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Abstract 

Dynamic real-time systems require adaptive resource 

management to accommodate varying processing 

needs. We address the problem of resource manage-

ment with multiple shared resources for soft real-time 

systems consisting of tasks that have discrete QoS set-

tings that correspond to varying resource usage and 

varying utility. Given an amount of available resource, 

the problem is to provide on-line control of the tasks' 

QoS settings so as to optimize the overall system util-

ity. We propose several heuristic algorithms that will 

be shown to be compatible with the requirements im-

posed by our control theoretical resource management 

framework: (1) By only making incremental adjust-

ments to QoS settings as available resources change, 

they provide low run-time complexity, making them 

suitable for use in on-line resource managers (2) Dif-

ferences between actual utility and optimal utility do 

not accumulate over time, so there is no long-term 

degradation in performance. (3) The lower and upper 

bound on actual utility can be calculated dynamically 

based on current system conditions, and absolute 

bounds can be calculated statically in advance. (4) It 

is possible to respond to the actual resource possible, 

allowing all resources to be used and tolerating mis-

specification of task resource requirements. 

1 Introduction 

Traditional approaches to the design and development 

of real-time systems use worst-case execution times of 

tasks and provably correct analysis techniques to guar-

antee that critical system tasks will always complete 

prior to their deadlines.  The most common approach 

is rate monotonic analysis [1] which uses bounds on 

processor utilization to guarantee that real-time peri-

odic tasks always meet their deadlines.  These tradi-

tional (and often pessimistic) approaches to the design 

and development of real-time systems may result in 

systems that are under-utilized for much of the opera-

tional time the system, resulting in poor quality of ser-

vice.  A number of factors may lead to this poor per-

formance, including overly pessimistic worst-case 

execution times, environmental conditions, infrequent 

critical instants [1], inaccurate resource profiles, etc. 

The discrete event controller that we describe controls 

system resource usage by modifying quality of service 

parameters so that the overall system benefit is maxi-

mized. When the system resource being controlled is 

processor utilization, our approach is directly applica-

ble to real-time systems since total processor utiliza-

tion provides a schedulability test, i.e., a guarantee that 

real-time tasks will meet their deadlines whenever the 

processor utilization is less than or equal to some 

value. Since the discrete controller cannot guarantee 

that the resource usage is bounded, our approach is not 

applicable to hard-real systems where deadline can 

never be missed. However, our approach has many 

advantages in soft real-time systems where deadlines 

may be missed occasionally. The principle motivation 

behind this work is the feedback control of soft real-

time systems (multimedia, certain feedback control 

systems) where the quality of service to the user can be 

improved if the amount of resources provided to the 

individual tasks is increased. An example of such as 

system is the RT-Phone example provided in the pa-

pers associated with Q-RAM [2, 3, 4, 5]. Our approach 

differs from that of Q-RAM since we make resource 

reallocations at run-time using feedback control.  

This paper addresses the problem of resource man-

agement with task sharing multiple resources for soft 

real-time systems (no hard deadline requirements) 

consisting of tasks that have discrete QoS (Quality of 

Service) settings that correspond to varying resource 

usage and varying benefit to the end user. We are start-

ing with a system model that similar to the one used in 

Q-RAM [2, 3, 4, 5]. Given an amount of available re-

source, the problem is to provide on-line control of the 

tasks' QoS settings so as to optimize the overall system 

benefit. Since the complexity of the problem precludes 

optimal solutions, we present two heuristic algorithms 

with the following properties.  

They have low run-time complexity, making them 

suitable to be employed as an online algorithm in 

dynamically changing environments.  

Unlike Q-RAM, our approach makes incremental 

adjustments to QoS settings as available resources 

change, avoiding the calculation time that would be 

incurred by recalculating all the QoS settings.  

Differences between actual utility and optimal do 

not accumulate over time, so there is no long-term 

degradation in performance. We derive upper and 

lower bounds on actual utility. They can be calcu-
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lated dynamically based on current system condi-

tions, and an absolute bound can be calculated 

statically in advance.  

The algorithms will be employed in and have to be 

compatible with our feedback control based re-

source management architecture [27] that allows 

response to actual resource availability, allowing 

all resources to be used and tolerating misspecifica-

tion of task resource requirements. 

