
QoS-based Management of Multiple Shared Resource in Dynamic Real-Time

Systems

Klaus Ecker, Frank Drews, and Jens Lichtenberg
School of EECS, Ohio University, Athens, OH 45701

{ecker, drews, lichtenj}@ohio.edu

Abstract

Dynamic real-time systems require adaptive resource

management to accommodate varying processing

needs. We address the problem of resource manage-

ment with multiple shared resources for soft real-time

systems consisting of tasks that have discrete QoS set-

tings that correspond to varying resource usage and

varying utility. Given an amount of available resource,

the problem is to provide on-line control of the tasks'

QoS settings so as to optimize the overall system util-

ity. We propose several heuristic algorithms that will

be shown to be compatible with the requirements im-

posed by our control theoretical resource management

framework: (1) By only making incremental adjust-

ments to QoS settings as available resources change,

they provide low run-time complexity, making them

suitable for use in on-line resource managers (2) Dif-

ferences between actual utility and optimal utility do

not accumulate over time, so there is no long-term

degradation in performance. (3) The lower and upper

bound on actual utility can be calculated dynamically

based on current system conditions, and absolute

bounds can be calculated statically in advance. (4) It

is possible to respond to the actual resource possible,

allowing all resources to be used and tolerating mis-

specification of task resource requirements.

1 Introduction

Traditional approaches to the design and development

of real-time systems use worst-case execution times of

tasks and provably correct analysis techniques to guar-

antee that critical system tasks will always complete

prior to their deadlines. The most common approach

is rate monotonic analysis [1] which uses bounds on

processor utilization to guarantee that real-time peri-

odic tasks always meet their deadlines. These tradi-

tional (and often pessimistic) approaches to the design

and development of real-time systems may result in

systems that are under-utilized for much of the opera-

tional time the system, resulting in poor quality of ser-

vice. A number of factors may lead to this poor per-

formance, including overly pessimistic worst-case

execution times, environmental conditions, infrequent

critical instants [1], inaccurate resource profiles, etc.

The discrete event controller that we describe controls

system resource usage by modifying quality of service

parameters so that the overall system benefit is maxi-

mized. When the system resource being controlled is

processor utilization, our approach is directly applica-

ble to real-time systems since total processor utiliza-

tion provides a schedulability test, i.e., a guarantee that

real-time tasks will meet their deadlines whenever the

processor utilization is less than or equal to some

value. Since the discrete controller cannot guarantee

that the resource usage is bounded, our approach is not

applicable to hard-real systems where deadline can

never be missed. However, our approach has many

advantages in soft real-time systems where deadlines

may be missed occasionally. The principle motivation

behind this work is the feedback control of soft real-

time systems (multimedia, certain feedback control

systems) where the quality of service to the user can be

improved if the amount of resources provided to the

individual tasks is increased. An example of such as

system is the RT-Phone example provided in the pa-

pers associated with Q-RAM [2, 3, 4, 5]. Our approach

differs from that of Q-RAM since we make resource

reallocations at run-time using feedback control.

This paper addresses the problem of resource man-

agement with task sharing multiple resources for soft

real-time systems (no hard deadline requirements)

consisting of tasks that have discrete QoS (Quality of

Service) settings that correspond to varying resource

usage and varying benefit to the end user. We are start-

ing with a system model that similar to the one used in

Q-RAM [2, 3, 4, 5]. Given an amount of available re-

source, the problem is to provide on-line control of the

tasks' QoS settings so as to optimize the overall system

benefit. Since the complexity of the problem precludes

optimal solutions, we present two heuristic algorithms

with the following properties.

They have low run-time complexity, making them

suitable to be employed as an online algorithm in

dynamically changing environments.

Unlike Q-RAM, our approach makes incremental

adjustments to QoS settings as available resources

change, avoiding the calculation time that would be

incurred by recalculating all the QoS settings.

