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Abstract

In this paper, we are interested in real-time flows re-
quiring quantitative and deterministic QoS (Quality of
Service) guarantees. We focus more particularly on two
QoS parameters: the worst case end-to-end response
time and jitter. We consider a FIFO (First In First
Out) scheduling of flows. The FIFO scheduling is the
simplest one to implement and very used. We first es-
tablish a bound on the worst case end-to-end response
time of any flow in the network, using the trajectory
approach. We present an example illustrating our re-
sults. Finally, we show how to apply these results to the
EF (Expedited Forwarding) class in a DiffServ (Differ-
entiated Services) architecture.

1. Context and motivations

In this paper, we are interested in real-time applica-
tions that require bounds on the worst case end-to-end
response times and jitters to have a behavior compli-
ant with their specifications (e.g. voice over ip and
control-command applications). That is why we fo-
cus on deterministic guarantees of end-to-end response
times and jitters in a packet network. We will show
how to determine these times depending on the flow
scheduling used in the network. In this paper, we show
how to apply a worst case analysis to the distributed
case, using the trajectory approach.

These results can be applied in a DiffServ (Differ-
entiated Services) architecture to determine the worst
case end-to-end response time granted to flows belong-
ing to the ef (Expedited Forwarding) class, assuming
that routes of ef flows remain fixed, once assigned.

2. Problematic

We investigate the problem of providing a determin-
istic guarantee (i.e. an upper bound) on the end-to-end
response time to any flow in a network. As we make no
particular assumption concerning the arrival times of
packets in the network, the feasibility of a set of flows
is equivalent to meet the requirement, whatever the ar-
rival times of the packets in the network. We assume
that time is discrete. Indeed, results obtained with
a discrete scheduling are as general as those obtained
with a continuous scheduling when all flow parameters
are multiples of the node clock tick [1]. Moreover, we
assume the following models.

2.1. Models

Scheduling model All nodes in the network schedule
packets according to the fifo algorithm.

Network model We consider a network where links
interconnecting nodes are supposed to be fifo and
the network delay between two nodes has known lower
and upper bounds: Lmin and Lmax. Moreover, we
consider neither network failures nor packet losses.

Traffic model We consider a set {τ1, ..., τn} of n
sporadic flows. Each flow τi follows a fixed path1 Pi

that is an ordered sequence of nodes whose first node
is the ingress node of the flow. Moreover, a sporadic
flow τi is defined by:

• Ti, the minimum interarrival time (abusively called
period) between two successive packets of τi;
• Ch

i , the maximum processing time on node h of a
packet of τi. By convention, Ch

i = 0 if h /∈ Pi;

1For that purpose, we can use source routing or mpls.
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• Ji, the maximum release jitter of packets of τi at
its ingress node. A packet is subject to a release jitter
if there exists a non-null delay between its generation
time and the time where it is taken into account by the
scheduler;
• Di, the end-to-end deadline of τi, that is its maxi-
mum end-to-end response time acceptable. A packet
of τi generated at time t must be delivered at t + Di.

2.2. Notations

We consider any flow τi, i ∈ [1, n], following a
path Pi. We focus on the packet m of τi generated
at time t.

Definition 1 Let m be the packet of flow τi generated
at time t. Let m′ be the packet of flow τj generated at
time t′. On any node h ∈ Pi ∩Pj, priority of packet m
is higher than or equal to this of packet m′ if and only
if m arrives before m′ on node h.

