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Abstract

We assume a sensor network with data-centric stor-
age, where sensor data is stored within the sensor net-
work and ad hoc queries are disseminated and processed
inside the network. In such an environment, there are
often similarities among submitted queries. Using cur-
rent solutions, similar queries may have to go through
the same expensive query processing steps thus wasting
energy. In this paper, we propose a similarity-aware
query processing scheme (SAQP) that materializes pre-
vious query results within the sensor network and uti-
lizes these materialized results to answer future similar
queries. Through simulation, we demonstrate that our
SAQP scheme reduces energy consumption on queries
with negligible increase in response time, and without
compromising the quality of data.

1 Introduction

In typical sensor network applications, sensors are
deployed to monitor changes in the environment. For
example, in disaster management, sensors provide data
for the detection of events such as fire, gas leak, earth-
quake, etc.. When a disaster happens, first responders
are sent out to the disaster area to evaluate the situ-
ation. As such, they are mobile agents who communi-
cate with nearby sensor nodes using hand-held devices
to get valuable sensor readings for assessment and plan-
ning. During the response, one agent may issue a query
“list all regions with temperature above 200F and light
levels between 20 and 30” and another agent might is-
sue a similar query “list all regions with temperature
above 250F and light level between 25 and 35”.

In this scenario, the queries are typically ad hoc and
could be issued through any sensor node within the
communication range of the mobile agents. One way
to handle such queries is to send all sensor data and
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queries to a base station. However, in most cases the
base station would be located at a place that is far
away from regions where sensors are deployed. Given
that energy is the most valuable and scarce resource
in sensor networks, the base-station approach is ex-
tremely energy-inefficient for two reasons. First of all,
typically ad hoc queries only request small portions of
sensor data generated over a short period, thus trans-
ferring sensor data that would never be requested to
a faraway base station is a waste of energy. Secondly,
all queries need to be forwarded to the base station
and query results need to be sent back from the base
station, which would be energy-consuming because of
the long distance between the base station and sen-
sor nodes. Given that sensor nodes are close to each
other, even if a base station exists, the most suitable
approach to answer such queries is to use data centric
storage (DCS) schemes [1, 2, 6, 8, 10]; under DCS, sen-
sor data (in the form of events) are mapped to specific
sensor nodes, where data are stored and retrieved from.

However, not all data are created equal; skewed ac-
cess patterns are part of nature. In a disaster manage-
ment application, it is expected that users will request
more frequently certain data items, making them more
”hot” (because, for example, they are from the build-
ing that is on fire). This uneven interest from users
results in similarities among the queries submitted by
users. Current DCS schemes cannot exploit similarities
that exist among queries (and would have enabled them
to save energy during query processing). Unaware of
the similarities, the underlying network needs to pro-
cess similar queries repeatedly, which involves routing
the query to all relevant sensor nodes where events are
stored, and returning the query results back from those
nodes to the query issuer.

This observation motivates us to design a similarity-
aware query processing (SAQP) scheme, which can an-
swer queries in an energy-efficient way by exploiting
the similarities among different queries issued to DCS
sensor networks. The basic idea of our proposal is to
replicate results (events) for previously issued queries
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as materialized views in the network and utilize the ma-
terialized views to answer similar queries. In database
systems, materialized views are used to reduce query
processing cost in terms of CPU time. Our goal of
caching query results is also to reduce query process-
ing cost, however, in terms of energy consumption. Our
proposed scheme is a general query processing scheme
that works for any type of queries, e.g., range, aggre-
gation and/or group-by.

In summary, our contribution is three-fold:

1. We propose materialized views in sensor networks
which dynamically replicate query results and a
query processing algorithm that utilizes the mate-
rialized views when processing similar queries.

2. We formulate the candidate selection problem,
i.e., to find an optimal subset of candidate sen-
sor nodes to answer a query, as an optimization
problem. We then design a greedy algorithm to
solve the problem.

3. We experimentally evaluate the performance of
SAQP, comparing it to state-of-the-art query pro-
cessing schemes for sensor networks. Our simula-
tion results demonstrate that SAQP reduces en-
ergy consumption on queries with negligible in-
crease in response time, and without compromis-
ing the quality of data.