Differences between actual utility and optimal do

not accumulate over time, so there is no long-term

degradation in performance. We derive upper and

lower bounds on actual utility. They can be calcu-

1-4244-0054-6/06/$20.00 ©2006 IEEE

2

lated dynamically based on current system condi-

tions, and an absolute bound can be calculated

statically in advance.

The algorithms will be employed in and have to be

compatible with our feedback control based re-

source management architecture [27] that allows

response to actual resource availability, allowing

all resources to be used and tolerating misspecifica-

tion of task resource requirements.

Section 2 presents the problem. Section 3 introduces

the notation, a formalized model and, based on this,

formulates the problem formally. Section 4 presents

discusses the complexity status of the problem, exact

algorithms, and introduces the fast heuristic algorithms

Discrete Kuhn-Tucker, Improve_Allocation, Steepest

Ascent. Performance bounds are derived for some of

these algorithms. Some simulation results verifying the

performance bounds are added in Section 5. Section 6

deals with the problem of dynamic resource availabil-

ity changes, and discusses fast heuristic adaptation

strategies. Performance verification by simulation is

presented in Section 7.

2 Related Work

The problem of allocating resources to real-time appli-

cations has been studied in literature from different

angles. Several authors have addressed resource allo-

cation for real-time systems with QoS constraints.

Burns et al [6] define a task model where each task is

given a preference at run-time and a set of service al-

ternatives that can be used to complete the task. QoS-

based dynamic resource management tries to guarantee

the feasibility of real-time systems as well as let the

system produce maximum benefit, but does not explic-

itly address problems that arise from environmental

run-time variations. Humphrey et. al. [7] propose the

DQM architecture, which allows choosing operating

levels to control the resource requirements for an ap-

plication. The DQM monitors the performance of ap-

plications and interacts with the operating system in

order to change the application to a lower operating

level. The DQM is intended for use with soft real-time

multimedia applications, so adaptation may occur over

several periods. However, DQM uses a worst case

execution time analysis to determine application re-

source usage. DQM does not provide a mathematical

optimization model, and does not guarantee that opti-

mal, or even near-optimal, choices have been made. In

the QuO [8, 9, 10, 11] framework, applications adjust

their own service levels to improve performance and

react to the environment on their own accord, so there

is no way to globally optimize the set of choices made

for all applications. Nor is QuO able to guarantee real-

time deadlines. In Q-RAM [2,3,4,5], an algorithmic

approach is developed to find an allocation of tasks to

resources such that the system can satisfy some quality

of service requirements as well as produce maximum

benefit. However, the authors do not explicitly discuss

the use of Q-RAM for QoS optimization in dynamic

environments. The application of control-theoretic

methods to the design of real-time systems has re-

cently met with considerable success. Common chal-

lenges in real-time system design such as nonlinear

and stochastic plant models, effector limitations, un-

known disturbances, and noisy sensor data identified

in [13] indicate a strong connection with control theory

and applications. A series of works [14,15,16,17,18]

address performance specifications, mathematical

modeling, controller design, and performance analysis

for scheduling problems in soft real-time systems.

Their feedback control architecture is realized in mid-

dleware called ControlWare and its effectiveness for

quality of service control is demonstrated in a web

server environment. Limitations of linear systems and

control methods are discussed in [19] with remedies

presented that draw from scheduling and queuing the-

ory. Related studies involving a variety of real-time

system applications, performance objectives, mathe-

matical modeling approaches, and feedback control

architectures can be found in [20, 21, 22, 23, 24, 25,

26]. A common thread through much of this work is

that quality of service attributes of soft real-time tasks

are adjusted via feedback control based on on-line sys-

tem measurements. The underlying performance ob-

jective is then to optimize an aggregate quality of ser-

vice metric while adhering to resource constraints and

coping with an uncertain dynamic environment.

3 Problem Formulation and Notation

The system in consideration has a number of hard and

soft real-time tasks. Tasks require certain resources.