We also denote:

• τi, a sporadic flow of the set {τ1, ..., τn};

• Ri, the worst case response time of flow τi;

• τ(g), the index number of the flow which packet g
belongs to;

• m, the packet of flow τi generated at time t;

• Wh
i,t, the latest starting time of m on node h;

• Pi = [firsti, ..., lasti], the path followed by flow τi,
with firsti (resp. lasti) the first node (resp. the
last node) visited by τi in the network;

• |Pi|, the cardinal of path Pi, that is the number of
nodes visited by flow τi;

• prei(h), the node visited by τi just before node h;

• suci(h), the node visited by τi just after node h;

• firstj,i, the first node visited by flow τj on path Pi;

• lastj,i, the last node visited by flow τj on path Pi;

• slowi, the slowest node visited by τi on path Pi:

∀h ∈ Pi, Cslowi

i ≥ Ch
i ;

• slowj,i, the slowest node visited by τj on path Pi:

∀h ∈ Pi ∩ Pj , C
slowj,i

j ≥ Ch
j ;

• Smin
h
i , the minimum time taken by a packet of flow

τi to go from its source node to node h;

• Smax
h
i , the maximum time taken by a packet of flow

τi to go from its source node to node h;

• ∀a ∈ R, (1 + �a�)+ stands for max(0; 1 + �a�);

• Mh
i =

∑prei(h)
h′=firsti

(min j∈[1,n]
firstj,i=firsti,j

{Ch′

j } + Lmin).

Figure 1 illustrates the notations of firsti,j , firstj,i,
lasti,j and lastj,i when (1) flows τi and τj are in the
same direction and (2) flows τi and τj are in reverse
directions.

Figure 1. firsti,j , firstj,i, lasti,j and lastj,i

Moreover, we assume, with regard to flow τi follow-
ing path Pi, that any flow τj following path Pj, with
Pj �= Pi and Pj

⋂
Pi �= ∅, never visits a node of path Pi

after having left this path.

Assumption 1 ∀ flow τi following path Pi, ∀ flow τj

following path Pj such that Pj ∩Pi �= ∅, we have either
[firstj,i, lastj,i] ⊆ Pi or [lastj,i, f irstj,i] ⊆ Pi.

To achieve that, the idea is to consider a flow cross-
ing path Pi after it left Pi as a new flow. We proceed
by iteration until meeting Assumption 1.

Definition 2 The end-to-end jitter of any flow τi,
i ∈ [1, n], is the difference between the maximum and
minimum end-to-end response times of τi packets, that
is equal to: Ri − (

∑
h∈Pi

Ch
i + (|Pi| − 1) · Lmin).

3. Related work

Deterministic and quantitative guarantees can be
provided by at least three approaches, that compute
the worst case end-to-end response time of any flow:

• The holistic approach [2, 3]. This approach, the
first introduced in the literature, considers the worst
case scenario on each node visited by a flow, taking
into account the maximum possible jitter introduced
by the previous visited nodes. The minimum and
maximum response times on a node h induce a maxi-
mum jitter on the next visited node h+1 that leads to
a worst case response time and then a maximum jitter
on the following node and so on. This approach can
be pessimistic as it considers worst case scenarios on
every node possibly leading to impossible scenarios.
Indeed, a worst case scenario for a flow τi on a node
h does not generally result in a worst case scenario for
τi on any node visited after h.



• The network calculus approach [4]. Network
Calculus is a powerful tool recently developed to solve
flow problems encountered in networking. Indeed,
considering a network element characterized by a
service curve and all the arrival curves of flows visiting
this element, it is possible to compute the maximum
delay of any flow, the maximum size of the waiting
queue and the departure curves of flows. Results
of such analysis are deterministic, provided that the
arrival and service curves are deterministic. As bounds
are generally used instead of the exact knowledge of
the arrival and service curves, this approach can lead
to an overestimation of the bounds on the end-to-end
response times.

• The trajectory approach. This approach consid-
ers the worst case scenario that can happen to a mes-
sage along its trajectory: the sequence of nodes visited.
This approach is described in the next section.

4. Worst case analysis:

The trajectory approach

Unlike the holistic approach, the trajectory ap-
proach [5] is based on the analysis of the worst case
scenario experienced by a packet on its trajectory and
not on any node visited. Then, only possible scenarios
are examined. For instance, the fluid model (see [6]
for gps) is relevant to the trajectory approach. More
precisely, we consider any flow τi, i ∈ [1, n], following
a path Pi consisting of q nodes numbered from 1 to q.
We focus on the packet m of τi generated at time t.