We explore related work in the next section. After
we explain the details of SAQP in Section 3, we present
its evaluation in Sections 4 and 5.

2 Related Work

Many data dissemination and query processing ar-
chitectures in sensor networks have been proposed, e.g.,
[2, 4, 6, 7, 8, 9, 10, 11]. These proposals can be grouped
into two categories based on the type of queries sup-
ported, i.e., continuous or ad-hoc queries, and on the
location where the data are stored, i.e., within or out-
side the sensor network.

The first category assumes that there is a base sta-
tion in the sensor network and sensor data are sent
back to the base station for further processing. Under
this category, the storage capability of sensor nodes
has been completely ignored. Since communication is
more energy-consuming compared to local computa-
tion, blindly sending all data back to the base station
is not a good approach in general. In-network aggre-
gation [3, 4, 7, 9, 11] could reduce energy consumption
by aggregating data en route. However, it works typi-
cally for continuous aggregation queries such as SUM,

MIN and MAX while it is not quite suitable for ad hoc
queries. Besides, a setup phase is required such that
queries are flooded from the base station to the network
and then a routing tree rooted at the base station is
built. If the duration of the query is not long enough,
the setup phase will dominate the cost.

The other category is data centric storage (DCS)
[1, 2, 6, 8, 10]. Instead of sending data to a base station
and storing them there, sensor data are stored at con-
solidator sensor nodes, in the form of high-level events.
Ad-hoc queries are then submitted to the network and
are responded to by sensor nodes where events satis-
fying the query are stored. Among these approaches,
GHT [8] uses a hash function to hash each type of event
to a geographic location. For each event type, the sen-
sor node that is closest to the corresponding hashed
location becomes the consolidator sensor node of that
event type. GHT employs a geographical routing pro-
tocol, GPSR [5], to route events and queries to the
consolidator sensor node. DIFS [2] uses a geograph-
ically bounded hash function to determine the loca-
tions where events are stored and builds a distributed
hierarchical index based on quad trees to direct range
queries. DIM [6] uses k-d trees to determine the con-
solidator sensor node. ZS [1] addresses storage load
balance issues in DIM.

These DCS schemes are oblivious to the similarities
among queries; processing each individual query will
go through all the necessary steps repeatedly, which
might be costly and redundant. Our SAQP scheme
differs from current DCS schemes by considering the
similarities among queries and utilizing materialized
views to process similar queries. To the best of our
knowledge, no previous work addresses the problem of
using materialized query results in sensor networks.

3 Similarity Aware Query Processing

In this section, we present our similarity-aware
query processing (SAQP) scheme. For simplicity, we
use range queries to demonstrate our idea.

3.1 System Model

In DCS schemes, sensor data is stored in the form of
high-level events, which are abstractions of raw sensor
readings. Each event type consists of a set of attributes,
corresponding to phenomena detected by sensors (e.g.,
temperature and humidity), timing parameters (e.g.,
duration of events, etc.) or spatial dimensions (e.g.,
location of events, etc.) [2]. Looking at events rather
than raw sensor readings is preferred, because events



carry with them semantics and allow observers to im-
mediately recognize interesting phenomena (for exam-
ple when an object is detected or a region is hot).

We follow the same data abstraction used in DCS
schemes. In our system, events are stored locally at the
node where they are detected (we call this node original
storage node, or O-node) and indexes to these events
are stored at an index node (or I-node). As opposed
to GHT, we are using a hash function to determine
the index node rather than the consolidator node that
stores all events. The index of an event is based on
the attributes of the event that would be used in range
queries, thus it is expected to be small compared to the
size of the event. The I-node also keeps a directory of
Materialized views (M-views). Each M-view directory
entry is associated with a past query, which includes
the Q-node ID from which the query is submitted and
the range of that query. Hereafter, we refer to the
nodes associated with M-views as M-view nodes, or
M-nodes, for short. Next, we describe the structure of
the event, index, and M-view directory entries using
the hot region event example.