The resources required by h.r.-t. tasks depend on the

work loads defined by the environment. It is generally

assumed that there are sufficiently many resources to

process the hard r.-t. tasks within the range of the pos-

sible workloads. During run-time, as long as the work

loads are below their limits, there will be some of the

resources unused and can hence be allocated to the soft

real time tasks. We assume in our model that the utility

gained from the execution of a soft r.-t. task depends

on the amount of resources allocated to the task. The

objective then is to maximize the total utility by a

proper allocation of the surplus resources.

In our model we distinguish m 1 different re-
source types {R1,…, Rm}, each of them available in

several units. Let ri

max
 be the number of units of re-

source type Ri available at current time. For each re-

source type, the units are to be distributed among the

soft r.-t. tasks. M := (r1
max

,…, rm
max

) denotes the vector

of current resource limitations.

We assume that there is given a set of periodic soft
real-time tasks T = {T1 , …, Tn}. The processing times

and periods may depend on the amount of allocated

resources. A resource allocation defines how many

resources of each type are assigned to the tasks. The

resources currently assigned to a task Tj are denoted by

r(Tj) := (rj1, …, rjm) with 0 rji ri

max
 for i = 1, …, m.

3

Introducing the set of resource vectors G = {(r1,…, rm)

| ri {0,…, ri

max
}, i = 1,…, m}, also referred to as re-

source space, allows us to define an allocation as a

mapping alloc : T G. An allocation alloc is feasible

if alloc(Tj) is component-wise not larger than (r1

max
,

…, rm
max

) . For convenience reason we define the zero

allocation as the allocation zero(Tj) = (0,…,0) for j =

1,…, n.
The performance of a task Tj is measured by a dis-

crete and concave utility function uj that depends on

the type and number of assigned resources, uj : G

IR
0
 The utility functions we think of here are con-

cave. Concave utility functions are widely used in this

area

Examples of utility measures are:

Inverse of processing time: The more resources a

task has, the shorter the processing time, and the

higher the benefit.

Precision of computation: more resources lead to

better computational results.

The total utility of an allocation alloc is defined by a

function that aggregates the utilities of all tasks, possi-

bly with priorities: U(alloc) := juj (alloc(Tj)) where

j is the priority of task Tj (j can of course be in-

cluded in the definition of uj).

Objective: Given a resource limitation M := (r1
max

,…,

rm
max

), find an allocation with maximum utility.

Example: m = 2, M = (10, 15); u1 is specified on the

values u1(0) = 0, u1(1) = 12, u1(2) = 18, etc., and u2(0)

= 5, u2(1) = 8, u2(2) = 10, etc. . The objective is to find

a point (aj1,…, ajm) G for each function uj such that

j=1,…,n
 { uj (rj1 ,…, rjm) } is maximum, subject to

j=1,…,n
rji ri

max
 for i = 1, …, m.

4 Optimization Problem

Algorithms for Maximizing Utility

In the case of continuous and single-dimensional con-

cave functions uj the Kuhn-Tucker theorem can be

applied to find a solution with maximum total utility.

This algorithm can easily be adapted to the discrete

functions uj , where it follows a steepest ascent rule.

We refer to this algorithm as the Dis-
crete_Kuhn_Tucker (DKT) algorithm.

If there is more than one resource type, an alloca-

tion that maximizes utility can be found by scanning

the resource space G. In the PhD thesis of Chen Lee

[5] a linear programming algorithm is presented for the

case of n tasks and two resource types, that runs in

O(n (r1

max
r2

max
)
2
) time. Despite the low time complex-

ity, the space complexity is of the same order, which

seems to be unrealistic high for practical problems

with large values of ri

max
.

Since high system adaptability requires very short

reaction times, we are interested in fast heuristic ap-

proaches that are able to find reasonable solutions.

One heuristic is based on a discrete adaptation of the
Kuhn-Tucker algorithm [ref]. In algorithm DKT(Ri),

the units of resource Ri are allocated step by step such

that maximum utility increase is gained. If there is

only one resource type this strategy is known to be

optimal [2] .

A simple generalization of DKT is the Multidimen-

sional_Discrete_Kuhn_Tucker algorithm, which ap-

plies DKT(Ri) to the resource directions in some cho-

sen order, say R1, …, Rm .