With the fifo scheduling, the processing of a packet
can no longer be delayed after it has started. That
is why we compute the latest starting time of m on
its last node visited. To achieve that, we adopt the
trajectory approach. This approach consists in mov-
ing backwards through the sequence of nodes m visits,
each time identifying preceding packets and busy peri-
ods that ultimately affect the delay of m.

4.1. Latest starting time computation

To compute the latest starting time of packet m,
we proceed as follows. We first determine the busy
period2 of level corresponding to the priority of m in
which m is processed on node q. Let bpq this busy
period. We define f(q) as the first packet processed

2A busy period of level L is defined by an interval [t, t′) such
that t and t′ are both idle times of level L and there is no idle
time of level L in (t, t′). An idle time t of level L is a time
such that all packets with a priority greater than or equal to L

generated before t have been processed at time t.

in bpq with a priority higher than or equal to this of
packet m. As flows do not necessarily follow the same
path in the network considered, it is possible that
packet f(q) does not come from node q − 1. We then
define p(q − 1) as the first packet processed between
f(q) and m such that p(q − 1) comes from node q − 1.
Packet p(q − 1) has been processed on node q − 1 in a
busy period of level corresponding to the priority of
p(q − 1). Let bpq−1 this busy period. We then define
f(q − 1) as the first packet processed in bpq−1 with
a priority higher than or equal to this of p(q − 1).
And so on until the busy period, on node 1, of level
corresponding to the priority of packet p(1) in which
the packet f(1) is processed (see Figure 2).

Figure 2. Response time of packet m

For the sake of simplicity, on a node h, we number
consecutively the packets processed after f(h) and
before p(h) (with p(q) = m). Hence, on node h, we
denote m′ − 1 (resp. m′ + 1) the packet preceding
(resp. succeeding to) m′. Moreover, we denote ah

m′

the arrival time of packet m′ on node h and consider
the arrival time of packet f(1) in node 1 as the time
origin (a1

f(1) = 0).
By adding parts of the busy periods considered,

we can express the latest starting time of packet m
in node q, that is: the processing time on node 1 of
packets f(1) to p(1) + Lmax + the processing
time on node 2 of packets f(2) to p(2) + Lmax −
(a2

p(1) − a2
f(2)) + ... + the processing time on node

q of packets f(q) to (m − 1) − (aq
p(q−1) − aq

f(q)).

We can notice that on any node h ∈ Pi, if
there exists no flow τj such that h = firstj,i, then
p(h − 1) = f(h) and so ah

p(h−1) − ah
f(h) = 0. In other

words, if p(h − 1) �= f(h), there exists a flow τj such
that h = firstj,i. In such a case, by definition of p(h),
all the packets in [f(h), p(h− 1)) cross path Pi for the
first time at node h. We can then act on their arrival
times. Postponing the arrivals of these packets in the
busy period where p(h−1) is processed would increase
the departure time of m from node q. Hence, in the
worst case, p(h) = f(h+1) on any node h ∈ Pi. Thus,
we get:

W q
i (t) =

∑q
h=1

(∑f(h+1)
g=f(h) Ch

τ(g)

)
−Cq

i +(q−1) ·Lmax.



We now evaluate the maximum delay incurred by
packet m due to packets with a priority higher than
or equal to this of m. This delay is equal to:

Xi,t =
∑q

h=1(
∑f(h+1)

g=f(h) Ch
τ(g)) − Cq

i . By definition, for

any node h ∈ [1, q), f(h + 1) is the first packet with
a priority higher than or equal to this of m, processed
in bph+1 and coming from node h. Moreover, f(h + 1)
is the last packet considered in bph. Let us show that
in this sum, if we count packets processed in bph and
bph+1, only f(h + 1) is counted twice.