Section 2 presents the problem. Section 3 introduces 

the notation, a formalized model and, based on this, 

formulates the problem formally. Section 4 presents 

discusses the complexity status of the problem, exact 

algorithms, and introduces the fast heuristic algorithms 

Discrete Kuhn-Tucker, Improve_Allocation, Steepest 

Ascent. Performance bounds are derived for some of 

these algorithms. Some simulation results verifying the 

performance bounds are added in Section 5. Section 6 

deals with the problem of dynamic resource availabil-

ity changes, and discusses fast heuristic adaptation 

strategies. Performance verification by simulation is 

presented in Section 7.  

2 Related Work 

The problem of allocating resources to real-time appli-

cations has been studied in literature from different 

angles. Several authors have addressed resource allo-

cation for real-time systems with QoS constraints. 

Burns et al [6] define a task model where each task is 

given a preference at run-time and a set of service al-

ternatives that can be used to complete the task. QoS-

based dynamic resource management tries to guarantee 

the feasibility of real-time systems as well as let the 

system produce maximum benefit, but does not explic-

itly address problems that arise from environmental 

run-time variations. Humphrey et. al. [7] propose the 

DQM architecture, which allows choosing operating 

levels to control the resource requirements for an ap-

plication. The DQM monitors the performance of ap-

plications and interacts with the operating system in 

order to change the application to a lower operating 

level. The DQM is intended for use with soft real-time 

multimedia applications, so adaptation may occur over 

several periods. However, DQM uses a worst case 

execution time analysis to determine application re-

source usage. DQM does not provide a mathematical 

optimization model, and does not guarantee that opti-

mal, or even near-optimal, choices have been made. In 

the QuO [8, 9, 10, 11] framework, applications adjust 

their own service levels to improve performance and 

react to the environment on their own accord, so there 

is no way to globally optimize the set of choices made 

for all applications. Nor is QuO able to guarantee real-

time deadlines. In Q-RAM [2,3,4,5], an algorithmic 

approach is developed to find an allocation of tasks to 

resources such that the system can satisfy some quality 

of service requirements as well as produce maximum 

benefit. However, the authors do not explicitly discuss 

the use of Q-RAM for QoS optimization in dynamic 

environments. The application of control-theoretic 

methods to the design of real-time systems has re-

cently met with considerable success. Common chal-

lenges in real-time system design such as nonlinear 

and stochastic plant models, effector limitations, un-

known disturbances, and noisy sensor data identified 

in [13] indicate a strong connection with control theory 

and applications. A series of works [14,15,16,17,18] 

address performance specifications, mathematical 

modeling, controller design, and performance analysis 

for scheduling problems in soft real-time systems. 

Their feedback control architecture is realized in mid-

dleware called ControlWare and its effectiveness for 

quality of service control is demonstrated in a web 

server environment. Limitations of linear systems and 

control methods are discussed in [19] with remedies 

presented that draw from scheduling and queuing the-

ory. Related studies involving a variety of real-time 

system applications, performance objectives, mathe-

matical modeling approaches, and feedback control 

architectures can be found in [20, 21, 22, 23, 24, 25, 

26]. A common thread through much of this work is 

that quality of service attributes of soft real-time tasks 

are adjusted via feedback control based on on-line sys-

tem measurements. The underlying performance ob-

jective is then to optimize an aggregate quality of ser-

vice metric while adhering to resource constraints and 

coping with an uncertain dynamic environment.  

3 Problem Formulation and Notation 

The system in consideration has a number of hard and 

soft real-time tasks. Tasks require certain resources. 

The resources required by h.r.-t. tasks depend on the 

work loads defined by the environment. It is generally 

assumed that there are sufficiently many resources to 

process the hard r.-t. tasks within the range of the pos-

sible workloads. During run-time, as long as the work 

loads are below their limits, there will be some of the 

resources unused and can hence be allocated to the soft 

real time tasks. We assume in our model that the utility 

gained from the execution of a soft r.-t. task depends 

on the amount of resources allocated to the task. The 

objective then is to maximize the total utility by a 

proper allocation of the surplus resources. 

In our model we distinguish m  1 different re-
source types {R1,…, Rm}, each of them available in 

several units. Let ri      

max
 be the number of units of re-

source type Ri available at current time. For each re-

source type, the units are to be distributed among the 

soft r.-t. tasks. M := (r1      
max

,…, rm
max

) denotes the vector 

of current resource limitations.  

