
Workflow Fine-grained Concurrency with Automatic Continuation

Giancarlo Tretola
1
 and Eugenio Zimeo

2

1University of Sannio

Department of Engineering

Benevento, 82100 ITALY

tretola@unisannio.it

2University of Sannio

Research Centre on Software Technology

Benevento, 82100 ITALY

zimeo@unisannio.it

Abstract

Workflow enactment systems are becoming an

effective solution to ease programming, deployment

and execution of distributed applications in several

domains such as telecommunication, manufacturing, e-

business, e-government and grid computing. In some of

these fields, efficiency and traffic optimization

represent key aspects for a wide diffusion of workflow

engines and modeling tools. This paper focuses on a

technique that enables fine-grained concurrency in

compute and data-intensive workflows and reduces the

traffic on the network by limiting the number of

interactions to the ones strictly needed to bring the

data where they are really necessary for continuing the

flow of computations. We implemented this technique

by using the concepts of wait by necessity and

automatic continuation and we integrated it in a

flexible, Java workflow engine that through the new

mechanisms is able to navigate a workflow

anticipating the enactment of sequential activities.

1. Introduction

Workflow management is a field of growing interest

thanks to the great flexibility and manageability

ensured by the paradigm. It could be usefully employed

in several domains to simplify the development and

deployment of distributed applications characterized by

common features like the access to computation

resources scattered across a communication network.

These applications are typically interested to access to

the functionalities offered by remote resources, through

a control flow that determines the sequence of actions

to be performed to reach an objective and data to be

transferred from a resource to another one [3].

In the domains characterized by compute and data

intensive workflows, a process typically involves

powerful computational resources used to compute

complex functions and the operating data could require

massive transmissions across the network. Therefore,

any possibility to improve the performance must be

carefully analyzed.

In this paper, we propose to relax the strong

sequence constraint of the well-known sequence

workflow pattern [2][13] at both control and data flow

levels. In this pattern, the involved activities have to be

executed in a serial way: the control is suspended until

the first operation completes and only when the

resulting data are send back to the workflow executor

the process graph navigation can continue. Additional

waiting time could be due to large data flows that

require much time to be delivered, especially when data

travel back and forth from the executor to the

participants’ resources several times during the

enactment of a sequence of activities. Such a scenario

does not benefit of the concurrency offered by the

pattern “and-split” [2], since the activities present data

dependencies and so they must be executed

sequentially. Nevertheless, an improvement of

efficiency is possible considering the problem at a

different level of granularity, by dynamically finding

the point inside the depending activity where the data

produced by a previous activity are really needed. In

particular, a potential concurrency could be exploited

considering that the data dependencies of two

sequential activities may not be placed at the beginning

of the dependent activity. Data coming from an activity

could be needed by the dependent activity after start-up

and initialization operations. Therefore, we observe

that between the two extreme cases of sequence and

and-split there are different degrees of partial

concurrency that could be exploited.

Considering a sequence of two activities, the

corresponding control flow could be improved if we

could start both of them at the same time, so the

independent operations of the second activity may be

executed concurrently with the ones of the first activity.

The implementation of this feature in a workflow

enactment system can be performed by means of

1-4244-0054-6/06/$20.00 ©2006 IEEE

asynchronous invocations (or deferred synchronous

invocations). In such a case the activity is started and

the workflow executor receives a notification of the

successful operation, so it could continue to navigate

the workflow process graph until succeeding activities

do not need data. To allow the continuation of the

computational flow, the executor has to pass a

symbolic reference of data to be computed. This

reference represents a placeholder for the data that will

be produced.

An additional benefit of the proposed schema is the

ability to reduce traffic in the network since reference

handling allows for avoiding data to be sent to the

workflow enactment system and then to the next

resource that requires them. Data could be transferred

directly from the producer activity to the consumer one.

In [1], Manolescu has discussed the implementation

of an object-oriented, micro-workflow enactment

system that similarly to our proposal exploits

asynchronous invocations and future objects. In

addition to these basic ideas, our approach aims also at

simplifying process modelling.