Lemma 1 For any flow τj, if there exists a node
h ∈ Pi with a packet m′ ∈ (f(h), f(h + 1)), then for
any node h′ ∈ Pi − {h}, m′ /∈ (f(h′), f(h′ + 1)).

Proof: We consider that flows τi and τj are in the
same direction. Indeed, when flows are in reverse di-
rections, the proof is obvious.

We first show that if ∃h ∈ Pi such that any packet
m′ of flow τj is processed in (f(h), f(h+1)) on node h,
then there is no node h′ ∈ Pi with h′ visited after h by
τj such that m′ ∈ (f(h′), f(h′ + 1)). Indeed, by defini-
tion, m′ arrives before f(h + 1) on node h. As packets
are scheduled fifo, m′ leaves node h before f(h + 1).
Moreover, links being fifo, m′ arrives on node h + 1
before f(h+1). Then, m′ starts its transmission before
f(h+1) on node h+1. As on this node, the busy period
considered starts with f(h+1), the processing of m′ is
completed at the latest at the arrival of f(h+1). Hence
m′ /∈ (f(h + 1), f(h + 2)). In a similar way, we show
that packet m′ /∈ (f(h′), f(h′ + 1)), for any h′ ∈ Pi,
visited after h by τj .

We then show that packet m′ /∈ (f(h′), f(h′ + 1)),
for any h′ ∈ Pi, visited before h by τj . We proceed by
contradiction. If such a node h′ ∈ Pi, visited before
h by τj would exist, packet m′ would not belong to
(f(h), f(h + 1)), by the first part of this proof. Hence
a contradiction. Hence the lemma.

We now distinguish the nodes visited before slowi,
the node slowi itself and the nodes visited after slowi.
By definition, for any node h ∈ [1, slowi), f(h + 1) is
the first packet with a priority higher than or equal to
this of m, processed in bph+1 and coming from node h.
Moreover, f(h+1) is the last packet considered in bph.
Hence, if we count packets processed in bph and bph+1,
only f(h + 1) is counted twice. In the same way, for
any node h ∈ (slowi, q], f(h) is the first packet with a
priority higher than or equal to this of m, processed in
bph and coming from node h−1. Moreover, f(h) is the
last packet considered in bph−1. Thus, f(h) is the only
packet counted twice when counting packets processed
in bph−1 and bph. Hence, Xi,t is equal to:

slowi−1∑
h=1

⎛
⎝

f(h+1)−1∑
g=f(h)

Ch
τ(g) + Ch

τ(f(h+1))

⎞
⎠

︸ ︷︷ ︸
nodes visited before slowi

+

f(slowi+1)∑
g=f(slowi)

Cslowi

τ(g)

︸ ︷︷ ︸
node slowi

+

q∑
h=slowi+1

⎛
⎝

f(h+1)∑
g=f(h)+1

Ch
τ(g) + Ch

τ(f(h))

⎞
⎠

︸ ︷︷ ︸
nodes visited after slowi

− Cq
i .

Moreover, for any node h ∈ [1, q], for any packet g
visiting h, the processing time of g on node h is less

than or equal to C
slowτ(g),i

τ(g) . Then, as packets are

numbered consecutively from f(1) to f(q +1) = m, we
get inequation (1). In addition, by considering that
on any node h ∈ [1, slowi) (resp. h ∈ (slowi, q]), the
processing time of f(h + 1) (resp. f(h)) on node h is
less than or equal to maxj∈[1,n]{C

h
j } and in the worst

case, f(h + 1) is a packet coming from node h, we get
inequation (2).

