
Adaptability Management and Deterministic Scheduling of Media Flows on Parallel
Storage Servers

Costas Mourlas
Department of Comunication and Media Studies, University of Athens,

5 Stadiou str., GR-10562 Athens, Greece

mourlas@media.uoa.gr

Abstract

We study a new design strategy for the implementation of
Parallel Media Servers with a predictable behavior. This strat-
egy makes the timing properties and the quality of presenta-
tion of a set of media streams predictable. The proposed
strategy provides deterministic guarantees and service relia-
bility for each stream that can’t be compromised by server
contention. Our real-time scheduling approach exploits the
performance of parallel environments and seems a promising
method that brings the advantages of parallel computation in
media servers. The proposed mechanism provides determin-
istic service for both Constant Bit Rate (CBR) and Variable
Bit Rate (VBR) streams. We present an efficient placement
strategy for data frames as well as an adaptability strategy
that allows appropriate frames to be dropped without sacrific-
ing the ability to present multimedia applications predictably
in time. A prototype implementation of the proposed parallel
media server illustrates the concepts of server allocation and
scheduling of continuous media streams.

1. Introduction

Continuous media servers differ enough from traditional
storage servers since they store and manipulate continuous
media data (video and audio) which consist of � � � � � 
 � of
media quanta (video frames and audio samples) that must be
presented using the same timing sequence with which they
were captured. Our current work is focused on the design
and implementation of a predictable parallel media server. We
focus mainly on resource management of the parallel server
in order to provide on-demand support for a large number of
concurrent continuous media objects in a � � � � � � � � � � � manner.
With the ability to manage parallel data retrievals on media
servers that satisfy the real-time requirements of each stream
we could be able to concurrently support more predictable
continuous media applications than on traditional single pro-
cessing servers.

In a subsequent step, we extend our resource management
strategy to provide adaptability. Instead of rejecting requests,

adaptability allows more requests to be served by a suitable
choice of frame dropping. The proposed adaptability man-
agement provides this feature without sacrificing the ability
to present multimedia applications predictably in time. Our
resource and adaptability management strategies have been es-
pecially designed for parallel media servers and support both
CBR and VBR encoded media streams (video and audio) in a
predictable manner.

2. The Architecture of the Parallel Media Server

One common server architecture is the single processing
model. However, this single processor server model has its
limitations like performance, scalability, low transfer rate and
low capacity. Recently, much research has been made on the
topic of parallel systems in the community of parallel comput-
ing. In order to design a general purpose architecture which
can be adapted to the current user requirements, a scalable
parallel multimedia server shall be designed.

We will use the traditional model for a parallel media server
previously described in [9, 1]. In that architecture there exist
three kinds of nodes: storage nodes, delivery nodes and one
control node (see Figure 1). The three kinds of nodes are
explained in greater detail below:

Storage nodes are responsible for storing video and audio
clips, retrieving requested data blocks and sending them
to delivery nodes within a time limit. In addition, par-
titioned media blocks are wide striped among storage
nodes in a round-robin fashion to balance the workload.

Delivery nodes are responsible for serving stream requests
that have been previously accepted for service. Their
main function is to request the striped data from the
storage nodes through the internal interconnection net-
work, re-sequence the packets received if necessary and
then send the packets over the wide area network to the
clients.

The Control node receives all incoming requests for media
objects. It has knowledge of which storage node stores
the first data block of the object and the workload of

1-4244-0054-6/06/$20.00  ©2006 IEEE



Parallel  Media Server

:data

: control info

Disks

Storage

Nodes

Delivery Nodes

Control Node

54321 SSSSS

32 DD1D

C

Multimedia

High-Speed
Network

Workstations

Figure 1. The logical model of the parallel media server

the delivery and storage nodes. In a typical request-
response scenario, the control node receives a request
for a media object. If the resource requirements of the
request are consistent with the system load at that time,
then the request is accepted. A delivery node to serve
the stream is chosen by the control node and the delivery
node then takes over the authority of serving the stream.
To that end, it retrieves the stream fragments from the
storage nodes and transmits them at the required rate to
the client.

The logical storage and delivery nodes can be mapped to dif-
ferent as well as to the same physical node. The model where
a node can be both a storage node and a delivery node is called
“flat” architecture and it is more suitable to be implemented on
a cluster of workstations interconnected by high-speed links.
In this paper, we are focused on “flat” architectures.

Due to the fact that many parallel tasks share the server
resources (storage and delivery nodes) and execute periodic
reads for data retrieval to satisfy the stream’s real-time con-
straints, it happens for one task to wait till some resources of
the media server become available by other tasks. Since tasks
are inter-dependent and share both storage and delivery nodes
our main problem is the scheduling of the incoming requests
to improve performance and high level of system utilization.
The required real-time scheduling algorithm needs to prevent
under-utilization of the resources and ensure load balancing.

These problems are addressed in the following section.