Algorithm Multidimensional_Discrete_Kuhn_Tucker

(MDKT).

for i := 1 to m do DKT(Ri);

The time complexity of MDKT is O(n(r1

max
+…+

rm

max
)). It has, however, to be expected that the utility

of the resulting allocation will not be the optimum, and

particularly will depend on the order in which the re-

source types are chosen. In Section 5 some perform-

ance measures can be found.

An alternative heuristics being worth analyzed is

Steepest_Ascent. As DKT it starts from the allocation

zero, and, at each step, allocates one resource unit such

that the total utility U is increased by the maximum

possible amount.

Algorithm Steepest_Ascent (STAS)
repeat

choose a task Tj and an available resource Ri such

that rji is maximum;

assign one unit of Ri to Tj;

until all resource units are allocated;

Time complexity of STAS is O(n(r1
max

+…+ rm
max

)),

which is of the same order as for MDKT.

In the next sections we analyze the performance of

the algorithms MDKT and SA by deriving lower and

upper bounds for the total utility (4.2), and by experi-

mental studies (5).

Estimating lower and upper bounds

A lower bound for the maximum utility can easily be

determined by assigning all resource units to a task

that has a largest maximum utility,

max{ uj (r1
max

, …, rm
max

| j = 1, …, n }.

ri
max

 is an obvious upper bound for the total utility.

As long as we do not know more about the functions
uj , this bound cannot be improved, because by choos-

4

ing each function uj sufficiently close (but still con-

cave) to the constant ri
max

, the utility may become arbi-

trarily close to this bound.

For deriving better bounds one has to take more

particularities of the input functions into consideration.

Our idea is to replace the given utility functions by

special ones for which the optimum can be computed

with low computational complexity. First we need a

few preparations.

There is a special case for which optimality of

MDKT can be proved. Assume that, for each task Tj ,

uj has the property that, for all i {1, …, m},

uji(ri) := uj(r1,…,ri+1,…,rm) – uj(r1,…,ri,…,rm) (1)

depends only on the value of ri, i.e., this difference is

independent of rk for k i (see figure 1).

Definition. Given a concave function u : G IR
0
, let

prj

ai 0..ri
max

(u) be the projection of u where the values of

the components ri, i j are for fixed. We call u : G

IR
0

uniform if the projections prj

ai 0..ri

max

(u) do not de-

pend on the particular choice of the ai, i.e., if

prj

ai 0..ri

max

 (u) = prj

ai' 0..ri

max

(u) for all ai, ai' and all i j .

For uniform concave functions we have the following

theorem.

Theorem. The algorithm MDKT is optimal for uni-

form utility functions.

Proof. When applying DKT(Ri), the resulting utility

does not depend on allocations of the other resources

Rk Ri . Hence two conclusions can be drawn:

(a) The result is independent of the order in which the

DKT(Ri) are executed.

(b) The resulting allocation is optimal. This can be

followed by proof by contradiction.

We make use of the following obvious property (de-
note by UALG the utility computed by a heuristic algo-

rithm ALG).

Proposition. Let Uopt be the maximum utility that can

be obtained from tasks T1, …, Tn with the given func-

tions u1,…, un . Let furthermore u1', …, un' be alterna-

tive utility functions that are smaller than u1, …, un ,

i.e., for all j {1,…, n} and for all r G , uj'(r)

uj(r); and let Uopt' be the corresponding optimal util-

ity. Then Uopt' Uopt , U
ALG
' UALG for ALG

{MDKT, STAS}.

Proof. trivial.

For finding lower and upper bounds, we replace the

functions uj by partially linear functions sj with sj(rj)

uj(rj) (and hj with hj(rj) uj(rj), respectively) for all

rj = (rj1 ,…, rjm) G that are close to the original

functions uj .

