache was assumed.

To study the gain in ILP and performance speedup with
TMSI processor, we ran two types of simulation: one in
which every bytecode instruction assumes at a single cycle
latency, and the other in which the different bytecodes take
different latency according to the picoJava specification.
ILP gain is useful for determining ILP speedup from the
viewpoint of multiple instruction issue, and the latter
simulation is helpful to demonstrate the actual speedup
compared with the existing architecture, which indicates
the actual performance gain in TMSI processor. Data
caches with 100% hit rate are assumed in our experiments.

5.2 Improvement in Exploitable Parallel

Execution

To detect the proportion of parallel execution
instructions in our processor, we relax the resources
constraints on the number of execution units and set the
issue rate at four. When the execute stage is fed all the
instructions within the instruction issue window, the
processor could potentially execute at most four of them in
parallel if there are no dependencies and resource
constraints. If there are stack dependences or LV
dependences, the following instructions will be executed in
the next cycle. We execute different benchmarks on the
simulator with above constraints and assume the issue-
window holds 64 entries.

Table 4: Percentage of instructions executed in
parallel in our scheme

Instructions executed in parallel

(percentage) BenchMarks

1 2 3 4

compress 67.37 15.43 10.78 6.42

Db 79.97 14.98 3.78 1.27

Jack 79.54 14.22 3.89 2.35

javac 72.85 21.87 4.24 1.04

jess 81.51 13.47 3.26 1.76

mpegaudio 43.26 16.53 6.78 33.43

mtrt 87.92 9.67 1.55 0.86

Linpack 69.18 16.10 0.38 14.34

Table 4 shows the proportion of instruction execution in
parallel. Let us compare it with that reported in the
previous research work of in-order multi-issue of the
folded Java instruction execution [11]. In [11], by using
stack disambiguation technique, only a small number of
three-instruction-groups are issued in parallel and no four-
instruction-groups are issued in parallel. However, the
results of our experiments show that the percentage of
issued three-instruction-group is from 0.3% to 10%, and
the percentage of issued four-instruction-group is from
0.8% to 14%, except the mpegaudio. The percentage of
mpegaudio is around 33%. That is because the basic block
of mpegaudio is bigger, and within a basic block there are
more instructions which can be run in parallel. These
results demonstrate that our proposed dataflow instruction
tagging scheme can expose more ILP.

5.3 ILP Speedup Gain

To compute the ILP gain, we assume all instructions
with unit latency. Figure 2 presents the ILP speedup results
for three different configurations: base in-order single-
issue stack machine, stack folding only in-order single-
issue stack machine and our multi-issue in-order TMSI
machine. The stack folding used in the experiments also
supports nested folding. With our tag-based stack folding
scheme, the ILP gain can be seen from 20% to 90%. This
result demonstrates that our stack folding scheme is
effective, particularly for computing-extensive cases, such
as Linpack and mpegaudio. The ILP gain with TMSI
multi-issue over stack folding only single-issue in-order
case is also observed to range from 3% to 27% for all
applications except mpegaudio, for which the gain is 49%.
The result also demonstrates that with tag-based scheme

TMSI processor can improve the performance than stack
folding single-issue in-order architecture does. The ILP
gain with TMSI processor over base in-order single-issue
stack machine can be seen from 21% to 115%, except for
mpegaudio case in which the gain is 173%. This shows
that the ILP speedup can be obtained through both stack
folding and multi-issue instruction in Java processors.

5.4 Performance Enhancement of TMSI Processor

Architecture

Figure 3 demonstrates the actual speedup obtained
using the varied latency according to the picoJava-II
specification. With the configuration of stack folding
single-issue in-order architecture, an improvement of 2%
to 19% is observed. With multiple-issue TMSI architecture,
the speedup ranges from 9% to 34% for all applications,
except mpegaudio and compress. The actual speedup of
compress with TMSI is 49% while the actual speedup gain
of mpegaudio is 86%. The reason for the much higher
performance speedup observed in mpegaudio is that more
bytecode instructions are executed in parallel than in other
benchmark programs. Compared with SMTI [17], the
results obtained are as good as or even better than those in
SMTI, except mpegaudio. This demonstrates that our tag-
based dataflow method can exploit more ILP. For
mpegaudio benchmark, software-implemented multi-trace
[17] may schedule instructions within a bigger instruction
window than our scheme when bigger basic blocks exist.
In contrast, the instruction schedule window in our
processor is constrained by the size of Tag Matching Unit
(TMU). However, our architecture does not need complex
fetch logic to support.