An event consists of four parts: O-nodeId, scalar
attributes, timestamp, and other event details. For
the hot region event, we assume that temperature is
the only scalar attribute. Event details may include
information such as heat gradient, the size of the hot
region, coordinates of the boundary points of the hot
region, etc. The O-nodeId indicates where the event is
detected and stored and the timestamp indicates when
the event was detected. New events do not replace
old events; old events are dropped based on an aging
scheme or when they are no longer needed.

An index entry includes an O-nodeId (i.e., the O-
node where the event is stored), scalar attributes (i.e.,
interesting attributes of the event that will be used in
queries), and the entry’s generation timestamp.

An M-view directory entry contains three parts:
an M-nodeId (i.e., the M-node where the M-view is
stored), a range (i.e., attribute ranges of the events in
the M-view), and the entry’s generation timestamp.

By associating a timestamp to M-View entries, it
is not necessary to invalidate an M-View entry if a
new event would fall into the range covered by that
M-View entry; without the timestamp, this is needed
since the new event is not materialized. An M-view cre-
ated at time t for range [a, b] only contains complete
set of events within range[a, b] up to time t. This time
dimension is natively treated as another range query
predicate which allows for maximum utilization of the
M-Views scheme.

Although in this paper we focus on a single index
node for simplicity, in order to make the system fault-

tolerant, the I-node could be replaced by a set of nodes
(a cluster). For example, such a cluster can be formed
using the Perimeter Refresh Protocol (PRP) (proposed
in GHT [8]). Only one node (cluster head) in the clus-
ter is responsible for processing queries. However, us-
ing the same protocol, a refresh packet is circulated
among the cluster, which ensures a consistent view
among all nodes in the cluster and in the case that
the cluster head fails, another node could be elected
to be the new cluster head. Further, using a set of
I-nodes instead of one node would also reduce the stor-
age requirement imposed on a single node. Under such
a setup, each I-node would be responsible only for data
in a subset of the whole data range.

3.2 Query Processing Scheme

In SAQP, the general procedure of query processing
is as follows. When an I-node receives a range query
from the Q-node, it examines each entry in its M-view
directory to see whether its range overlaps with the
range of the new query. If such an entry is found,
the M-node associated with the entry is considered as
a candidate to answer the query. If there are many
such entries found, the M-nodes corresponding to these
entries are all considered as candidates. In addition,
the I-node examines the indexes to O-nodes. Those O-
nodes storing at least one event that satisfies the query
are also considered as candidates. The I-node then
forms a responder set by selecting a set of nodes from
the candidate set based on some criteria (see Sec 3.4,
3.5). Once the responder set is determined, the I-node
generates an M-view directory entry for this query and
forwards the query to all responders. The responders
in turn send the qualified events directly to the Q-node,
which then materializes the query results as an M-view.

3.3 Split a Query

Ideally, when the I-node receives a query, we expect
to find an M-view entry such that its range is a su-
perset of the query range and thus the corresponding
M-node alone can answer the query completely. How-
ever, in most cases the range of an M-view entry might
only partially overlap with the query range or only be
a subset of the query range. In these situations, the
system needs to find more than one M-node to answer
the query. If two M-nodes are selected as responders,
it is possible that the M-view range associated with
the two M-nodes overlaps with each other, thus the I-
node should send a modified query to the two M-nodes
to avoid duplicates (in other words, split the original
query). For example, suppose we have a query on range
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Figure 1. Splitting a 2-D range r with range r5

[10, 20] and two M-view entries with ranges [5, 14] and
[12, 21]. If the two M-nodes are selected as responders,
because range [5, 14] overlaps with range [12, 21], both
of them will send events within range [12, 14] to the
Q-node, which results in duplicates and wastes energy,
if it is not dealt with.

For simplicity, let’s consider an one-dimensional
range query first. Given the query range [a, b] and
the range of an M-view entry [x, y], there are three
cases: (1) [a, b] contains [x, y], (2) [x, y] contains [a, b],
or (3) [a, b] intersects with [x, y].