Pslowi−1
h=1

“Pf(h+1)−1

g=f(h) C
h
τ(g)

”
+

Pf(slowi+1)

g=f(slowi)
C

slowi
τ(g)

+
Pq

h=slowi+1

“Pf(h+1)

g=f(h)+1
C

h
τ(g)

”
≤

Pm

g=f(1) C
slowi
τ(g)

(1)

Pslowi−1
h=1 C

h
τ(f(h+1)) +

Pq

h=slowi+1 C
h
τ(f(h))

≤
Pq

h=1
h�=slowi

max j∈[1,n]
firstj,i=firsti,j

˘
C

h
j

¯
(2)

By (1) and (2), we get:

Xi,t ≤
m∑

g=f(1)

C
slowτ(g),i

τ(g) −Cq
i+

q∑
h=1

h�=slowi

max
j∈[1,n]

firstj,i=firsti,j

{Ch
j }.

The term Xi,t is maximized when the workload
generated by such flows is maximum. Then, we get
Lemma 2.

Lemma 2 Let m be the packet of flow τi generated
at time t. When flows are scheduled FIFO, the max-
imum delay incurred by m due to packets having a
priority higher than or equal to this of m is bounded by:

P
j∈[1,n]

j �=i

“
1+

j
t+Ai,j

Tj

k”+
·C

slowj,i

j +
“
1+

j
t+Ji

Ti

k”
·Cslowi

i

+
P

h∈Pi
h�=slowi

max j∈[1,n]
firstj,i=firsti,j

˘
C

h
j

¯
− C

lasti
i , with:

Ai,j = Smax
firstj,i

i −Smin
firstj,i

j −M
firsti,j

i +Smax
firsti,j

j +Jj .



Proof: Packets of flow τj , j �= i, with Pj ∩ Pi �= ∅,
can delay m if they are generated at the earliest at

time a
firsti,j

f(firsti,j) − Smax
firsti,j

j − Jj and at the latest at

time a
firstj,i
m − Smin

firstj,i

j . Moreover, packets of flow
τi can delay m if they are generated at the earliest at
time −Ji and at the latest at time t. As the maxi-
mum workload generated by any flow τj in the interval
[a, b] on node h is equal to (1 + �(b − a)/Tj�)+ · Ch

j ,

a
firstj,i
m ≤ t + Smax

firstj,i

i and a
firsti,j

f(firsti,j)
≥ M

firsti,j

i ,

we get the lemma.

We can now express the latest starting time of
packet m on its last visited node.

Property 1 Let m be the packet of flow τi generated
at time t. When flows are scheduled FIFO, the latest
starting time of packet m on its last node visited,
denoted W lasti

i,t , is bounded by:

P
j∈[1,n]

j �=i

“
1+

j
t+Ai,j

Tj

k”+
·C

slowj,i

j +
“
1+

j
t+Ji

Ti

k”
·Cslowi

i

+
P

h∈Pi
h�=slowi

max
j∈[1,n]

firstj,i=firsti,j

˘
C

h
j

¯
− C

lasti
i + (|Pi| − 1) · Lmax,

with:

Ai,j = Smax
firstj,i

i −Smin
firstj,i

j −M
firsti,j

i +Smax
firsti,j

j +Jj .

Proof: By Lemma 2.

4.2. Worst case end-to-end response time

The worst case end-to-end response time of the
packet of flow τi generated at time t is equal to:
W lasti

i,t +Clasti

i −t. The worst case end-to-end response
time of flow τi is then equal to:

Ri = max
t≥−Ji

{
W lasti

i,t + Clasti

i − t
}

.

In order not to test all times t ≥ −Ji, we establish
Lemma 3.

Lemma 3 Let us consider a flow τi following a
path Pi. When flows are scheduled FIFO, we have for
any time t ≥ −Ji:

W lasti

i,t+Bslow
i

≤ W lasti

i,t + Bslow
i ,

with: Bslowi

i =
∑

j∈[1,n]�B
slow
i /Tj	 · C

slowj,i

j .