We assume that there is given a set of periodic soft 
real-time tasks T = {T1 , …, Tn}. The processing times 

and periods may depend on the amount of allocated 

resources. A resource allocation defines how many 

resources of each type are assigned to the tasks. The 

resources currently assigned to a task Tj are denoted by 

r(Tj) := (rj1, …, rjm) with  0 rji ri      

max
 for i = 1, …, m.
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Introducing the set of resource vectors G = {(r1,…, rm)

| ri  {0,…, ri      

max
}, i = 1,…, m}, also referred to as re-

source space,  allows us to define an allocation as a 

mapping alloc : T G. An allocation alloc is feasible 

if alloc(Tj) is component-wise not larger than (r1

max
,

…, rm    
max

) . For convenience reason we define the zero 

allocation as the allocation zero(Tj) = (0,…,0) for j = 

1,…, n.
The performance of a task Tj is measured by a dis-

crete and concave utility function uj  that depends on 

the type and number of assigned resources, uj : G

IR
0
  The utility functions we think of here are con-

cave. Concave utility functions are widely used in this 

area  

Examples of utility measures are:  

Inverse of processing time: The more resources a 

task has, the shorter the processing time, and the 

higher the benefit.  

Precision of computation: more resources lead to 

better computational results. 

The total utility of an allocation alloc is defined by a 

function that aggregates the utilities of all tasks, possi-

bly with priorities: U(alloc) := juj (alloc(Tj)) where 

j is the priority of task Tj ( j can of course be in-

cluded in the definition of uj ). 

Objective: Given a resource limitation M := (r1      
max

,…,

rm
max

), find an allocation with maximum utility.  

Example: m = 2, M = (10, 15);  u1  is specified on the 

values u1(0) = 0, u1(1) = 12, u1(2) = 18, etc., and u2(0) 

= 5, u2(1) = 8, u2(2) = 10, etc. . The objective is to find 

a point (aj1,…, ajm) G  for each function uj  such that  

j=1,…,n
 { uj (rj1 ,…, rjm ) } is maximum, subject to 

j=1,…,n
rji ri      

max
   for   i = 1, …, m.   

4 Optimization Problem 

Algorithms for Maximizing Utility 

In the case of continuous and single-dimensional con-

cave functions uj  the Kuhn-Tucker theorem can be 

applied to find a solution with maximum total utility. 

This algorithm can easily be adapted to the discrete 

functions uj , where it follows a steepest ascent rule. 

We refer to this algorithm as the Dis-
crete_Kuhn_Tucker (DKT) algorithm. 

If there is more than one resource type, an alloca-

tion that maximizes utility can be found by scanning 

the resource space G. In the PhD thesis of Chen Lee 

[5] a linear programming algorithm is presented for the 

case of n tasks and two resource types, that runs in 

O(n (r1      

max
r2      

max
)
2
) time. Despite the low time complex-

ity, the space complexity is of the same order, which 

seems to be unrealistic high for practical problems 

with large values of  ri      

max
.

Since high system adaptability requires very short 

reaction times, we are interested in fast heuristic ap-

proaches that are able to find reasonable solutions. 

One heuristic is based on a discrete adaptation of the 
Kuhn-Tucker algorithm [ref].  In algorithm DKT(Ri), 

the units of resource Ri are allocated step by step such 

that maximum utility increase is gained. If there is 

only one resource type this strategy is known to be 

optimal [2] .  

A simple generalization of DKT is the Multidimen-

sional_Discrete_Kuhn_Tucker algorithm, which ap-

plies DKT(Ri) to the resource directions in some cho-

sen order, say R1, …, Rm .

Algorithm Multidimensional_Discrete_Kuhn_Tucker

(MDKT).

for i := 1 to m do DKT(Ri);

The time complexity of MDKT is O(n(r1      

max
+…+

rm      

max
)). It has, however, to be expected that the utility 

of the resulting allocation will not be the optimum, and 

particularly will depend on the order in which the re-

source types are chosen. In Section 5 some perform-

ance measures can be found. 

An alternative heuristics being worth analyzed is 

Steepest_Ascent. As DKT it starts from the allocation

zero, and, at each step, allocates one resource unit such 

that the total utility U is increased by the maximum 

possible amount. 

Algorithm Steepest_Ascent (STAS)
repeat

choose a task Tj and an available resource Ri such 

that rji is maximum;

assign one unit of Ri to Tj;

until all resource units are allocated;

Time complexity of STAS is O(n(r1      
max

+…+ rm      
max

)), 

which is of the same order as for MDKT.

In the next sections we analyze the performance of 

the algorithms MDKT and SA by deriving lower and 

upper bounds for the total utility (4.2), and by experi-

mental studies (5).  