In the first case, the range [a, b] could be split as
[a, x], [x, y] and [b, y]. The query is split into two
queries: Q1 on range [x, y] and Q2 on range [a, x] ∨
[b, y]. In the second case, there is no need to split the
query. Finally, in the last case, either x < a ≤ y ≤ b
or a ≤ x ≤ b < y. Q2 will be simplified to one term.
After the query split, Q1 will be sent to the M-node
associated with the M-view entry and Q2 is used to
evaluate other candidates further.

In the case of multi-dimensional range queries, the
splitting strategy is the same. The query range is split
into disjunctions of conjunctions of ranges. However, as
the dimensionality increases, the number of disjunction
terms may increase dramatically. For example, Fig-
ure 1 shows the result of splitting a two dimensional
query range using the above method where region r
represents the query range and region r5 represents the
range of the M-view entry. After splitting, Q1 contains
r5 and Q2 consists of eight small ranges. Even if we
combine the regions on the side (r2, r4, r6 and r8) with
the regions at the corner (r1, r3, r7, r9), there are still
at least four subregions generated after one split. This
clearly does not scale to the number of splits.

One observation is that after a query split, the infor-
mation that needs to be forwarded to other responders
is the query range not covered by the range used for
the split. Thus, we can represent a split region by two
ranges, the range used for the split and the query range.
For instance, to represent the above split region, we
only need to specify two ranges r and r5, i.e., it could
be represented with r − r5. As a result, the size of the
query forwarding message would only increase linearly
with the number of splits.

3.4 Candidate Selection

The candidates to answer a query consist of M-nodes
whose M-view range overlaps with the query range and
O-nodes with indexes that fall within the query range.
The candidate selection problem is to select among
these candidates, a set of sensor nodes that can an-
swer the query completely, with minimum energy cost.
These selected sensor nodes form the responder set,
which satisfies the following two requirements. First,
the query can be answered completely by nodes in the
responder set. Second, it should consume less energy
for processing the query, i.e., forwarding and answer-
ing the query, compared with the basic approach of
forwarding query to and getting results from only O-
nodes in the candidate set.

Let the set of candidates be {N1, N2, ..., Nn}. Each
candidate is associated with a cost, which is the sum
of the energy cost of forwarding the query to the node
and the energy cost of returning the results back to
the Q-node. The associated cost could be represented
as {C1, C2, ..., Cn}. Each candidate is also associ-
ated with a disjunction of ranges, represented as r. For
example, for candidate N1, r1 = r11

⋃
r12

⋃
...

⋃
r1n,

where r11, . . . , r1n correspond to the ranges of M-views
or original events stored at N1. Note that for the range
of an original event, the lower bound equals to the up-
per bound. The associated disjunction of ranges is thus
represented as {r1, r2, . . . , rn}.

The candidate selection problem becomes an opti-
mization problem in which we want to minimize

Total cost = x1 ∗ C1 + x2 ∗ C2 + ... + xn ∗ Cn (1)

where the coefficients, i.e., x1, x2, ..., xn, represent
the percentage of the range in a M-View that will be
used to answer a query and are subject to following
condition:

x1 ∗ r1
⋃

x2 ∗ r2
⋃

...
⋃

xn ∗ rn ≥ r (2)

3.5 Candidate Selection Algorithm

We propose a greedy algorithm to solve the can-
didate selection problem (Algorithm 1), which works
as follows. First we find all events that satisfy the
query based on the indexes of events (initialization of
set Events in Algorithm 1). An O-node will be consid-
ered as a candidate if at least one event in set Events
is reported by this O-node. All such O-nodes form the
first candidate set (initialization of set CandOnodes).
We find all M-views that overlap with the query range
and order the corresponding M-nodes based on their



Algorithm 1 Greedy Candidate Selection Algorithm
Inputs: Responder = {}, Q = Query
Events = {x | x is an event that satisfies the Q. }
CandOnodes = {x | ∃y ∈ Events and x is the O-node storing y}
CandMnodes = {x | x is an M-node and ∃ an M-view stored at
x which overlaps with the range of the Q. }
Local Variables: cost, costWithoutMview, costWithMview,
nid, CandOnodes’, Events’
Procedure:

1: cost = 0
2: while CandMnodes �= ∅ do
3: costWithoutMview = cost of forwarding Q to all nodes

in CandOnodes and returning events in set Events from
those nodes to Q-node

4: nid = the closest node (to Q-node) in CandMnodes
5: CandMnodes = CandMnodes - {nid}
6: Events’ = {x |x ∈ Events∧ x is materialized at node nid}
7: Events = Events - Events’
8: CandOnodes’ = {x | ∃y ∈ Events′∧ x is the O-node that

stores y}
9: CandOnodes = CandOnodes - CandOnodes’

10: Split the Q to Q1 and Q2 according to nid’s M-view
11: costWithMview = cost of forwarding Q1 to node nid +

cost of forwarding Q2 to all nodes in CandOnodes + cost of
returning events in Events’ from node nid to Q-node + cost
of returning events in Events from nodes in CandOnodes
to Q-node

12: if costWithMview < costWithoutMview then
13: Responder = Responder ∪ {nid}
14: cost += cost of forwarding Q1 to node nid + cost of

returning events in set Events’ from node nid to Q-node
15: replace Q with Q2 for further evaluation
16: else
17: Event = Event ∪ Event’
18: CandOnodes = CandOnodes ∪ CandOnodes’
19: continue using the Q for further evaluation
20: end if
21: end while
22: Responder = Responder ∪ CandOnodes
23: cost += cost of forwarding Q to all nodes in CandOnodes

and returning events in Events from those nodes to Q-node

distance to the Q-node, which forms the second candi-
date set (initialization of set CandMnodes). M-nodes
closer to the Q-node have higher priority. We then re-
move the M-node with the highest priority from set
CandMnodes (Lines 4-5). By doing this, we intend
to select this M-node to be a responder. Some of the
O-nodes can then be removed from set CandOnodes,
since the M-views stored at the selected M-node might
contain events stored on them (Lines 6-8). We then
compare the cost of using this M-node as a responder
to the cost of not using it. If using this M-node as a re-
sponder reduces the cost, the M-node will be selected as
a responder (Lines 12-14), otherwise we take back the
changes to set CandOnodes (Lines 16-17). The proce-
dure continues until the CandMnodes set is empty. At
the end, if set CandOnodes is not empty, all O-nodes
in it are added into the responder set (Line 21).

The algorithm might not always be able to provide

an optimal solution, however, the decision made at each
step is suboptimal which leads to a reasonable selection
of candidates. Our experimental results verified that
the algorithm indeed saves energy (Section 5).

3.6 Quality of Data (QoD)

The proposed SAQP scheme is designed to save en-
ergy (and performs as expected). Interestingly enough,
it achieves this without compromising the Quality of
Data (QoD) returned to users (compared to GHT). In
fact, in some instances, SAQP offers better QoD than
GHT. To illustrate this, consider a scenario that one
node detected two consecutive events and one query is
issued after the two events are detected. Ideally both
events should be returned to the query issuer (assum-
ing both events satisfy the query). One case is that the
first store-index (or store-event, under GHT) message,
the query and the second store-index (or store-event,
under GHT) message reach the I-node (or consolidator
node, under GHT) in the proper order. Under GHT,
the query issuer will get only the first event since the
second event is not stored yet. However, under SAQP
the query issuer would be able to get both events if this
O-node is selected as a responder (because no M-view
is available to cover the first event detected by this O-
node). Thus, SAQP could achieve a better QoD. In all
other cases, SAQP provides the same QoD as GHT.

4 Experimental Setup

We compare our scheme with the original GHT ap-
proach and an Index-based GHT approach (IGHT).
Under the GHT approach the events are sent to the
consolidator node and upon query request the events
are returned to the query issuer from the consolidator
node directly. Under the IGHT approach, events are
stored locally and indexes to the events are sent to the
consolidator node. Whenever a query is sent to the
consolidator node, a set of nodes that contain events
which satisfy the query is first determined based on the
indexes. The query is then forwarded to those nodes to
be answered. We compare our scheme with IGHT to
show that simply introducing an index node does not
work well, as confirmed by the experimental results.