3. The Proposed Scheduling Algorithm

It is well understood that scheduling policies are critical to
performance of continuous media servers. Without schedul-
ing and resource management, streams may conflict each other.
Therefore may be delayed and the quality of service cannot
be guaranteed. Furthermore, buffers are used for a smooth
delivery of data to the clients through the storage and delivery
nodes. Continuous media streams that are not well sched-
uled may require large buffer space. The work we present
here on scheduling of a parallel media server is focused on
deterministic guarantees, so that the application can maintain
the requested QoS level without encountering unpredictable
delay and jitter while reproducing the video display and au-
dio sound. The proposed scheduling algorithm guarantees the
QoS of every (accepted) stream, efficiently utilizes server re-
sources, reduces the required buffer size and increases system
throughput.

As mentioned earlier, the data is compressed and striped
across all storage nodes in a round-robin fashion. Although
data blocks are wide striped, without properly scheduling of
data retrievals, resource conflicts may be occurred such as
port contention where two storage nodes are transmitting to
a single delivery node at the same time. Another resource
conflict that may also happen is disk contention where more
than one request retrieve blocks from the same storage node at
the same time instance.

The work described in this paper, is concentrated on the
special case of conflict-free scheduling that provides determin-
istic guarantees for both CBR and VBR stream requests. It is
well understood that providing deterministic service for CBR
streams is easier due to the fact that a CBR stream requests
the same amount of data in every interval. For presentational
purposes, the initial version of our scheduling algorithm that
schedules CBR requests is presented first. In a following sub-
section we extend our scheduling algorithm to include VBR
streams taking into account the fluctuations in the bit rates of
multiple requests that may overload throughput capacity of the
storage nodes.

� � � � � 	 � 	 � � � � � � � � � � � � � � � � 	 	 � # % � & ( *
+ � � 	 � � � , � � % / 	 / � � � � 5 	 � 	 � � 8 : � < > � � ?

* � � 	 �

We will describe how requests for media streams can be
modeled as a set of periodic tasks and we give a formal eval-
uation of some components such as the period and the data
retrieval section of each task. Time is divided into time frames
(or rounds) where the length of every time frame @ A equals to @
which is a constant value. B A is the required playback rate for
stream D A that has been pre-determined during the compression
phase of that stream. Note that, for a CBR stream D A , the value

B A is constant during the length of the stream. Different CBR



streams stored in a media server usually have been encoded
in different playback rates for different qualities of audio and
video objects. Due to the fact that the data transfer rate of a
single disk or a disk array can be much higher than the play-
back rate of a stream, multiple media streams can be served
by a storage server in every � time units while the individual
playback rate � � is still preserved. Our aim in the design of a
parallel media server is to supply the stream with enough data
to ensure that the playback processes do not starve.

Therefore, every stream � � is represented by a periodic task� � where in every period (i.e. in every time frame) � needs
to retrieve � � 	 � � � � amount of data to guarantee that the
stream � � will meet its real-time requirements. The above
equation determines the stripe fragment size � � of stream � �
which is different in general for every stream according to its
playback rate � � . Every media stream � � is striped across all
nodes in a round-robin fashion where the stripe fragment size
of � � equals to � � . The average time to retrieve � � bytes from
the storage node and transmit them to a delivery node is given
by equation

� �  	 � � � �  � � � � � � � � � � � � � � �  � � ! # � %
(1)

where
� � � �  � � �

and
� � � � � � �

are the average seek and rota-
tional latencies for the disks being used,

� � �  
is the disk data

transfer time for � %
bytes and

� ! # � %
is the internal network

latency to transport � %
bytes from a storage node to a delivery

node. Thus,
� % 

is the length of the data retrieval section of the
periodic task � %

. Note that the equation 1 uses average seek
and rotational latencies for disk accesses. Since these laten-
cies are variable, there will be boundary conditions when the
time to retrieve � %

bytes is much more (less) than the average
value. If some clients require strict performance guarantees,
then one can categorize users into those requiring hard and soft
deadlines and use the maximum values of the disk overheads
for admitting such users.

Since the stripe fragments of a continuous media are con-
secutively distributed in all ' storage nodes, if a task � %

at
time frame ( retrieves data from node ) , it will retrieve data
from node * ) � - / ( 1 3 ' at time frame * ( � - /

. A complete
schedule is represented by a schedule table consisting of '
consecutive time frames. Let 6 %

be the set of tasks allocated
to the delivery node 7 for service. We define as the utilization
factor 8 %

of a delivery node 7 , the sum given by the formula:

8 % 	 9: < = ?  
� A 

� B 0 C 7 C ' G 1 (2)

The value 8 %
of a delivery node 7 changes only when a new

request is allocated to the delivery node 7 by the control node,
or when an existing request completed its execution and quits.

8 %
represents the load of the delivery node 7 and its value can

never be greater than one. Note that, the utilization factor of
a storage node varies from one time frame to the other. More
precisely, the load of one storage node in the frame � %

moves
to the next storage node in frame � % I

1 and returns in frame
� % I K

.