Estimating lower and upper bounds 

A lower bound for the maximum utility can easily be 

determined by assigning all resource units to a task 

that has a largest maximum utility,  

max{ uj (r1      
max

, …, rm      
max

| j = 1, …, n }. 

ri      
max

 is an obvious upper bound for the total utility. 

As long as we do not know more about the functions 
uj , this bound cannot be improved, because by choos-
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ing each function uj sufficiently close (but still con-

cave) to the constant ri      
max

, the utility may become arbi-

trarily close to this bound. 

For deriving better bounds one has to take more 

particularities of the input functions into consideration. 

Our idea is to replace the given utility functions by 

special ones for which the optimum can be computed 

with low computational complexity. First we need a 

few preparations. 

There is a special case for which optimality of 

MDKT can be proved. Assume that, for each task Tj , 

uj has the property that, for all i  {1, …, m}, 

uji(ri) := uj(r1,…,ri+1,…,rm) – uj(r1,…,ri,…,rm)   (1) 

depends only on the value of ri, i.e., this difference is 

independent of rk for k i  (see figure 1).   

Definition. Given a concave function u : G IR
0
, let 

prj

ai 0..ri      
max

(u) be the projection of u where the values of 

the components ri, i j are for fixed. We call u : G

IR
0

uniform if the projections prj

ai 0..ri      

max

(u) do not de-

pend on the particular choice of the ai, i.e., if  

prj

ai 0..ri      

max

 (u) = prj

ai' 0..ri      

max

(u) for all ai, ai' and all i j . 

For uniform concave functions we have the following 

theorem. 

Theorem. The algorithm MDKT is optimal for uni-

form utility functions.

Proof. When applying DKT(Ri), the resulting utility 

does not depend on allocations of the other resources 

Rk Ri . Hence two conclusions can be drawn: 

(a) The result is independent of the order in which the 

DKT(Ri) are executed. 

(b) The resulting allocation is optimal. This can be 

followed by proof by contradiction. 

We make use of the following obvious property (de-
note by UALG the utility computed by a heuristic algo-

rithm ALG). 

Proposition. Let Uopt be the maximum utility that can 

be obtained from tasks T1, …, Tn with the given func-

tions u1,…, un . Let furthermore u1', …, un' be alterna-

tive utility functions that are smaller than u1, …, un , 

i.e., for all j  {1,…, n} and for all r G , uj'( r )

uj( r ); and let Uopt' be the corresponding optimal util-

ity. Then Uopt' Uopt , U
ALG
'   UALG for ALG

{MDKT, STAS}.

Proof. trivial. 

For finding lower and upper bounds, we replace the 

functions uj by partially linear functions sj with sj(rj )

uj(rj ) (and hj with hj(rj ) uj(rj ), respectively) for all 

rj  = (rj1 ,…, rjm) G  that are close to the original 

functions uj .

We show an easy way to choose suitable functions 
sj (for hj this can be done correspondingly) is the fol-

lowing: Find first the minimum increase of utility uj

when one additional resource unit is allocated to Tj:

Determine the minimum and maximum differences 

j(rk) and j(rk), respectively, when all resource values 

rj except rk are fixed, 

j(rk) = min{ uj(r1,…, rm) – uj(r1',…, rm') | ri = ri'

{0,…, ri     
max

} for i k , and rk' = rk +1} 

j(rk) = max{ uj(r1,…, rm) – uj(r1',…, rm') | ri = ri'

{0,…, ri      
max

} for i k } 

(k = 1, …, m).  

Notice from the definition of sj and hj that both func-

tions are uniform in the sense of the definition.  

Defining the functions sj and hj by 

sj(r1,…, rm) = 
l=1

m

k=0

rl 1

l(0,…0,k,0…,0) , (2) 

and hj(r1,…, rm) = 
l=1

m

k=0

rl 1

l(0,…0,k,0…,0) . (3) 

We see that both functions are uniform in the sense of 

the above definition. From the theorem we therefore 

know that MDKT is optimal on these functions.  

Because of its low computational complexity, 

MDKT gives us a useful mean to derive lower and up-

per bounds for given instances.  

Corollary. For any given an instance (i.e. a set of m > 
0 concave utility functions uj),  

UMDKT (s1,…, sm) UMDKT(u1,…, um)

UMDKT(h1,…, hm) . 

For a given instance with functions uj , the functions sj

and hj defined by (2) and (3) allow quickly deriving 

lower and upper bounds. 