The rest of the paper is organized as follows.

Section 2 discusses fine-grained concurrency as a

useful pattern placed between sequence and parallel-

split for designing workflows. Then in Section 3, an

implementation based on future objects of the

workflow fine-grained concurrency is presented.

Section 4 discusses the results of some preliminary and

basic experiments to test the efficiency and validity of

the proposed solution. Section 5 concludes the paper

and highlights future improvements.

2. Fine-grained concurrency in workflows

The objective of fine-grained concurrency is to

exploit a great number of situations where

computational flows can not be executed concurrently

and then fall under the sequence way of enactment

[3][8]. If the internal structure of an activity is

considered, we can observe that data dependencies

could appear in different points of the execution; so

even though two activities can not run concurrently

following the well-known and-split pattern [3] this is

not sufficient to force a sequential execution since a

partial concurrency is still possible. To this end, the

key concepts that we utilize are anticipation and

continuation [1], pointing at the removal of strict

sequential execution of activity sequences in workflows

by allowing intermediate results, or symbolic reference

to them, to be used as preliminary inputs into

succeeding activities thus enabling anticipation of

enactment. This enables the continuation of workflow

graph navigation, evaluating the possibility to start

subsequent activities without waiting for the preceding

to complete. To better explain the concept, we consider

a simple sequential flow [13] of two activities A and B.

The second one presenting a data dependency from the

preceding one. The point of dependency could be

placed in a whatever point of the second activity. As

depicted in Figure 1, B could be considered as a

sequence of two sub-activities: B
i
 and B

ii
. The first one

could be interpreted as the subset of B operations that

do not present data dependencies from A, while B
ii
 is

the part that presents data dependencies. If during the

analysis phase and subsequent design of a workflow the

designers could examine the activities at a major level

of detail, the different structure of the constitutive

operations could be considered.

Start A B End

BiiBi

Figure 1. Sequential Flow

Taking into account such a structure, we could

define an equivalent control flow, placing A and B
i in

an and-split and then B
ii
 after the join of the two

activities. The resulting control flow is depicted in

Figure 2.

And

Split

A

EndB
ii

B
i

Start
And

Join

Figure 2. Equivalent flow considering a fine-

grained analysis

Sub-activity B
i
 is enacted in parallel with A and,

when the “and-join” [13] is completed , sub-activity B
ii

is executed. By observing the process, the concept of

fine-grained concurrency is used as a new control

structure between the two extreme cases of sequence

and and-split. The sequence is obtained if the B
i

operations subset is void and B
ii
 = B, the and-split node

is achieved if B
i = B and B

ii is void. All the other

intermediate situations could be more fittingly modeled

with fine-grained concurrency whereas in the

traditional workflow modeling they are described as

sequences.

From a dynamic point of view the situation is

presented in Figure 3, with the conceptual and

simplified assumption that the outstanding time at stake

are only the activities’ duration time, giving up others

times.

Figure 3.a shows the traditional way a workflow

executor operates when the workflow presents a

sequence. The activity A starts and runs until its

operations are completed, then the result is returned to

the workflow enactor and the activity B may be started

receiving the result of A [2][3]. We are not considering

dead time of the workflow system nor network delay.

Figure 3.b shows the sequence enacted considering that

the data dependency appears after the initialization

activity. Both activities are started at same time.

Activity A is invoked and returns a placeholder for the

result of its computation. Activity B receives the

placeholder as input data, runs until it reaches a point

in its flow that requires the real data, tries to access to

the placeholder to retrieve the result and, if it is not

available yet, the activity is posed in suspend state,

waiting for the result. When A completes its

elaboration, the real data replaces the placeholder and

B may restart completing its execution. As figure 3

shows, the second execution offers a gain equals to T∆∆∆∆.

E BA E A

Ts
Ts

T∆∆∆∆

Independent

Data

Operation

Dependent

Data

Operation

Waiting

State

3.a 3.b

Synchronous

Message

Asynchronous

Message

Asynchronous

Data Flow

B

Figure 3. Comparison of sequence and fine-

grained concurrency enactments

It is possible to prove that the gain is equals to the

execution time of the B activity’s operations that do not

require the real data, i.e. B
i
. That operations could be

executed concurrently with execution of activity A.