We show an easy way to choose suitable functions
sj (for hj this can be done correspondingly) is the fol-

lowing: Find first the minimum increase of utility uj

when one additional resource unit is allocated to Tj:

Determine the minimum and maximum differences

j(rk) and j(rk), respectively, when all resource values

rj except rk are fixed,

j(rk) = min{ uj(r1,…, rm) – uj(r1',…, rm') | ri = ri'

{0,…, ri
max

} for i k , and rk' = rk +1}

j(rk) = max{ uj(r1,…, rm) – uj(r1',…, rm') | ri = ri'

{0,…, ri
max

} for i k }

(k = 1, …, m).

Notice from the definition of sj and hj that both func-

tions are uniform in the sense of the definition.

Defining the functions sj and hj by

sj(r1,…, rm) =
l=1

m

k=0

rl 1

l(0,…0,k,0…,0) , (2)

and hj(r1,…, rm) =
l=1

m

k=0

rl 1

l(0,…0,k,0…,0) . (3)

We see that both functions are uniform in the sense of

the above definition. From the theorem we therefore

know that MDKT is optimal on these functions.

Because of its low computational complexity,

MDKT gives us a useful mean to derive lower and up-

per bounds for given instances.

Corollary. For any given an instance (i.e. a set of m >
0 concave utility functions uj),

UMDKT (s1,…, sm) UMDKT(u1,…, um)

UMDKT(h1,…, hm) .

For a given instance with functions uj , the functions sj

and hj defined by (2) and (3) allow quickly deriving

lower and upper bounds.

 +----a1---+----a2---+----a3---+----a4---+

| | | | |

b2 b2 b2 b2 b2

| | | | |

+----a1---+----a2---+----a3---+----a4---+

| | | | |

b1 b1 b1 b1 b1

| | | | |

+----a1---+----a2---+----a3---+----a4---+

Figure 1 Illustration of a special case of a utility
function; ai and bi are the slopes

5

5 Simulation Results

We performed elaborate simulations for the case of m
= 2 resource types. Utility functions ui(x,y) were gen-

erated in two different ways:

(a) directly with using integer random numbers from

the interval [0,100],

(b) by evaluating the function
ui(x,y) = a1(i)ln(x+1)(1+a2(i)/(x+a3(i))) +

a4(i)ln(y+1)(1+a5(i)/(x+a6(i))) (4)

where the parameters were chosen arbitrarily between

0 and 200. Figure 2 shows the utility function

z = 71.0*log(x+1)*(1/(x+7.8)+1) + 121.0*log(y+1)*(1/(x+5.7)+1).

0
50
100
150
200
250
300
350
400
450
500

0
2

4
6

8
10

X axis

0

2

4

6

8

10

Y axis

0
50

100
150
200
250
300
350
400
450
500

Z axis

Figure 2 Example of a utility function.

Lower and upper bounds for UMDKT are approx. 10 %

off the optimum. Experimental studies also show that

for functions defined by (4), STAS performed on aver-

age one order of magnitude better than MDKT. So ex-

perimentally we were able to verify that the upper and

lower bounds of MDKT are also valid for STAS.

We performed simulations with fixed task numbers

between 2 and 35, and resource units between 2 and

100. In each case we performed 10000 tests. Figure 3

compares the performance of MDKT and STAS against

the optimum for task numbers varying from 5 to 35.

We see that, in average, the utility of the MDKT-

solutions is not more than 0.3 % below the optimum,

with decreasing distance for larger task numbers. For

STAS, the average utility is even closer to the opti-

mum. We conjecture that generally these algoroitms

lead to better (indeed almost optimal) results for larger

numbers of tasks.

MDKT

STAS

5 10 15 20 25 30 35

0.1

0.2

0.3%

Figure 3 Deviation of MDKT and STAS from optimum.

The statistics presented in Figure 4 compares MDKT

and STAS for 5 tasks and varying numbers of allocated

resource units. There are 15 units of each resource

available, and the number of resources each tasks may

get is increasing; larger numbers lead to a higher com-

petition. The figure shows that the higher the competi-

tion the better are is the performance of MDKT. Again

there is no significant deviation of STAS from the op-

timum.