Stream Parameters
Request Type Playback Rate Starting Storage

NodeL
0 video 1.5 Mbits/sec 2L
1 audio 0.6 Mbits/sec 1L
2 audio 0.4 Mbits/sec 0L
3 video 1.2 Mbits/sec 0L
4 video 2.2 Mbits/sec 1

Table 1. The Stream Parameters of the Example

Our current work is concentrated on the special case of
scheduling called conflict-free scheduling [9]. It is an exten-
sion of the work presented in [4] and [6] based on a conflict-
free stream scheduling algorithm that eliminates contentions
so that high system performance and stream throughput can be
achieved. The algorithm guarantees that once the first round
has a conflict-free scheduling, the following time frames will
not have conflict. Our first extension of that scheduling scheme
is described in the following paragraphs and provides better
flexibility and better performance for large-scale parallel me-
dia servers. Based on the extended scheduling scheme we will
be able to provide streams of different playback rates and make
maximum utilizationof resources which are not possible in the
original version of the algorithm described in [4] and [6]. In
the next subsection, we extend further our scheduling strategy
to accommodate VBR stream requests.

A conflict-free schedule is a schedule that in every time
instance the following scenario will never occur: two media
streams request data from the same storage server or two stor-
age servers transmit data to the same delivery node. In order
to construct such a schedule we implement every frame (or
round) in such a way that only one storage node transmits data
to one delivery node. Note that, a starting sequence which
designates the transmission order between storage nodes and
delivery nodes needs to be assigned at the first basic time frame

� 0. Different but equivalent basic time frames exist each one
with a different starting sequence and any of that frames can
be selected as the basic frame � 0. Since the blocks of the
media streams are consecutively distributed in all ' storage
nodes, when delivery node 0 schedules a request that retrieves
a block from storage node 1 the same request retrieves blocks
from storage nodes 2,3,..., ' -1,0 in the next ' -1 frames (see
Figure 2).

The proposed algorithm schedules the stream requests as
follows: When a new request L �

for a media object arrives
where its starting block is stored in node M , the first step is
to test schedulability of the new request. The control node
checks the loads of the delivery nodes and finds the node 7 ,
(0 C 7 C ' G 1) with the minimum load 8 %

. Then, it checks

if the condition 8 % � � Q R
S C 1 is satisfied for that node. If

the condition is satisfied then the node 7 is declared as the
delivery node of the stream � �

and it will serve together with
the previous streams the new one during its lifetime. The



basic frame T0

� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �
	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
                                    � � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �delivery

nodes Node 0 retrieves 
N0

N

N

1

2

Node 1 retrieves 

Node 2 retrieves 

T T T T

N

N

N

0

1

2

0 1 2 3frame frame frame frame

repetition of

schedule table

Node 2 retrieves 

Node 0 retrieves 

Node 2 retrieves 

Node 0 retrieves 

Node 1 retrieves 

Node 2 retrieves 

Node 1 retrieves 

from storage node 1 from storage node 1 from storage node 2 from storage node 0

from storage node 2

from storage node 0 from storage node 0 from storage node 2

from storage node 2 from storage node 1

Node 0 retrieves 

from storage node 0

Node 1 retrieves 

from storage node 1

basic frame T0

� � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � � � � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �

                        
! ! ! ! ! ! ! !! ! ! ! ! ! ! !! ! ! ! ! ! ! !" " " " " " " "" " " " " " " "" " " " " " " "" " " " " " " "" " " " " " " "

# # # # # # # ## # # # # # # ## # # # # # # ## # # # # # # ## # # # # # # # $ $ $ $ $ $ $ $$ $ $ $ $ $ $ $$ $ $ $ $ $ $ $$ $ $ $ $ $ $ $$ $ $ $ $ $ $ $
% % % % % % % %% % % % % % % %% % % % % % % %% % % % % % % %% % % % % % % %& & & & & & & && & & & & & & && & & & & & & &
' ' ' ' ' ' ' '' ' ' ' ' ' ' '' ' ' ' ' ' ' '

( ( ( ( ( ( ( ( (( ( ( ( ( ( ( ( (( ( ( ( ( ( ( ( (( ( ( ( ( ( ( ( (( ( ( ( ( ( ( ( (
) ) ) ) ) ) ) ) )) ) ) ) ) ) ) ) )) ) ) ) ) ) ) ) )) ) ) ) ) ) ) ) )) ) ) ) ) ) ) ) )

schedule table

delivery
nodes Node 0 retrieves 

from storage node 2N0

N

N

1

2

Node 1 retrieves 

Node 2 retrieves 

from storage node 1

from storage node 0

T T T T

N

N

N

0

1

2

0 1 2 3frame frame frame frame

repetition of

schedule table

Node 0 retrieves 
from storage node 2

from storage node 1

Node 2 retrieves 

Node 0 retrieves 

Node 2 retrieves 

Node 0 retrieves 

Node 1 retrieves 

Node 2 retrieves 

from storage node 0

from storage node 2from storage node 1from storage node 0

Node 1 retrieves 

from storage node 0 from storage node 1

Node 1 retrieves 
from storage node 2

t0 time

Figure 2. Equivalent schedule tables starting from a different basic time frame * 0.