Figure 2: ILP speedup gain: TMSI machine vs. the in-order single-issue stack machine

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

compress Db Jack javac jess mpgeaudio mtrt Linpack

Base

Folding only

TMSI

Figure 3: Overall speedup of TMSI vs. in-order single-issue stack machine

6. Conclusions

A new approach to exploiting dataflow to extract Java-
ILP has been proposed. We presented the method of
instruction tagging with an example. With instruction
tagging, the independent bytecode instruction groups with
stack dependences are identified. The different bytecode
instruction groups can be executed in parallel based on
different set of register segments for multiple operands
access because there is no stack dependence among them.
Based on the instruction tagging scheme, we proposed the
architecture of Tag-based Multi-Issue Semi In-Order
Architecture (TMSI) which employs a Tagging Unit and a
Tag Matching Unit to tag bytecode instructions and
execute the tagged instructions on a VLIW engine to
achieve high performance. In addition, the tagging-based
stack folding scheme has been discussed. The simulation
experiments demonstrate that the proposed TMSI

processor architecture is able to significantly increase the
average ILP over a single-issue Java processor. We
calculated the geometric mean of the ILP gain and that of
actual gain in speedup over all the applications, the results
showed that the ILP gain is 59% and the actual speedup
gain is 28%. Based on current implementation, our future
work will focus on scheduling and executing instructions
beyond single basic blocks.

The proposed tag-based Java processor architecture can
be compatible with multi-threading technique if multiple
fetching unit and tagging unit are provided. Bytecodes
from different threads are tagged by different tagging units,
and then bundled to the VLIW instruction to be executed
in parallel, and the thread-level parallelism is achieved. To
guarantee the correctness of the program execution and to
respect the Java Memory Model (JMM) [27], we will
implement a memory consistency mechanism, such as
sequential consistency or release consistency, in our future
work in order to make our proposed dataflow instruction
tagging scheme suitable for multi-threading computing
environment and achieve better performance.

References

[1]. Arthur H. Veen. Dataflow machine architecture. ACM
Computing Surveys, Vol. 18, Issue 4, December 1986.

[2]. Philip C. Treleaven, David R. Brownbridge, and Richard
P. Hopkins. Data-Driven and Demand-Driven Computer
Architecture. ACM Computing Surveys, Vol. 14, Issue 1,
March 1982.

[3]. Antonio C.S.Beck, Luigi Carro. A VLIW Low Power
Java Processor for Embedded Applications. In 17th

Brazilian Symp. Integrated Circuit Design (SBCCI 2004),
Sep.2003.

[4]. John Glossner, et. al. Delft-Java Link Translation Buffer.
In Proceedings of the 24th EUROMICRO conference,
volume 1, pages 221–228, Vasteras, Sweden, August. 25-
27 1998.

[5]. T.Lindholm, F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, Reading MA, 1996

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

compress Db Jack javac jess mpgeaudio mtrt Linpack

Base

Folding

TMSI

[6]. K. Ebcio˘glu, E. Altman, and E. Hokenek. A Java ILP
machine based on fast dynamic compilation. In
MASCOTS’97, - International Workshop on Security and
Efficiency Aspects of Java, 1997.

[7]. Harlan McGhan and Mike O’Connor. PicoJava: A Direct
Execution Engine for Java Bytecode. Sun Microsystems,
IEEE Computer Magazine, 1998.