Proof: As ∀ (a, b) ∈ R
+2

, �a + b� ≤ �a�+ �b	, we have
W lasti

i,t+Bslow
i

bounded by:

P
j∈[1,n]

j �=i

“
1 +

j
t+Bslow

i +Ai,j

Tj

k”+
· C

slowj,i

j

+
“
1 +

j
t+Bslow

i +Ji

Ti

k”
· Cslowi

i

+
P

h∈Pi
h�=slowi

max
j∈[1,n]

firstj,i=firsti,j

˘
C

h
j

¯
− C

lasti
i + (|Pi| − 1) · Lmax

≤
P

j∈[1,n]
j �=i

“
1 +

j
t+Ai,j

Tj

k”+
· C

slowj,i

j

+
“
1+

j
t+Ji

Ti

k”
·Cslowi

i +
P

j∈[1,n]

l
Bslow

i
Tj

m
· C

slowj,i

j

+
P

h∈Pi
h�=slowi

max
j∈[1,n]

firstj,i=firsti,j

˘
C

h
j

¯
− C

lasti
i + (|Pi| − 1) · Lmax

≤ W
lasti
i,t + Bslow

i .

From the worst case analysis given in Section 4.1 and
the previous lemma, we get the following property.

Property 2 When flows are scheduled FIFO, the
worst case end-to-end response time of any flow τi is
bounded by:

Ri = max−Ji≤t<−Ji+Bslow
i

{W lasti
i,t + C

lasti
i − t}, with:

W
lasti
i,t =

P
j∈[1,n]

j �=i

“
1+

j
t+Ai,j

Tj

k”+
·C

slowj,i

j +
“
1+

j
t+Ji
Ti

k”
·Cslowi

i

+
P

h∈Pi
h�=slowi

max
j∈[1,n]

firstj,i=firsti,j

˘
C

h
j

¯
−C

lasti
i + (|Pi| − 1) ·Lmax ;

Ai,j = Smax
firstj,i

i −Smin
firstj,i

j −M
firsti,j

i +Smax
firsti,j

j +Jj

and Bslow
i =

P
j∈[1,n]

l
Bslow

i
Tj

m
· C

slowj,i

j .

Proof: By Property 1 and Lemma 3.

5. Example

In this section, we give an example of bounds on the
end-to-end response times of sporadic flows, when these
flows are scheduled according to fifo. We consider
that the network meets: Lmax = Lmin = 1. We focus
on the flow set {τ1, τ2, τ3, τ4, τ5}. All these flows have
a period equal to 36 and enter the network without
jitter. The maximum processing time of any packet of
flow τi on node h ∈ Pi is assumed to be equal to 4.
Table 1 gives the end-to-end deadline of each flow.



Table 1. End-to-end deadlines

τ1 τ2 τ3 τ4 τ5

Di 40 45 55 55 50

The path taken by each flow is defined as follows:

• P1 = {1, 3, 4, 5} • P2 = {9, 10, 7, 6}
• P3 = {2, 3, 4, 7, 10, 11} • P4 = {2, 3, 4, 7, 10, 11}
• P5 = {2, 3, 4, 7, 8}.

Table 2 presents the worst case end-to-end response
time of any flow τi, i ∈ [1, 5], applying Property 2. This
table also presents the worst case end-to-end response
times obtained with the holistic approach. The benefit
provided by the trajectory approach is very important,
as we get an improvement higher than 25%. Conse-
quently, all flows meet their end-to-end deadline with
the trajectory approach, none with the classical one.

Table 2. End-to-end response times

τ1 τ2 τ3 τ4 τ5

trajectory approach 31 43 53 53 44
holistic approach 43 63 73 73 56

6. Application to the EF class

In this section, we show how to apply the results
given in Section 4 to the ef class in a DiffServ model.

6.1. DiffServ architecture

In the DiffServ architecture [7], traffic is distributed
over a small number of classes. Packets carry the code
of their class. This code is then used in each DiffServ-
compliant router to select predefined packet handling
functions (in terms of queuing, scheduling and buffer
acceptance), called Per-Hop Behavior (phb). Nodes
at the boundary of the network (ingress and egress
routers), perform complex treatments (packet classi-
fication and traffic conditioning) whereas nodes in the
core network (core routers), forward packets according
to their class code.