We use two performance metrics to compare the
three schemes: total energy consumption and average
query response time. The total energy consumption in-
cludes the energy consumed in storing the events and
also the energy consumed in processing queries. We use
a well-known energy model [3], where the energy cost
of sending/receiving a message with size k bits between



Symbol Definition Setting

N Num of Sensor Nodes 400

X * Y Size of the Sensing Region 400m ∗ 400m

Etrans Transmitter Electronics 50nj/bit

Erec Receiver Electronics 50nj/bit

Eamp Transmit Amplifier 0.1nj/bit/m2

E number of events 100

Q number of queries 100

ESize event size 8bytes

RSize range size 4bytes

ISize index size 4bytes

D domain of the scalar attribute 0-100

Zs skewness of zipf distribution 0.5

C Confining factor 0.5

∆t time interval 50

Table 1. Default simulation parameters

two sensor nodes with distance d is:

Esend = Etrans ∗ k + Eamp ∗ d2 (3)

Ereceive = Erec ∗ k (4)

where Etrans and Erec is the energy consumed in en-
abling the transmitter and receiver electronics respec-
tively; Eamp is the energy consumed in the amplifier.
In the paper, the response time is defined as the time
elapsed from issuing a query to the network until re-
ceiving the first event in the query results. We estimate
the response time as the number of routing hops.

We designed our workload as follows. At each time
tick, there is either one event or one query generated
from a randomly selected sensor node. Each event is
associated with the node from which it is generated
and the timestamp at which it is generated, and also
includes a scalar attribute. The event size varies. The
value of the scalar attribute follows a uniform distribu-
tion within its data domain.

In order to control the spatial locality of queries, we
use a confining factor C. If X × Y defines the size of
the whole sensing region, then, for a given factor C,
all queries are generated from a region centered at the
center of the sensing region with size (C ∗X)× (C ∗Y ).
A smaller C means a higher query spatial locality.

The range of a range query has the following form:
(vlow : vhigh, t-∆t : t). It represents a two dimen-
sional range query with the first dimension to be the
scalar attribute and the second dimension to be the
time. Clearly, SAQP not only has the ability to support
multi-dimensional range queries, but also treats times-
tamps natively as one of the query dimensions. The
range on the first dimension of the generated queries
has fixed length and the center of the range follows a
zipf distribution with varying skewness parameter Zs.

A smaller Zs means that the distribution is less skewed,
i.e., when Zs = 0, the query center becomes uniformly
distributed. The range on the second dimension repre-
sents the user interest in all events generated in a time
frame [t-∆t : t]. We have set t to be the time when the
query is initiated. However, t can be set to any time
in the past if it is explicitly specified in a user query.
∆t could be set to any interval to reflect different user
interest as well. We have conducted experiments using
different ∆t values to observe this effect.

Table 1 shows the meaning and default values of
the system variables we have used in the simulation.
Note that ISize is at least 4 bytes if we assume 1 byte
for node id, 1 byte for scalar attribute and 2 bytes
for timestamp. ESize is at least 5 bytes since it con-
tains the event details and is greater than ISize, The
RSize is set to be 4 bytes since queries in the simulation
have 2 dimensions and each dimension has a low and
high value. During query splitting, the size of a query
message is determined by multiplying RSize with the
number of ranges included in the query.

5 Experimental Results

We have run a set of experiments to evaluate the
proposed SAQP scheme. Reported results correspond
to averages over 100 runs.

Typically, in all experiments, the total energy con-
sumption under SAQP is always less than the one us-
ing IGHT. The reason for this is straightforward. The
energy consumption under IGHT is the lower bound
on the energy consumption under SAQP since if no
M-nodes are selected as responders, SAQP is exactly
the same as IGHT. Under SAQP, an M-node will be
selected as a responder only if doing so saves energy
compared to IGHT.