0.1

0.2

0.3

0.4

0.5

0.6

0.7 %

MDKT

STAS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4 Higher competition (right) leads to better

utility.

6 Dynamic Changes of Resource

Availability

Finally we turn to the dynamic situation where re-

source limitations change over time. If resource units

are withdrawn from soft real-time tasks then one or

more tasks have to run at a lower utility, thus resulting

in a smaller total system utility. If the number of avail-

able resource units increases the tasks should take ad-

vantage in order to increase their contribution to the

total system utility. We propose the following simple

and obvious rule of resource re-allocation:

General strategy:

- If one of the resource limits is reduced by one unit,

reduce the assignment of this resource for a task that

has minimum loss of utility.

- If one of the resource limits is increased by one

unit, then assign the additional unit to a task that offers

maximum utility gain.

First simulation studies already show that the system

behaves stable. Further investigations are in prepara-

tion.

7 Conclusions

Extending the work of QRAM, we have presented

heuristics to optimize utility with respect to QoS set-

tings on multiple shared resources that meets the basic

requirements of our control theoretical resource man-

agement framework. The heuristics have been shown

to be efficient and stable control algorithms that opti-

mize task QoS settings, within known margins, with

respect to overall utility, that do not accumulate errors

over time, and that tolerate task resource misspecifica-

tion. We have shown experimentally that the QoS set-

tings produced by the algorithm tend to be quite good;

actual utility produced is typically very close to if not

identical with the optimal. In future work we intend to

extend the theory in the following ways: (1) Handle

6

utility functions with arbitrary discrete resource alloca-

tion steps (2) Handle hard real-time tasks, for single

and multiple instances of a resource, and for multiple

resource types. (3) Handle the problem of moving

tasks from one resource instance to another to ensure

schedulability and optimize utility.

References

[1] C. L. Liu and J. W. Layland. Scheduling algorithms for multi-

programming in a hard real-time environment. Journal of the Asso-
ciation for Computing Machinery, 20(1):46–61, 1973.

[2] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A qos-

based resource allocations model. In Proceedings of the IEEE Real-

Time Systems Symposium, 1997.

[3] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. Practical

solutions for qos-based resource allocation problems. In In Proceed-

ings of the IEEE Real-Time Systems Symposium, pages 315–326,

1998.

[4] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A scalable

solution to the multi-resource QoS problem. In Proceedings of the

20th IEEE Real-Time Systems Symposium, pages 315–326, 1999.

[5] C. Lee and D. Siewiorek. On quality of service optimization with

discrete qos options. In In Proceedings of the Fifth IEEE Real-Time

Technology and Applications Symposium (RTAS ’99), pages 276–

286, 1999.

[6] A. Burns. The meaning and role of value in scheduling flexible

real-time systems. Journal of Systems Architecture, 46:305–325,

2000.

[7] M. Humphrey, S. Brandt, G. Nutt, and T. Berk. The DQM archi-

tecture: Middleware for application -centered QoS resource man-

agement. In Proceedings of the IEEE Workshop on Middleware for

Distributed Real-Time Systems and Services, pages . 97–104, 1997.

[8] D. Karr, C. Rodrigues, J. Loyall, and R. Schantz. Controlling

quality-of-service in a distributed video application by an adaptive

middleware framework. In Proceedings of ACM Multimedia, 2001.

[9] C. Koliver, K. Nahrstedt, J. Farines, J. Fraga, and S. Sandri.

Specification, mapping and control for QoS adaptation. Special issue

of Real-Time Systems Journal on Control-Theoretic Approaches to

Real-Time Computing, 23(1/2):143–174, 2002.

[10] Y. Krishnamurth, V. Kachroo, D. Karr, C. Rodrigues, J. Loyall,

R. Schantz, and D. Schmidt. Integration of QoS-enabled distributed

object computing middleware for developing next-generation dis-

tributed applications. In Proceedings of the ACM SIGPLAN Work-

shop on Optimization of Middleware and Distributed Systems, 2001.