new request + - starts receiving data when delivery node . is
connected with storage node / for first time after the receipt
of request + - and the schedule table is updated accordingly.
Notice the possibility to delay the beginning of service for a
request till delivery node is connected for the first time after the
receipt of the request with the corresponding storage node. In
case that the above condition cannot be satisfied the request is
rejected or postponed for later service. An important property
of the proposed algorithm is that when the control node finds
a delivery node . to serve the request + - and the condition0 2 4 6 8 9: < 1 can be satisfied, immediately it is guaranteed that

the new load
0 >2 @ 0 2 4 6 8 9: can be accommodated also by the

storage nodes.
The proposed conflict-free scheduling algorithm can be il-

lustrated by a single example. Suppose that a parallel media
server with a “flat” architecture supports 3 nodes ( C =3). The
stream parameters of the example are presented in Table 1.
Suppose that an empty basic frame * 0 is given and all the
media requests arrive in sequence during the time interval
[ D 0 E * ,D 0). An entry in a time frame (i.e. a shaded area)
shows the data retrieval section of the request and the stor-
age node number from where the stripe fragment is retrieved
(see Figure 3). The retrieval of the stripe fragments of a sin-
gle stream are separated by one time frame. In our example,
delivery node 0 schedules the first request + 0 that retrieves a
stripe fragment from storage node 2 in time frame * 0. The
same request retrieves blocks from storage nodes 0 and 1 in
the next two frames. A complete schedule is represented by
a schedule table consisting of 3 time frames (see Figure 3).
Notice also that request + 4 is delayed for * time units before
it is served.

F H J H M O Q O T V W Y W Z Q W [ \ ^ _ T _ Y Q O O Z c e T f h jk Q T O _ V Z
The problem of providing deterministic guarantees for VBR

streams is harder due to the following two reasons:

1. the load of a stream on the storage units varies from one
round to the other, and

2. scheduling the first block of a VBR stream does not mean
that the rest blocks of the stream can be scheduled.

One approach for the solution of the problem is to compute
the peak rate of the stream and reserve enough bandwidth on
storage nodes to satisfy the peak requirements of the stream.
This pessimistic approach results to the underutilization of re-
sources since the peak demand is observed only for short du-
rations compared to the whole duration of the stream. When
many streams are served on the parallel server, it is very pos-
sible that the peak demands of the streams do not overlap with
each other. Thus, it is true that we can actually serve more
streams than it is allowed by the peak-rate allocation, without
reducing the quality provided by the server. We propose an ex-
tension of the previous scheduling algorithm for CBR streams
that allows the system to increase the number of accepted
requests for streams while providing deterministic service.

In the previous subsection, every CBR stream l 2
is repre-

sented by a periodic task m 2
where in every time frame * needs

to retrieve a constant data length block n 2
determined by the

equation n 2 @ * p q 2
. q 2

is the required playback rate for
stream l 2

which is a constant value for every different CBR
stream. Using VBR streams, the bit rate q 2

is variable which
means that the stripe fragment size for VBR streams is also
variable and thus the workload for the storage devices changes
from one frame to the other.

Our approach considers the variations in loads and provides
guarantees for VBR streams as follows: Time is divided as
described above into time frames of equal size * . We introduce
the parameter n q 2

which denotes the frame rate of real-time
playback (frames per second) for a video stream l 2

(or samples
per second for audio stream) determined when the media was
captured. Thus, the number of frames included in every stripe
fragment of the media stream l 2

is given by the number n q 2 p* . Our new requirement that we set here is that the result of



node 0

node 1

node 2

retrieves from 

storage node 2

retrieves from 

retrieves from 

storage node 0

storage node 1

delivery
nodes

basic frame T0

� � � �� � � �� � � �
� � � �� � � �� � � �

ri
j : request ri retrieves data from

storage node j

t0 t0

� � � � � �� � � � � �� � � � � �
� � � � � �� � � � � �� � � � � � � � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � � � � � � � � �� � � � � � �� � � � � � �

	 	 	 	 	 	 		 	 	 	 	 	 		 	 	 	 	 	 	 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 


� � � � � � �� � � � � � �� � � � � � �

� � � �� � � �� � � �
          � � � �� � � �� � � �

� � � �� � � �� � � � � � � � �� � � � �� � � � �
� � � � �� � � � �� � � � � � � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �	 	 	 		 	 	 		 	 	 	
 
 

 
 

 
 
� � �� � �� � �� � �� � �� � �      � � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � � � � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � � � � �� � �� � �� � �� � �� � �� � �� � �� � �� � � � � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � � � � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � � � � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
T T T T

N

N

N

0

1

2

repetition of

schedule table

r0r0 r0
2

r0
2

r1 r1 r1
1 2 0

r1

r2r2r2r2
0 1 2 0

r3 r3 r3 r3
0 1 2 0

4r 4r 4r
2 0 1

0 1

1

0 1 2 3frame frame frame frame . . . 