[8]. Lee-Ren Ton, Lung-Chung Chang, Min-Fu Kao, Han-
Min Tseng. Instruction Folding in Java Processor. The
International Conference on Parallel and Distributed
Systems, 1997

[9]. El-Kharashi, W., F. ElGuibaly, and K.F. Li. A robust
stack folding approach for Java processors: an operand
extraction-based algorithm. Journal of Systems
Architecture, Vol 47 (2001), pp.697-726

[10]. J. Michael O’Connor, Marc Tremblay. PicoJava-I: The
Java Virtual Machine in Hardware. IEEE Micro, Vol. 17,
Issue 2, pp 45-53, March 1997

[11]. Ramesh Radhakrishnan, Deependra Talla and Lizy
Kurian John. Allowing for ILP in an Embedded Java
Processor. In Proceedings of the 27th International
Symposium on Computer Architecture, pages 294--305,
June 2000.

[12]. Lee-Ren Ton, Lung-Chung Chang, Chung-Ping Chung.
An analytical POC stack operations folding for
continuous and discontinuous Java bytecodes. Journal of
Systems Architecture, Vol. 48(2002), pp 1-16

[13]. R. Helaihel, and K. Olukotun. JMTP: An Architecture for
Exploiting Concurrency in Embedded Java Applicatins
with Real-time Considerations. In the international
conference on Computer-Aided Design, Nov. 1999, pp.
551-557

[14]. Austin Kin, Morris Chang. Advanced POC Model-Based
Java Instruction Folding Mechanism. In Proceedings of
the 26th EUROMICRO Conference (EUROMICRO’00)
Volume I-Volume1, p.1332

[15]. The Kaffe Virtual Machine, http://www.kaffe.org
[16]. SPEC JVM98 Benchmarks.

http://www.spec.org/osg/jvm98/.
[17]. R. Achutharaman, R. Govindarajan, G. Hariprakash,

Amos R. Omondi. Exploiting Java-ILP on a
Simultaneous Multi-Trace Instruction Issue (SMTI)
Processor. In International Parallel and Distributed
Processing Symposium, pp.76a, 2003.

[18]. M. Tremblay, J. Chan, S. Chaudhry, Andrew W.
Conigliaro, S.S.Tse. The MAJC Architecture: A
Synthesis of Parallelism and Scalability. IEEE Micro
Vol. 20, (6), Nov. 2000, pp. 12 -25.

[19]. Kemal Ebcio lu , Erik R. Altman. DAISY: dynamic
compilation for 100% architectural compatibility. ACM
SIGARCH Computer Architecture News, v.25 n.2, p.26-
37, May 1997

[20]. Linpack, http://www.netlib.org/linpack
[21]. Krishna M. Kavi, Roberto Giorgi and Joseph Arul.

Scheduled Dataflow: Execution Paradigm, Architecture,
and Performance Evaluation. IEEE Trans. On Computers,
VOL 50, No. 8, August 2001

[22]. B.S. Yang, S.M. Moon, S. Park, J.Lee. LaTTe: A Java
VM Just-in-Time Compiler with Fast and Efficient
Register Allocation. In the International Conference on

Parallel Architectures and Compilation Techniques.
October 1999.

[23]. Andreas Krall. Efficient JavaVM Just-in-Time
Compilation. In Proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques, pp205, 1998

[24]. M.G. Burke, J.D.Choi, S.Fink, D.Grove, M. Hind, V.
Sarkar, M.J. Serrano, V.Sreedhar, H. Srinivasan, and J.
Whaley. The Jalapeno dynamic optimizing compiler for
Java. In Proceedings ACM 1999 Java Grande Conference,
1999, pp.129-141.

[25]. M.Gschwind, E.R.Altman, S.Sathaye, P.Ledak,
D.Appenzeller. Dynamic and Transparent Binary
Translation. IEEE Computer, Vol 33(3), pp 54—59,
March 2000.

[26]. J.E. Smith, and G.S. Sohi. The micro architecture of
Superscalar Processors. In proceedings of the IEEE, vol.
83, pp1609-1624, December 1995.

[27]. Jeremy Manson, William Pugh and Sarita V.Adve. The
Java Memory Model. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’05), California, USA,
January 12 -14, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