[11] B. Shirazi, L. Welch, B. Ravindran, C. Cavanaugh, B. Yana-

mula, R. Brucks, and E. Huh. DynBench: A dynamic benchmark

suite for distributed real-time systems. In Proceedings of the Paral-

lel and Distributed Processing: IPPS/SPDP Workshops, pages

1335–1349, 1999.

[12] J. Loyall, P. Rubel, R. Schantz, M. Atighetchi, and J. Zinky.

Emerging patterns in adaptive, distributed real-time, embedded

middleware. In Proceedings of the 9th Conference on Pattern Lan-

guage of Programs, 2002.

[13] J. Hellerstein. Challenges in control engineering of computing

systems. In Proceedings of the 2004 American Control Conference,

pages 1970 – 1979, 2004.

[14] J. Stankovic, C. Lu, S. Son, and G. Tao. The case for feedback

control real-time scheduling. In EuroMicro Conference on Real-

Time Systems, June 1999.

[15] C. Lu, J. Stankovic, T. Abdelzaher, G. Tao, S. Son, and M.

Marley. Performance specifications and metrics for adaptive real-

time systems. In Proceedings of the IEEE Real-Time Systems Sym-

posium, Dec. 2000.

[16] J. Stankovic, T. He, T. Abdelzaher, M. Marley, G. Tao, S. Son,

and C. Lu. Feedback control scheduling in distributed real-time

systems. In IEEE Real-Time Systems Symposium, 2001.

[17] C. Lu, J. Stankovic, G. Tao, and S. Son. Feedback control real-

time scheduling: Framework, modeling and algorithms. Special

issue of Real-Time Systems Journal on Control-Theoretic Ap-

proaches to Real-Time Computing, 23(1/2):85–126, 2002.

[18] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu. Feed-

back performance control in software systems. IEEE Control Sys-

tems Magazine, 23(3):74–90, June 2003.

[19] T. Abdelzaher, Y. Lu, R. Zhang, and D. Henriksson. Practical

application of control theory to web services. In Proceedings of the
2004 American Control Conference, pages 1992 – 1997, 2004.

[20] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analyis of a

reservation-based feedback scheduler. In Proceeding of the Real-

Time Systems Symposium, 2002.

[21] G. Buttazzo and L. Abeni. Workload management through

elastic scheduling. Special Issue of Real-Time Systems Journal on

Control-Theoretic Approaches to Real-Time Computing, 23(1/2):7–

24, July/September, 2002.

[22] A. Cervin, J. Eker, B. Bernhardsson, and K. Erzin. Feedback-

feedforward scheduling of control tasks. Special Issue of Real-Time

Systems Journal on Control-Theoretic Approaches to Real-Time

Computing, 23(1/2):25–53, July/September, 2002.

[23] C. Koliver, K. Nahrstedt, J. Farines, J. Fraga, and S. Sandri.

Specification, mapping and control for QoS adaptation. Special issue

of Real-Time Systems Journal on Control-Theoretic Approaches to

Real-Time Computing, 23(1/2):143–174, 2002.

[24] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and

J. Bigus. Using control theory to achieve service level objectives in

performance management. Special issue of Real-Time Systems Jour-

nal on Control-Theoretic Approaches to Real-Time Computing,

23(1/2):127–141, 2002.

[25] V. Vahia, A. Goel, J. Walpole, and M. Shor. Using dynamic

optimization for control of real rate CPU resource management. In

Proceedings of the 42nd IEEE Conference on Decision and Control,

pages 6547 – 6552, 2003.

[26] A. Robertsson, B. Wittenmark, M. Kihl, and M. Andersson.

Design and evaluation of load control in web server systems. In

Proceedings of the 2004 American Control Conference, pages 1980

– 1985, 2004.

[27] R. Judd, F. Drews, D. Lawrence, D. Juedes, B. Leal, J.

Deshpande, and L. Welch, QoS-based Resource Allocation in Dy-

namic Real-Time Systems, Proceedings of the 24th American Con-

trol Conference (ACC 2005), pp. 1745-1751, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