Considering the point in the B activity’s flow that

notifies the data dependencies, it is possible to state

that nearer the point is to the end of B greater the

performance gain is (best case). Vice versa, if the point

is nearer to the beginning of B, the gain is smaller

(worst case). For long-time running operations the

performance gain could be very considerable for this

improvement in the control flow.

Since an arbitrary number of distinct split points

could exist in real applications, in the different dynamic

sequences defined by control flow of an activity, the

dynamic approach represents the only viable solution

to individuate such a point for complex activities and a

useful support to alleviate the burden for designers

regarding simple activities, where the split point could

be individuated through a static analysis. Moreover, in

some cases the internal structure of activities is not

known by the workflow designer and so potential

concurrency can not be exploited at design time. This

limitation, induces designers to adopt the sequence

pattern even in the very common cases where a partial

concurrency could be exploited. However, the

decomposition of all activities to statically find the

dependence point it is not always a trivial task (if the

source code of activity’s implementation is available)

or possible (if the source code is not available). The

consequence is that any activity that presents a data

dependence is treated as an activity composed of

operations to be executed after the completion of the

preceding activity and this is correct from a high-level

point of view.

The classic sequence pattern, however, does not

take care of the point in the subsequent activity that

signals the real need for data. This may be done if we

manage the activation at run-time of data dependent

activities in a new way. All the activities in the

sequence could be started as soon as possible, so they

will execute concurrently up until the moment they

really need the data from which they depend on.

The design phase of the sequence still is done in a

traditional way, without forcing the designer to make

assumption on the real data dependency, all the work is

made by the system at run-time. To realize such a

behavior the Workflow Enactment System must

satisfies four requirements for anticipation and

continuation that we defined:

1. Invocation of the activities must be done

asynchronously, returning a symbolic

placeholder for the result not computed yet.

2. Placeholder could be forwarded to subsequent

activities as actual parameters to satisfy the

activation conditions and so anticipating the

activation.

3. Activities that receive the placeholder and try

to access to the data must be stalled until the

data is ready to be used.

4. The forwarded placeholder must be updated

as soon as possible to each activity that uses it.

All these requirements must be accomplished in a

completely transparent way, from the developers’ point

of view, so that traditional analysis and design can still

be applicable.

If a workflow enactment system implements the

requirements listed above, we could use continuation of

workflow graph navigation and anticipation of

activities enactment, achieving a great efficiency both

in control-flow and data-flow. Continuation and

anticipation must be performed at same time, because

one requires the other. The accomplishment of the

requirements by an enacting system could allow

designers to limit their efforts to use a new workflow

pattern, that we have called early start pattern, without

performing a deep analysis of activities involved in a

sequence. The process does not need to be rewritten,

the dependence point is found dynamically by the

system. The only burden for the designer is the

declaration of optimization through the new pattern if a

process definition tool is used or a language keyword if

a process definition language is directly employed.

3. Implementation with Future Objects

The Workflow Engine (previously called enactor at

high level), the software subsystem that navigates the

process graph and enacts the activities, used in this

work is part of an ongoing project, aimed to the

definition and the implementation of a Workflow

Enactment Service according to the SOA (Service

Oriented Architecture) paradigm and able to select and

bind the resources to execute the activities at run-time,

starting from an abstract description of a process.

The implemented, experimental engine, called

αEngine, is compliant with the Workflow Management

Coalition (WfMC) abstract reference model [11], so it

can execute a process defined by XPDL (XML Process

Definition Language) [12] language and implements an

API (Application Programming Interface) to interact

with the other logical entities [11]. The participants of

the workflow are treated as Invoked Applications

representing services modeled as passive, local and

remote objects, active, local and remote objects, and

Web Services.