. . . 

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � �� � � �� � � �� � � �� � � �� � � �         ! ! !! ! !! ! !" " "" " "" " "" " "" " "# # ## # ## # ## # ## # #$ $ $$ $ $$ $ $$ $ $$ $ $% % %% % %% % %% % %% % %

& & & & & & & &' ' ' ' ' ' ' '( ( ( ( ( ( ( () ) ) ) ) ) ) )* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

arrival order

of requests

0t

:

2

r1
1

r
0

r0

r3

2

0

r4
2

at [ -T, )

schedule table

time

Figure 3. The basic frame , 0, the arrival order of the requests and the complete schedule of the example

the product - / 1 3 , must always be an integer value for all
the streams stored in our parallel server. The stripe fragment
size - 1 6 8 : on round 8 is given by the expression: - 1 6 8 : => @ B D F H J - / 1 3 , H N O Q D > F T N F V T W 8 Y . We therefore store
and read the data in units of - 1 6 8 : which is of variable length on
every different round. Every VBR stream > 1 is striped across
all nodes in a round-robin fashion where the stripe fragment
size for round 8 equals to - 1 6 8 : . Notice that just as with CBR
streams, data required during a round is located on a single
storage node. The time duration [ 1 \ 6 8 : to retrieve - ^ 6 8 : bytes
from the storage node and transmit them to delivery node
during the 8 ` b round is given by equation 1 described in the
previous section.

In our approach, a presentation requiring service for a VBR
stream supplies the media server with a load vector for that
stream according to its demands. More precisely, the load
vector c e ^ 6 8 : g 0 h 8 k W V N J > ^ Y describes the time required
for a storage node to retrieve and transmit - ^ 6 8 : data units to
a delivery node on each round 8 . The term W V N J > ^ Y defines
the length of the stream > ^ in rounds. The load vector c e ^ 6 :
for stream > ^ can be stored on the Control Node in a form of a
special file. We can easily conclude that compared to the size
of the video or audio file, the size of the load vector file is not
significant.

The Control Node keeps track also of the utilization of
every delivery node @ of the server in the form of a utilization
vector m ^ 6 : . The utilization vector m ^ 6 : for delivery node @
stores the actual utilization of that node in each round over
sufficient period of time. Let V ^ be the set of tasks allocated
to the delivery node @ for service. We define as the utilizationm ^ 6 8 : of a delivery node @ during the round 8 , the sum given
by the formula:

m ^ 6 8 : = op r t v w [ x \ 6 8 :, g 0 h @ h z | 1 (3)

The values of the m ^ 6 : vector of a delivery node @ are modified
when a new request is allocated to the delivery node @ by
the control node, or when an existing request completed its
execution and quits. In addition, the utilization of a delivery
node changes from one time frame to the other due to the
variable bit rate of the streams. m ^ 6 8 : represents the load of
the delivery node @ on round 8 and its value can never be
greater than one. The utilization vector m ^ 6 : of a delivery node@ stores the current as well as the future utilization values for
that delivery node. Before a stream is accepted by the control
node, its load vector is combined with the utilization vector
of every delivery node to check if there exists a delivery node
where its new load never exceeds its capacity (i.e. its utilization
is always lower than or equal to one during the length of the
candidate stream). Let m ^ 6 ~ : denote the utilization of delivery
node @ in round ~ when a new request for stream > � arrived
at the server. Let the starting block of the stream > � be on
a storage node where delivery node @ will be connected to
that node after 8 time frames (0 h 8 h z | 1, where z is
the total number of storage nodes). Then, the stream can be
admitted if there exists a delivery node @ that all the followingQ conditions:

m ^ 6 ~ � 8 � Q : � c e � 6 Q :, h 1 g 0 h Q k W V N J > � Y (4)

where

m ^ 6 ~ � 8 � Q : = op r t v w
[ x \ 6 ~ � 8 � Q :, O T W

c e � 6 Q : = [ � \ 6 Q :
can be satisfied. The term 8 denotes the startup latency for that
stream. In case that multiple delivery nodes satisfy the above
conditions, the delivery node with the minimum value of 8
can be selected to provide the minimum startup latency. If the



request is accepted then the utilization vector of the selected
delivery node is updated accordingly. Let � � � � � 
 � be the
length of the stream � 
 measured in time frames. The control
node requires at most � � � � � � � 
 � additions to determine if
a stream can be accepted or not for service, where � is the
number of delivery nodes of the parallel server.

4. Adaptability Management

A request of a media stream for service can be accepted
or not following the aforementioned admission control policy.
When a request is rejected it means that at least one of the �
conditions given by (4) cannot be satisfied. In other words,
if we accept such a request then there will be a future time
instance lying between the time of acceptance and the duration
of that stream when a storage node will be overloaded. Due
to the fact that media presentations have not to be considered
as hard real-time applications, we need a media server that
enables us to drop the frame rate of a candidate stream to
smaller values rather than rejecting that request.