Several per-hop behaviors have been defined:

• the Best-Effort Forwarding phb is the default one.

• the Assured Forwarding (af) phb group [8]. Four
classes, providing more or less resources in terms of
bandwidth and buffers, are defined in the af ser-
vice. Each class manages three different drop priori-
ties representing the relative importance of a packet
in the class.

• the Expedited Forwarding (ef) phb [9]. Traffic
belonging to the ef service is delivered with very
low latency and drop probability, up to a negotiated
rate. This service can be used for instance by
ip telephony.

We consider that a DiffServ-compliant router imple-
ments best-effort, af and ef classes. When a packet
enters the node scheduler, it is scheduled with the other
packets of its class waiting for processing. As illus-
trated by Figure 3, the ef class is scheduled with a
Fixed Priority (fp) queuing scheme with regard to the
other classes.

Figure 3. DiffServ-compliant router

Thus, the ef class is served as long as it is not
empty. Packets in the best-effort and af classes are
served according to Weighted Fair Queuing (wfq) [6].
In this way, ef traffic will obtain low delay thanks to
fp scheduler and af traffic will receive a higher band-
width fraction than best-effort thanks to wfq. Notice
that resources provisionned for the ef class that are
not used are available for the other classes.

6.2. EF class

Within the ef class, flows are scheduled fifo. More-
over, the assumption generally admitted in a network
is that packet scheduling is non-preemptive. Then, the
scheduler of the node considered waits for the comple-
tion of the current packet transmission (if any) before
selecting the next packet.

The definition of the ef phb as given in [9] can
be used to predict qualitative end-to-end delay guar-
antees. Beyond this definition, end-to-end guarantees
are crucial for delay and jitter sensitive applications.
Those QoS guarantees must be provided without re-
quiring per flow processing in the core routers. Oth-
erwise the solution would not be scalable. [10] shows
that the worst case delay jitter for the ef traffic can be
large in case of large networks.

The use of the fifo scheduling algorithm for pri-
ority traffic in a network based on traffic aggregation
(e.g. all flows in the ef class share a single fifo queue)
has been discussed in [11]. Nevertheless, the found de-
lay bound is valid only for reasonably small ef traffic
utilization.



In [12], a hybrid admission control scheme has been
proposed, based on traffic shaping at border routers,
to provide QoS guarantees in a DiffServ environment.
The decision of the admission control is based on
measurements realized to estimate resource allocation,
leading to a higher utilization efficiency. As we are
interested in deterministic guarantees, the admission
control takes into account the worst case response times
and jitters.

We see in the following subsection how to provide
deterministic and quantitative guarantees on the end-
to-end response times of flows in the ef class.

6.3. Application of our results

We can apply our results by considering the non-
preemptive effect due to packets not belonging to the
ef class.

The following lemma gives the maximum delay due
to the non-preemption incurred by any packet of the
ef class. For this, we denote:

• j ∈ EF if flow τj belongs to the ef class;

• δi the maximum delay due to the non-preemption
incurred by any packet of flow τi, i ∈ EF , on its
path Pi.

Lemma 4 Let τi, i ∈ EF , be a flow following path
Pi = [firsti, ..., lasti]. When flows are scheduled FIFO

within the EF class, the maximum delay incurred by
the packet of flow τi due to the non-preemption is
bounded by:

“
max
j /∈EF

firstj,i=firsti

{Cfirsti
j } − 1

”+

+
P

h∈Pi
h�=firsti

“
max
j /∈EF

firstj,i=h

{Ch
j } − 1; max

j /∈EF
h∈(firstj,i,lastj,i]

firstj,i �=firsti,j

{Ch
j } − 1 ;

1α · ( max
j /∈EF

h∈(firstj,i,lastj,i]

firstj,i=firsti,j

{Ch
j } − C

prei(h)
i + Lmax −Lmin)

”+

,

where maxj /∈EF {C
h
j } = 0 and 1α = 0 if there exists no

flow not belonging to the ef class. Otherwise, 1α = 1.