αEngine is able to navigate the process graph, the

representation of the active instance of the process, and

to choose the activities that could be executed

according to the data contained in a centralized shared

memory, it supports local or remote activities

execution. The local execution requires introspection

and reflection to perform the actions specified in the

process. The remote execution is enabled by RMI

(Remote Method Invocation) or SOAP (Simple Object

Access Protocol), for traditional passive objects and

Web Services.

To achieve anticipation and continuation, αEngine

uses the asynchronous invocation (better known as

deferred synchronous) of the remote activities

implemented by the active objects provided by

ProActive [10]. In such a way, the resulting system is

able to satisfy the four requirements for anticipation

and continuation introduces above.

ProActive is a pure Java library for parallel,

distributed and concurrent computing, that provides a

framework implementing the Active Object pattern [5].

An Active Object is represented as an object, with an

interface exposing public methods, that have its own

control thread. It is designed to improve simplicity and

reuse in parallel programming, supporting separation of

concerns related to functional and system aspects of

programming [10]. ProActive allows for asynchronous

calls by means of Future Objects [7][8].

A Future Object is an empty container that will

receive the value resulting from an asynchronous

method invocation [10]. Future Objects in ProActive

are transparent because they do not require any

modification of the caller’s code.

E

B

A

V

V

1) E calls an A method

2) A returns a future

 and continues its

computation

3)The future acts

like a placeholder 3) E calls a B method

forwarding the future

Figure 4. Continuation and anticipation with

futures propagation

Figure 4 shows a typical interaction between active

objects, in which E represents a workflow enactor and

A and B two activities. The caller object E invokes a

method of active object A and is not forced to wait for

the method termination since a future of the value

allows E to continue the execution of other statements.

If an object tries to access to the future, reading a

properties or invoking a method, and the future object

has not been substituted by the real object, the calling

thread is blocked until the data is available. The future

returned to E is updated by object A when its

computation is completed. Furthermore, futures enable

the continuation of the elaboration because they could

be propagated to other activities outside the one that

has received them. Propagation implies to pass the

future as a parameter or return it as a result without

blocking [5][6].

When the actual value of the future is available, it is

returned to the caller. Then it is propagated to all

objects that received the future [10]. This strategy of

updating is realized by a particular thread in the

ProActive middleware that manages future objects. In

this way, each active object is responsible for updating

the futures it has forwarded.

In the basic implementation of the workflow engine,

the asynchronous interactions between the enactor and

the invoked applications are performed through two

RMI synchronous invocations along with the

implementation of the call-back pattern, which is used

to notify the activity completion and the resulting data

availability. However, in such architecture an activity

containing an RMI invocation can not be considered

completed until the engine will receive the call-back

from the resource, so subsequent activities can not be

analyzed and started, thus anticipation and continuation

can not be performed.

In advanced implementation of the workflow

engine, the asynchronous interactions between the

enactor and the invoked applications are performed

through ProActive. In this case, after the initial

deferred synchronous invocation coming from the

enactor, the invoked application returns a reference to

the future resulting data of its computation, and starts

the operation necessary to obtain it. Meanwhile, the

engine receives the reference to the future result of the

method, still to be computed: the placeholder. At this

point the placeholder could be used to pass the virtual

result to other applications. The only point of disparity

with ProActive is on the future updating strategy that is

not optimal for data flow improvement. We avoid such

strategy by passing future objects by reference instead

of by value. The future object is stored in the shared

memory of the engine, while the anticipated activities

receives a symbolic reference to the object as

parameter instead of the real future object. The future

is stored only in the engine shared memory and when

data is available it replaces the future only there. If an

activity reclaims the data, accessing to the central

memory before it is available, the threads serving the

request is stalled. When the data is available it is

propagated only where it is needed. The stalling thread,

in fact, is awaked and the real value is sent to the

activity. At this point, when the central memory is

accessed the real data is available. Following this

scheme, the engine is not forced to update all the

copies of the future previously forwarded. The

updating happens on demand only when the activity

really needs the data. This is useful to minimize data

flow, but a further improvement is still possible as

discussed thereafter. The central memory is used in our

Workflow Engine to avoid a current inefficiency in

ProActive updating strategy of future objects.