Thus, we need to extend our approach on deterministic
scheduling of media streams in order to support adaptability
of media flows without sacrificing the ability to present multi-
media applications predictably in time. Suppose that a request
to serve a specific stream includes quality of service (QoS)
specifications which are expressed with temporal and spatial
resolutions. The temporal resolution can be expressed by the
number of frames per second or sample rate and the spatial
resolution can by expressed by data size or number of bits per
pixel. For example, in one simple digital video application,
the user may choose 22 frames per second for its temporal
resolution and a spatial resolution of 160 by 120 pixels wide
with an 8-bit color resolution. The video quality requirements
can be specified using the following attributes:

fps : The value of � � � defines the temporal resolution of a
video presentation by giving the number of frames per
second. The value of this attribute can be any positive
integer or a range of positive integers. For example giv-
ing fps=14-18 as attribute to a video object, it means
that the accepted values for this video presentation can
be any rate between 14 and 18 frames per second.

spatial-res : The spatial-res definition of a video presenta-
tion specifies the spatial resolution in pixels required for
displaying the video object. If an ordered list of reso-
lutions is given (e.g. spatial-res=[180 � 130, 120 � 70])
then the video object will be presented with the highest
possible spatial resolution according to the availability
of system resources and can be altered at run time.

color-res : This attribute specifies the color resolution in bits
required for displaying the video object. The value
must be greater than 0. Typical values are 2, 8, 24

� � � . If an ordered list of integer values is given (e.g.
color-res=[8,2] ) then the video object will be presented

with a color resolution that is equal with one of the
values of the list. During object presentation the highest
color resolution is tried to be used first and this has to
be decided at run time according to the availability of
system resources.

The audio quality requirements can be specified using the
attributes:

sample-rate : The value of sample-rate defines in kHz the
rate that the analog signal is sampled. If we need, for
example, telephone quality the analog signal should be
sampled 8000 times per second (i.e. sample-rate = 8).

sample-size : This attribute specifies the sample size in bits
of each sample. If an ordered list of integer values is
given (e.g. sample-size=[16,8] ) then each sample will
be represented with a number of bits equal with one of
the values given. For telephone quality, each sample of
the signal is coded with 8 bits whereas for CD quality it
is coded with 16 bits. The highest value that can be used
for every sample has to be decided at run time according
to the availability of the resources.

The above attributes form a complete set for QoS definition
of every distinct continuous media that participate in a mul-
timedia presentation. Using the above list of attributes and
supporting an adaptability management module in our paral-
lel media server we will be able to satisfy more requests by
gracefully degrading their bit rates, instead of rejecting them.
In this paper, we consider only temporal adaptability achieved
by frame dropping. Thus, when a video request with attribute
fps=6-8 asks for service from the the parallel server, then
the runtime system of the server will try to provide the best
value in the range and it will be also authorized to modify this
value at run-time towards the upper (8 fps) or the lower bound
(6 fps) value according to the availabilityof the resources. The
recommended strategy follows:

As we have already described, the number of frames in-
cluded in every stripe fragment of a media stream � � is constant
given by the number � � � � # . We store and read the data in
units of � � & ' ( which are in general of variable length for every
different round. Notice that data required during a round is
located on a single storage node. In our adaptability strategy
all the frames that are used for the lowest-rate reconstruction
are grouped at the beginning of the data unit. Assume that
a VBR stream has been compressed with � � * 8 � � � and a
request for that stream arrived at the control node of the server
with quality attribute fps=6-8. Assume also that the length
of every time frame # � equals to 1 � + , . The original frame
pattern of that stream is � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8.

By grouping the frames for each rate starting from 1 � � �
to 8 � � � , our storage pattern becomes � 1 � 5 � 7 � 3 � 4 � 6 � 2 � 8.
Using this ordering, the system can degrade the request from
1 � � � to the maximum possible frame rate 8 � � � . For frame
rate 1 � � � only the first frame � 1 is retrieved, for frame rate
2 � � � the frames � 1 � 5 are retrieved, for frame rate 3 � � � the



frames � 1 � 5 � 7are retrieved, for frame rate 4 � � � the frames
� 1 � 5 � 7 � 3 and so on. Delivery nodes re-sequence the re-
trieved frames and then send them to the clients. Notice that
the frames are evenly spaced throughout the round and causes
less jitter than would be caused by dropping the last frames
of the original ordering. As shown above, we group all of the
frames of each rate together in each read unit. In addition,
all of the frames that are used for the lowest-rate reconstruc-
tion are grouped at the beginning of the data unit. In our
example, where fps=6-8 the runtime system is authorized
to retrieve six ( � 1 � 5 � 7 � 3 � 4 � 6), seven ( � 1 � 5 � 7 � 3 � 4 � 6 � 2) or
eight ( � 1 � 5 � 7 � 3 � 4 � 6 � 2 � 8) frames per second according to
the availability of the resources.