Proof: By induction on the number of nodes vis-
ited. On the first node visited, Lemma 4 is true.
Assuming that Lemma 4 is true at rank h. We
prove it at rank h + 1. Let us consider packet m
of flow τi, i ∈ EF , generated at time t. Due to
the non-preemption, on any node h ∈ (firsti, lasti],
a packet m′ belonging to a flow τj , j /∈ EF , can delay
the execution of m if m arrives on node h while m′ is

being processed. Then, we have to distinguish three
cases:

• Node h is the first node of Pi visited by flow τj

(firstj,i = h). Hence, the maximum delay incurred
by m due to flow τj meets: Ch

j − 1;

• Node h is not the first node of Pi visited by flow τj

(h ∈ (firstj,i, lastj,i]) and firstj,i �= firsti,j .
Hence, the maximum delay incurred by m due to
flow τj meets: Ch

j − 1;

• Node h is not the first node of Pi visited by flow τj

(h ∈ (firstj,i, lastj,i]) and firstj,i = firsti,j .
Packet m′ leaves node prei(h) at the latest at

time W
prei(h)
i,t . Then, m′ ends its processing on

node h at the latest at time W
prei(h)
i,t + Lmax + Ch

j .
As packet m arrives on node h at the earliest at

time W
prei(h)
i,t + C

prei(h)
i + Lmin, the maximum de-

lay incurred by m directly due to flow τj meets:

max
(
0 ; Ch

j − C
prei(h)
i + Lmax − Lmin

)
.

Moreover, Ch
j ≤ maxj /∈EF {C

h
j }. Hence the lemma.

Then, we get the following property on the worst case
end-to-end response time of any flow belonging to the
ef class.

Property 3 When flows are scheduled FIFO within
the EF class, the worst case end-to-end response time
of any flow τi, i ∈ EF , is bounded by:

Ri = max−Ji≤t<−Ji+Bslow
i

{W lasti
i,t + C

lasti
i − t}, with:

W
lasti
i,t =

P
j∈[1,n]

j �=i

“
1+

j
t+Ai,j

Tj

k”+
·C

slowj,i

j +
“
1+

j
t+Ji
Ti

k”
·Cslowi

i

+
P

h∈Pi
h�=slowi

max
j∈[1,n]

firstj,i=firsti,j

˘
C

h
j

¯
−C

lasti
i +(|Pi| −1) ·Lmax +δi;

Ai,j = Smax
firstj,i

i −Smin
firstj,i

j −M
firsti,j

i +Smax
firsti,j

j +Jj;

Bslow
i =

P
j∈[1,n]

l
Bslow

i
Tj

m
· C

slowj,i

j and

δi =
“

max
j /∈EF

firstj,i=firsti

{Cfirsti
j } − 1

”+

+
P

h∈Pi
h�=firsti

“
max
j /∈EF

firstj,i=h

{Ch
j } − 1; max

j /∈EF
h∈(firstj,i ,lastj,i]

firstj,i �=firsti,j

{Ch
j } − 1 ;

1α · ( max
j /∈EF

h∈(firstj,i,lastj,i]

firstj,i=firsti,j

{Ch
j } − C

prei(h)
i + Lmax − Lmin)

”+

.

Proof: By Property 2 and Lemma 4.



7 Conclusion

In this paper, we have shown how to compute the
worst case response times of flows scheduled with fifo,
using the trajectory approach. This approach consid-
ers only realistic scenarios, unlike the holistic approach
that leads to pessimistic results. An example has been
given to illustrate the computation.

An interesting application of these results lies in the
deterministic quantitative guarantee provided to the
Expedited Forwarding (ef) class in a DiffServ archi-
tecture, assuming that the ef class is scheduled with
the highest priority with regard to the other classes and
flows within the ef class are scheduled fifo.
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