The implementation of continuation and anticipation

into our engine has needed the introduction of a new

state in the state diagram proposed by the reference

model of WfMC [11]: Semi-Complete.

:WfActivity Generic :WfResourceManager r:WfResourcePA

 1:getAssignment

3: return r

 4: internalStart 5: <create>

 6: return v

7: access to v

2: addAssignment

9: return data
8: update

v:FutureObject

Figure 5: sequence diagram of ααααEngine

implementation for remote services

invocations

We need that the engine is aware of the situation

that an activity may be still running to produce a real

result, but nevertheless it is possible to continue

analyzing the process graph. When the engine performs

such an asynchronous invocation the state of

concerning activity is switched from Running to Semi-

Complete. This indicates the fact that while an activity

is still running the engine could continue the process

graph analysis to check if other activities could be

enacted, i.e. anticipated. When the activation

requirements are satisfied, also using the placeholder,

the subsequent activity is started. The continuation of

graph analysis goes on until activities can be

anticipated, aiming to completely exploit fine-grained

concurrency.

Figure 5 shows the interaction between the internal

representation of activities (implemented according to

the WfMC specifications) and external resources

implemented by means of ProActive active objects.

4. Performance Evaluation

To validate the proposed technique, an experimental

analysis was performed, using a simple workflow with

two activities A and B in sequence, as depicted in

Figure 1.

Activity A produces a data that will be used by

activity B, that requires that data to perform its task.

Activity A is a series of operations on a integer value,

that require about 10 seconds to complete. Activity B

receives the integer and performs a set of operations

that also completes after 10 seconds. Thus the process

under test is a sequence pattern with a data dependency

in the second activity. The data-flow is less significant,

since the integer is a very small data. This kind of

process, enacted in a traditional way, starts activity A,

then suspends the workflow enactment and waits until

activity A completes. After that, the engine receives

data from the resource and can use them to start the

subsequent activity B. The total running time of the

process is about the sum of the activities’ running

times, plus engine’s enactment time and network’s data

transfer delay.

We examined the performance when the flow is

executed with RMI remote passive objects and with

ProActive remote active objects. In the second case, we

considered the two extreme hypothesis: (1) data

dependency is at the beginning of the activity; (2) data

is needed in the end. The activities are compute-

intensive applications that are long-time-running in

respect to the total duration time of the process,

because the elaboration time is greater than the engine

operation time and the data transfer time. We

conducted five executions of each kind of process,

considering the average time as resulting performance

indicator.

The computing resources used were:

PC1 – Intel Pentium 4, 2.0 MHz, 512 MB;

PC2 – Intel Pentium 4, 2.4 MHz, 512 MB;

PC3 – AMD Athlon XP 1800+, 1,53 MHz, 384 MB.

The experiments were executed with two different

kinds of deployments, shown in Figure 6.

In figure 6.a, a computer runs the workflow engine

and another one runs both the services encapsulated in

the objects A and B. In figure 6.b, three different

computers are used for the deployment: one for the

engine, another to run activity A and the last to run

activity B.

The obtained results are reported in table 1 where

the execution time is measured in milliseconds. The

process executed with RMI and normal sequence

patterns runs in a total time slightly greater than the

sum of the two activities running times. The first case,

obtained by using ProActive, presents an improvement

of performance of about 4% with respect of the basic

execution based on RMI. However, this represents the

worst case.

Computing

Resource

Workflow
Engine

6.a

6.b

Computing

Resource

BA

Computing

Resource

Workflow
Engine

Computing

Resource

A

Computing

Resource

B

Figure 6. Deployment of activities on

computing resources

The gain is due the fact that initialization operation

of B could be conducted concurrently with A

execution, thanks to the enactment anticipation

performed by the engine. The latter case is the best

possible for the engine. Here, the real need of the data

is at the end of the activity, and thus a large part of

independent computation could be performed

concurrently to the execution of A, obtaining about

43% average better performance.