 +----a1---+----a2---+----a3---+----a4---+ 

|         |         |         |         | 

b2        b2        b2        b2        b2 

|         |         |         |         | 

+----a1---+----a2---+----a3---+----a4---+ 

|         |         |         |         | 

b1        b1        b1        b1        b1 

|         |         |         |         | 

+----a1---+----a2---+----a3---+----a4---+ 

Figure 1   Illustration of a special case of a utility 
function; ai and bi are the slopes  
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5 Simulation Results 

We performed elaborate simulations for the case of m
= 2 resource types. Utility functions ui(x,y) were gen-

erated in  two different ways: 

(a) directly with using integer random numbers from 

the interval [0,100], 

(b) by evaluating the function  
ui(x,y)  = a1(i)ln(x+1)(1+a2(i)/(x+a3(i))) +

a4(i)ln(y+1)(1+a5(i)/(x+a6(i))) (4) 

where the parameters were chosen arbitrarily between 

0 and 200. Figure 2 shows the utility function  

z = 71.0*log(x+1)*(1/(x+7.8)+1) + 121.0*log(y+1)*(1/(x+5.7)+1). 

0
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Figure 2  Example of a utility function. 

Lower and upper bounds for UMDKT are approx. 10 % 

off the optimum. Experimental studies also show that 

for functions defined by (4), STAS performed on aver-

age one order of magnitude better than MDKT. So ex-

perimentally we were able to verify that the upper and 

lower bounds of MDKT are also valid for STAS.  

We performed simulations with fixed task numbers 

between 2 and 35, and resource units between 2 and 

100. In each case we performed 10000 tests. Figure 3 

compares the performance of MDKT and STAS against 

the optimum for task numbers varying from 5 to 35. 

We see that, in average, the utility of the MDKT-

solutions is not more than 0.3 % below the optimum, 

with decreasing distance for larger task numbers. For 

STAS, the average utility is even closer to the opti-

mum. We conjecture that generally these algoroitms 

lead to better (indeed almost optimal) results for larger 

numbers of tasks.  

MDKT

STAS

5 10 15 20 25 30 35

0.1

0.2

0.3%

Figure 3  Deviation of MDKT and STAS from optimum.  

The statistics presented in Figure 4 compares MDKT

and STAS for 5 tasks and varying numbers of allocated 

resource units. There are 15 units of each resource 

available, and the number of resources each tasks may 

get is increasing; larger numbers lead to a higher com-

petition. The figure shows that the higher the competi-

tion the better are is the performance of MDKT. Again 

there is no significant deviation of STAS from the op-

timum. 

0.1

0.2

0.3

0.4

0.5

0.6

0.7 %

MDKT

STAS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4    Higher competition (right) leads to better 

utility. 

6 Dynamic Changes of Resource  

Availability 

Finally we turn to the dynamic situation where re-

source limitations change over time. If resource units 

are withdrawn from soft real-time tasks then one or 

more tasks have to run at a lower utility, thus resulting 

in a smaller total system utility. If the number of avail-

able resource units increases the tasks should take ad-

vantage in order to increase their contribution to the 

total system utility. We propose the following simple 

and obvious rule of resource re-allocation:  

General strategy:  

- If one of the resource limits is reduced by one unit, 

reduce the assignment of this resource for a task that 

has minimum loss of utility.  

- If one of the resource limits is increased by one 

unit, then assign the additional unit to a task that offers 

maximum utility gain. 

First simulation studies already show that the system 

behaves stable. Further investigations are in prepara-

tion. 

7 Conclusions 

Extending the work of QRAM, we have presented 

heuristics to optimize utility with respect to QoS set-

tings on multiple shared resources that meets the basic 

requirements of our control theoretical resource man-

agement framework. The heuristics have been shown 

to be efficient and stable control algorithms that opti-

mize task QoS settings, within known margins, with 

respect to overall utility, that do not accumulate errors 

over time, and that tolerate task resource misspecifica-

tion. We have shown experimentally that the QoS set-

tings produced by the algorithm tend to be quite good; 

actual utility produced is typically very close to if not 

identical with the optimal. In future work we intend to 

extend the theory in the following ways: (1) Handle 
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utility functions with arbitrary discrete resource alloca-

tion steps (2) Handle hard real-time tasks, for single 

and multiple instances of a resource, and for multiple 

resource types. (3) Handle the problem of moving 

tasks from one resource instance to another to ensure 

schedulability and optimize utility. 
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