The SAQP scheme also consumes less energy com-
pared to GHT. There are two major reasons. First,
the cost of storing events under GHT is higher than
the cost of storing indexes under SAQP. Second, in
GHT, when the distance from the consolidator node to
the Q-node is large, sending results from the consol-
idator node back to the Q-node is energy-consuming.
However under SAQP, query results may be returned
from a nearby M-node of the Q-node, thus reducing the
energy consumption dramatically. SAQP has slightly
higher response time than GHT, since GHT returns
results from the consolidator node to the query node
directly, whereas SAQP needs to forward the query to
responders. However, as we can see from the exper-
iments, the difference is only 2 or 3 hops where the
response time for GHT is at least 15 hops. This is
because it is often the case that a nearby M-node of
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Figure 2. Event size
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Figure 3. Query skewness
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Figure 4. Effect of ∆t

a Q-node is selected to answer part of the query. For
the same reason, SAQP has better response time than
IGHT in all experiments.
Event Size Figure 2 shows the total energy con-
sumption and the response time when the size of events
varies from 5 to 20 bytes. The total energy consump-
tion increases linearly in all three cases. However,
SAQP has a much smaller slope, which is expected
because serving query results from a nearby M-node
reduces the cost dramatically. Note that the index size
is 4 bytes, and if the event size is too close to it (e.g., 5
bytes), the SAQP scheme consumes slightly more en-
ergy than GHT does. However, this is acceptable, since
normally an index would be useful only if its size is suf-
ficiently smaller than the original data size.
Query Skewness Figure 3 shows the total energy
consumption and the response time when Zs changes
from 0 to 1. GHT and IGHT are not affected by
this parameter. However, under the SAQP scheme, if
queries are skewed (i.e., when user queries have a lot of
similarity), more queries can utilize the previous query
results from M-views. Thus, energy consumption for
SAQP decreases when Zs increases.
Time Interval Figure 4 shows the total energy con-
sumption and response time when the time interval
∆t varies. When ∆t is small, energy consumption un-
der SAQP is close to that under IGHT because there
will be fewer queries generated in a short time interval

and thus fewer M-nodes available to respond. How-
ever, when ∆t becomes larger, more queries will be
generated, and thus more M-nodes could be selected
to responde to a future query, resulting in the decrease
of consumed energy. Under all cases SAQP consumes
less energy than GHT.
Query Locality Figure 5 shows the results when
varying the confining factor C. C=1 is the case with-
out any query locality. A small confining factor results
in higher query locality, which is taken advantage by
SAQP to reduce energy consumption. The energy con-
sumed (SAQP vs. IGHT) is 25.7 mJ vs. 34.2 mJ
when C equals to 0.1 (25% improvement) and 38.2 mJ
vs. 41.0 mJ when C equals to 1 (6.8% improvement),
which means SAQP will save even more energy when
C is small. The reason for this is that there is a higher
chance to find nearby M-nodes to respond if queries are
more “crowded” within a confined region.
Number of Queries In Figure 6, the number of
queries varies from 100 to 1000. The increase of en-
ergy consumption under SAQP is much slower than the
other two schemes. This is expected as more queries
result in more M-Views created and higher chances to
(re)use an M-node to answer a query.
Number of Events In the last experiment we vary
the number of events from 100 to 1000 (Figure 7).
The energy consumption of GHT increases dramati-
cally when the number of events increases. This is be-
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Figure 7. Total events

cause all events are sent to the consolidator node to be
stored. Our SAQP scheme consistently consumes less
energy compared to IGHT.

6 Conclusions

Skewed access patterns are everywhere; as such we
expect to frequently have similarities among queries
submitted to sensor networks. In this paper, we pro-
posed a similarity-aware query processing scheme that
creates materialized views in sensor networks and uti-
lizes the materialized views to answer future queries
that are similar to past ones. We illustrate that using
other schemes which ignore query similarities wastes
energy by repeating unnecessary processing and com-
munication. By using our query split strategy and can-
didate selection algorithm, our proposed query process-
ing scheme reduces energy consumption, with a slight
increase in response time, without compromising QoD.
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