Table 1. Experimental results

Deployment

Services on the

same computer

Total time [ms]

Services on different

computers

Total time [ms]

RMI 20469,4 20505,8

ProActive

Beginning Data

Dependencies

19675 19784

ProActive

Ending Data

Dependencies

11647,4 11689,4

To understand the rational of the performance

improvement obtained with our proposal, and at same

time to better explain the dynamic behavior of the

system, in the following we show a possible internal

structure of the activities involved in the sequential

sub-process employed for the experiment that we call

processAB. This process could be sketched as shown in

figure 7.

The execution of the two activities with the basic

implementation of the engine proceeds as in figure 8.a,

without early start pattern. The value needed by activity

B could not be provided while A is still running. Using

the advanced engine implementation, the execution

proceeds as in figure 8.b. A, soon after the invocation,

returns a symbolic placeholder for its result. This

placeholder is then passed to B as actual parameter

(row 20). B could run until the instruction that needs

the placeholder value is reached (row 12), at that point

B is stalled, and awaked only when the real result has

been updated (row 4).
1 IntWrp A() {
2 IntWrp i;
3 i = someProcessing();
4 return (i);
5 }
6
7 IntWrp B(IntWrp x) {
8 IntWrp j, k;
9 // Independent data operation
10 k = someProcessing();
11 // Dependent data operation
12 j = someProcessing(x, k);
13
14 return (j);
15 }
16
17 void processAB() {
18 IntWrp value;
19 value = A();
20 value = B(value);
21 }

Figure 7. Example code of two activities and a

simple sequential process

The object IntWrp, is a wrapper used for the Integer

due to some constraints imposed by ProActive on the

methods result type.

A

B

End

Start

value

Start

And
Split

B.someProcessing()A.someProcessing()

And
Join

B.someProcessing(value, k)

value k

Early Start

⇓

End

(a) (b)

Figure 8. (a) Design of the workflow example

with early start instead of sequence; (b)

equivalent workflow with existing patterns

Summarizing, row 12 in activity B could be seen as

the “dependence point”. The preceding instructions are

the independent data activities, the operation of B

executed before the access to x parameter. The

succeeding instructions, from row 12 to the end, are the

dependent operations, i.e. they could be completed

only after the successful access to the x parameter.

ProActive allows to return a placeholder to processAB,

that not suspend execution in row 19 but could go to

row 20 and invoke B.

Other experiments confirm the above results. Using

more complex workflows, presenting longer sequences,

we observed the same average performance

improvement.

We stress the point that this performance is due only

to control flow improvement, since data flow is the

same in every case, i.e. data travel back and forth from

engine to resource and vice versa. This is consequence

of the shared central memory used to exchange data

between the application and the on demand policy to

update the future. This minimize the network

occupancy but not optimize data-flow efficiency.

On the other hand, the currently implemented

ProActive forward-based strategy to update the futures

is not the best strategy for data-flow optimization

because it requires that the caller is responsible for

updating the values of futures it has forwarded. And

this cause the sending of data to all the activities that

received a future, without taking into account if they

use the result or not.

Therefore, we schedule to employ an alternative

strategy to improve data flow in our system. We are

considering two strategies. Both of them are aimed to

avoid to leave to the caller object the responsibility of

updating all the forwarded futures. The called object,

instead, must provide the real value for the future itself

returned to the caller. We briefly describe the

alternative strategies.

The Eager Message Based strategy, depicted in

figure 9.a, implies that each forwarding of a future

generates a notify message to the computing activity.

This is responsible for sending the value to all the

objects to whom the future was forwarded. The Lazy

strategy, illustrated in fig 9.b, updates the future only

when its value is effectively used in computation.

When an object effectively tries to access to a future, if

the data is ready the producer updates the future value.

Both solutions could be useful, because them brings the

data to the subsequent activity in the sequence without

involving the engine.

We think that the Lazy strategy is the best solution.

The reason is bounded with the nature of workflow

data. They could be Workflow Relevant Data and

Workflow Application Data. The formers needs to be

processed by the engine because they are used to

determine the next path to follow in the process graph.