The load vector of a stream becomes now a two-dimensional
array � � 
 �  � � � � , 1 �  � � � � � � � � � � 
 , 0 � � ! # $ � & � 
 ) .
The values in the first dimension � � 
 � 1� � � � specify the time
required in every round � for a storage node to retrieve and
transmit only one frame from the set of frames included in
the stripe fragment � 
 � � � . The values in � � 
 � 2 � � � � specify
the time to retrieve and transmit 2 frames and so on, until

� � 
 � � � � � � � � � � 
 � � � � that specify the time required to re-
trieve and transmit all the frames in every stripe fragment

� 
 � � � . The size of the load vector � � 
 � � � � is 0 times larger than
the size of the previous one-dimensional vector � � 
 � � , where

0 is the length of the first dimension of the vector � � 
 � � � � . If
a small range of different frame rates for different qualities is
supported then the size of every different load vector � � 
 � � � �
remains in acceptable levels.

Without adaptability, the load of a candidate stream is com-
bined with the utilization vector of every delivery node to
check if there exists a node where its new load never exceeds
its capacity. If there exists such a node the request is accepted,
otherwise it is rejected. Using a frame placement strategy sim-
ilar to the one described above and using the two-dimensional
load vector � � 
 � � � � for each stream � 
 the admission control
policy can be improved providing different levels of adapt-
ability. Suppose that a request specifies the expected quality
of service from the server by giving the lower and the upper
bound for the expected frame rate (e.g. � � � 3 18 4 22). Let

� 5 0 � � � and � � � � � � to indicate the lower and the upper
bound of the expected quality for a video presentation. The
admission control mechanism is authorized to select any value
in the range � � 5 0 � � � : � � � � � � � when it is trying to find a
delivery node where its new load never exceeds its capacity.
Formally, a new set of conditions have to be satisfied similar
to the ones described in (4). Let < 
 �  � denote the utilization
of delivery node 5 in round  when a new request for stream

� = arrived at the server. Let the starting block of the stream � =
be on a storage node where delivery node 5 will be connected
to that node after � time frames (0 � � � ? 4 1, where ? is
the total number of storage nodes). Let � � = � 0 � � � � be the load
vector of stream � = which includes the time required in every
round � for a storage node to retrieve and transmit 0 frames
grouped at the beginning of the stripe fragment � = � � � . Then,
the stream can be admitted if there exists a delivery node 5 that

the following conditions are satisfied:

B � C 0 : < E �  G � G � � G � � = � 0 � � � �K � 1 : (5)

where

0 � � ! # $ � & � = ) : � 5 0 � � � = � 0 � � � � � � � =

More advanced admission control strategies can be easily im-
plemented using the proposed data structures and the frame
placement policy. Such strategies will give the possibility
for a stream to increase dynamically its frame rate during its
presentation, towards the lower or the upper bound accord-
ing to the availability of resources. These more sophisticated
adaptive mechanisms are required in interactive environments
where the user can suspend the presentation of a continuous
media stream with no prior notification.

5. Experimental Results

A first prototype of the proposed parallel server has been
implemented using a network of three Unix workstations, run-
ning Solaris 8 Operating System. It is a flat, cluster architecture
where the three nodes are connected by a 100 Mbps Ethernet
LAN. Each node is equipped with 128 MB RAM and one lo-
cal SCSI disk. CBR media streams are partitioned as media
blocks with size according to the playback rate of each stream.
We used in our experiments CBR streams encoded in different
playback rates with values between 1.17 Mbps and 1.95 Mbps.
The selected length of every time frame

K E equals to 0.5 sec.
The calculated stripe fragment size � E of every CBR stream � E
is between 75 and 125 KB. Here, the length of a media block
represents half of the second of playback time. In addition,
we used in our experiments three VBR MPEG-encoded video
streams, each one contained 40,000 samples at a frame rate of
24 frames per second (about half an hour playing time). The
stripe fragment of every VBR stream contains 12 frames and it
is varied from 42 KB to 280 KB. The load vector � � E � � of every
VBR stream contains 3334 entries where each entry describes
the time required for a storage node to retrieve and transmit the
corresponding stripe fragment on a specific round. The stripe
fragments of both CBR and VBR streams are wide striped into
the three processing nodes in a round-robin fashion.