A

C

B

V

V

A

C

B

V

V

9.a 9.b

Figure 9. Proposed futures’ updating

strategies

The latter are not needed by the engine but only by

the participants. The Lazy strategies ensures two

advantages: first of all, data is delivered to the resource

that needs it, when necessary, directly from the

producer activity, without passing across the engine,

reducing the data transmission and shortening the

delivering delay. The second accomplishment is due

the fact that the data are delivered to the engine only if

they are Workflow Relevant Data, because the engine

try to use them. This is an important result because it is

possible to avoid unnecessary data transmission

without requiring to specify the different nature of the

data at design time, but everything is made

transparently at run-time.

5. Conclusions

This paper discussed the improvements that a

workflow management system could achieve if

activities are not considered as atomics, but taking into

account that they have an internal structure composed

of several operations that typically are not accessible or

visible. This suggested us to introduce workflow fine-

grained concurrency, that could allow partially

concurrent execution of apparent sequential activities.

Basing on this concept, the paper described

continuation and anticipation in workflow enactment,

that together maximize performance improvements as

demonstrated by the performance evaluation section.

The current implementation of the engine exploits

control flow improvements, but is not able yet to gain

full advantage of all the potential data flow

optimization. Therefore, anticipation and continuation

improve control-flow management since they do not

require particular care during the analysis and design

processes. However, the engine should be further

improved taking into account data flow optimization:

data could be transferred to the place where they are

effectively needed to allow computation to going on,

avoiding to be sent back and forth on the

communication media.

It is worthy to note that the improvements described

are strictly bound to the position of the split point in

dependent activities. This could open a new horizon to

the employment of code optimization and reordering,

to achieve best performance at run time.

6. Acknowledgements

This work is framed within the project LOCOSP n°

4452/ICT funded by MIUR – Italian Ministry of

University and Research.

References

[1] Dragos-Anton Manolescu, “Workflow Enactment with

Continuation and Future Objects”, Proceedings of

OOPLSA'02, Seattle, WA, 2002.

[2] Bartek Kiepuszewski, Arthur H. M. ter Hofstede, Wil M.

P. van der Aalst, “Fundamentals of control flow in

workflows”, Acta Inf. 39(3), 143-209, 2003.

[3] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede,

Bartek Kiepuszewski, Alistair P. Barros, “Workflow

Patterns”, Distributed and Parallel Databases 14(1), 5-51,

2003.

[4] Wil M. P. van der Aalst, Alistair P. Barros, Arthur H. M.

ter Hofstede, Bartek Kiepuszewski, “Advanced Workflow

Patterns”, CoopIS 2000, 18-29, 2000.

[5] Laurent Baduel, Francois Baude, Denis Caromel,

“Object-Oriented SPMD”, Proceedings of Cluster

Computing and Grid, Cardiff, United Kingdom , 2005.

[6] Denis Caromel, Ludovic Henrio, Bernard Paul Serpette,

“Asynchronous and Deterministic Objects”, POPL 2004,

123-134, 2004.

[7] Denis Caromel, “Towards a Method of Object-Oriented

Concurrent Programming”, Communication of ACM 36(9),

90-102, 1993.

[8] Denis Caromel, Wilfried Klauser, Julien Vayssière,

“Towards Seamless Computing and Metacomputing in Java”,

Concurrency - Practice and Experience 10(11-13), 1043-

1061, 1998.

[9] D. Georgagopoulos, M. Hornick, A. Sheth: “An

Overview of Workflow Management: From Process

Modelling to Workflow Automation Infrastructure”,

Distributed and Parallel Databases, 3, 119-153, 1995

[10] ProActive Manual, www-sop.inria.fr/oasis/ProActive/.

[11] Workflow Management Coalition, “The Workflow

Reference Model”, Document Number WfMC TC-1003,

www.wfmc.org.

[12] Workflow Management Coalition, “XML “Process

Definition Language”, Document Number WfMC TC-1025,

www.wfmc.org.

[13] Workflow Management Coalition, “Terminology and

Glossary”, Document Number WFMC TC-1011,

www.wfmc.org.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