The prototype has been encoded in C using MPI calls that
implement the communication between the three processing
nodes. The pre-specified schedule table is sent once to the
storage nodes and it is updated locally at the end of each round
in order to save network bandwidth. The experiments test the
performance of the parallel media server, evaluate the com-
munication overhead and give us the opportunity to compare
the theoretical results with the practical ones. We initially
tested the performance of a single node media server using
media streams with the previously described parameters. The
maximum value of the throughput observed was 26 concurrent
streams. In a subsequent step we tested the performance of



the three-node cluster architecture where the three nodes were
connected by a 100 Mbps Ethernet LAN. We evaluated the
internal network latency to transport media blocks of variable
length and the estimated latency values were between 10 ms
and 15 ms. The computation overhead for the evaluation of
conditions in (4) that determine the acceptance or not of a
specific media request was not significant in our experiments
(less than 1 ms). The overall throughput of the parallel server
had a minimum value of 42 streams and a maximum value
of 46 streams for the same set of requests. That variation of
throughput is due to the fact that the internal network latency
was not constant in our computing environment. Using an
Ethernet Switch instead of an Ethernet LAN will result to a
constant network latency value and absence of variation on
stream throughput is expected for the parallel server. We have
investigated the impact of the internal network latency on the
stream throughput and the experiments leads us to the conclu-
sion that internal network latency is the most critical factor for
the performance of the server. Reducing the network latency
improves the performance of the server reaching higher values
of stream throughput. We have to notice here that the adapt-
ability management module has not been implemented yet and
it is expected to give even better values of stream throughput
without sacrificing the ability to present the media streams
predictably in time.

In our future experiments we will implement the adaptabil-
ity management module and we will check its effect on the
stream throughput of the media server. We will also test the
load balancing and the utilization of resources mainly at the
point where the server will start rejecting additional requests.
Other scheduling algorithms will be also implemented and
their result will be compared with the proposed implementa-
tion.

6. Related Work

A great part of the current research community effort has
been focused on new data layout schemes [5], striping mech-
anisms, admission control and disk scheduling [7] for stor-
age device arrays of parallel [3] and clustered multimedia
servers [2]. The problem of providing deterministic service
for VBR streams in a single processor system has been studied
in [8] where the notion of the demand trace of every VBR
stream was introduced.

However, the stream scheduling problem has not been for-
mally addressed. The system resources cannot be fullyutilized
without a sophisticated scheduling strategy. A very interesting
approach described in [4] and [6] provides accurate scheduling
of video streams, maximizes system throughput and minimizes
the usage of buffers. The main limitation of the method de-
scribed in [4, 6] is that schedules only CBR video streams
with the restrictive assumption that all the streams have been
encoded using a unique base stream rate � . Our work is an
extension of that scheduling strategy and supports both CBR
and VBR media streams ( � � s) video and audio encoded using

different playback rates ( � � s), which is an interesting feature
not supported in the original version of the algorithm.

7. Conclusion

This paper is focused on the adaptability and the resource
management problems of parallel media servers. A new
conflict-free scheduling scheme was presented that provides
on-demand support for a large number of concurrent continu-
ous media objects in a predictable manner. The proposed al-
gorithm supports both CBR and VBR encoded media streams
video and audio at different playback rates. Using that algo-
rithm, we are able to achieve optimal scheduling in distributed
memory parallel architectures. In our adaptability strategy we
try to support different quality levels for every connection. The
server is able at runtime to allow appropriate media frames to
be dropped in a predictable manner without fully suspending
service to any one user.

A prototype implementation version of the proposed paral-
lel media server was presented, which demonstrates and con-
firms the practicability and the efficiency of the resource man-
agement strategy in real-life applications.

References

[1] D. Jadav, C. Srinilta, A. Choudhary, and P. B. Berra. An evalua-
tion of design tradeoffs in a high performance media-on-demand
server. Multimedia Systems, 5(1):53–68, 1997.

[2] A. Khaleel and A. Reddy. Evaluation of data and request distri-
bution policies in clustered servers. In Proceedings of the High
Performance Computing, 1999.

[3] J. Y. Lee. Parallel video servers: A tutorial. IEEE Multimedia,
5(2):20–28, 1998.

[4] C.-S. Lin, W. Shu, and M. Wu. Performance study of synchro-
nization schemes on parallel cbr video servers. In Proceedingsof
the Seventh ACM International Multimedia Conference,Novem-
ber 1999.

[5] V. R. P. Berenbrink and R. Luling. A comparison of data lay-
out schemes for multimedia servers. In European Conference
on Multimedia Applications, Services, and Techniques (EC-
MAST’96), pages 345–364, 1996.

[6] A. L. N. Reddy. Scheduling and data distribution in a multi-
processor video server. In Proceedings of the 2nd IEEE Int’l
Conference on Multimedia Computing and Systems, pages 256–
263, 1995.

[7] V. Rottmann, P. Berenbrink, and R. Lüling. A simple dis-
tributed scheduling policy for parallel interactive continuous
media servers. Parallel Computing - Special Issue on paral-
lel processing and multimedia, 23(12):1757–1776, December
1997.

[8] R. Wijayaratne and A. L. N. Reddy. Providing QOS guarantees
for disk I/O. Multimedia Systems, 8(1):57–68, 2000.

[9] M. Wu and W. Shu. Scheduling for large-scale parallel video
servers. In Proceedings of the Sixth Symposium on the Fron-
tiers of Massively Parallel Computation, pages 126–133, Octo-
ber 1996.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


