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Abstract 

Massively parallel computing systems are being built 
with hundreds or thousands of components such as 
nodes, links, memories, and connectors. The failure of 
a component in such systems will not only reduce the 
computational power but also alter the network’s 
topology. The Software-Based fault-tolerant routing
algorithm is a popular routing to achieve fault-
tolerance capability in networks. This algorithm is
initially proposed only for two dimensional networks 
[1]. Since, higher dimensional networks have been 
widely employed in many contemporary massively 
parallel systems; this paper proposes an approach to 
extend this routing scheme to these indispensable 
higher dimensional networks. Deadlock and livelock 
freedom and the performance of presented algorithm,
have been investigated for networks with different 
dimensionality and various fault regions. Furthermore, 
performance results have been presented through 
simulation experiments. 

1. Introduction 

Massively parallel systems, such as the Earth Simulator 
[2], the ASCI Red [3], and the BlueGene/L [4], are 
generally considered to be the most feasible way of
achieving the enormous computational power. There 
exist many compute-intensive applications in science, 
engineering, and a number of other fields [5] that 
require continued research and technology 
development to deliver computers with steadily 
increasing computing power. Such systems are often 
composed of hundreds or thousands of components 
(i.e., routers, channels and connectors). Each individual 

component can fail, and thus, the probability of failure 
of the entire system increases dramatically. Therefore, 
in these systems, it is critical to keep the system
running even in the presence of failures. 

Fault-tolerance is one of the dominant issues facing 
the design of networks for massively parallel systems 
architectures. One of the most important aspects about 
a network is whether it can perform all functions in the 
presence of component failures or not. Failures in the 
interconnection network may isolate a large fraction of 
the machine containing many healthy processors that
could otherwise be used. Although network 
components, like nodes and links, are robust, they are 
working close to their technological limits, and 
therefore, they are prone to failures. Hence, fault-
tolerant routing algorithms for interconnect networks 
are becoming a critical design issue for large massively 
parallel systems. We say that a routing algorithm is 
fault-tolerant if it is able to persist in delivering 
messages between all non-faulty nodes in the presence 
of failures. Many fault-tolerant routing algorithms have 
been proposed for networks [1, 6-11]. The Software-
Based fault-tolerant routing algorithm [1] is a one of 
popular routings that widely used in literature for
achieving fault-tolerance capability in the networks. In 
this paper, we extend the algorithm proposed in [1] to 
higher dimensional networks.     

The rest of the paper is organized as follows. 
Section 2 and Section 3 review some preliminaries in 
fault-tolerant interconnect networks and describe the 
fault modes and fault patterns, respectively. Section 4 
presents the Software-Based approach for wormhole-
switched networks. Performance evaluation based on 
the results of simulations is presented in Section 5. 
Finally, conclusions and directions for future research 
are given in Section 6. 
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2. Preliminaries  

This section provides brief descriptions of n-
dimensional, radix-k torus (or k-ary n-cube) topology 
and its node structure. A k-ary n-cube is a class of 
regular graphs, consist of N=kn nodes arranged in an n-
dimensional cube with k nodes along each dimension. 
Being a direct network, each of these N nodes serves 
simultaneously as an input terminal, output terminal, 
and the switching node of the network. Each node is 
assigned an n-digit radix-k address {an-1, …, a0} and is 
connected by a pair of channels (one in each direction) 
to all nodes with addresses that differ by ±1(mod k) in 
exactly one address digit. Torus is regular (all nodes 
have the same degree) and is also edge-symmetric, 
which helps to improve load balance across the 
channel. A node is connected to its neighbouring nodes 
via 2-input and 2-output channels. The Processing 
Element (PE) to inject/eject messages to/from network 
uses the remaining channels, respectively. Messages 
generated by the PE are transferred to the router 
through the injection channel. Messages at the 
destination are transferred to the local PE through the 
ejection channel. Each physical channel is associated 
with some, say V, virtual channels. A virtual channel
has its own flit queue, but shares the bandwidth of the 
physical channel with other virtual channels in a time-
multiplexed fashion [12]. The router contains flit 
buffers for any incoming virtual channel. A 3V-way
crossbar switch, direct message flits from any input 
virtual channel to any output virtual channel. Such a 
switch can simultaneously connect multiple input to 
multiple output virtual channels while there is no 
conflicts.  

Large messages are partitioned into fixed size 
message packets. The switching method determines the 
way messages visit intermediate routers. The network 
is routed using wormhole switching (also called as 
wormhole routing). Wormhole switching realizes very 
superior performance; but is prone to deadlock 
situations in the presence of faults [13]. In wormhole 
switching, messages are broken up into small units 
referred to as flow control digits or flits [14]. Data flits 
immediately follow the header flit as a pipelined 
fashion. A simple idea to route messages is to use a 
deterministic approach [14]. This routing algorithm 
routes packets by crossing dimensions in increasing 
order, nullifying the offset in one dimension before 
routing in the next one. Alternatively, adaptive routing 
algorithms which consider network state while making 
a decision can be utilized. One of the famous adaptive 
routing algorithm was proposed by [15] allows efficient 
router implementation due to its low requirement for 
virtual channels. Adaptive routing overcomes the 

performance limitations of deterministic routing by 
enabling messages to explore all potential paths 
between a pair of nodes. This routing flexibility, 
however, often requires dedicated hardware resources 
to ensure deadlock-freedom. Although the wormhole 
switching can achieve short message latency, its fault-
tolerant capability is very low. In order to implement 
fault-tolerant communication in parallel computers, 
fault-tolerant routing algorithm is necessary. Software-
Based routing that has been introduced as an efficient 
routing algorithm for reliable interprocessor 
communication can route a message from source to 
destination, even in the presence of faulty components. 
It is noteworthy mention that, in a fault-free network, 
the behaviour of deterministic and adaptive Software-
Based routing is identical to dimension-order (e-cube) 
routing [13] and Duato’s Protocol (DP) [15] fully 
adaptive routing, respectively.  In Section 4, we will 
describe the Software-Based approach to fault-tolerant 
routing in wormhole-switched n-dimensional networks. 

3. Fault models and fault patterns   

In order to have simple idea of different fault patterns, 
it is firstly necessary to understand the nature of 
component failure modes. A failure mode is defined as 
occurrence of any error in the system that arises from a 
physical phenomenon [16]. Some failures such as 
Gaussian noise or alpha-particle strike result in 
transient faults, i.e., do not permanently defect machine 
operations. Transient faults are usually described by 
BER (Bit-Error Rate) or SER (Soft-Error Rate) modes 
[16] and usually can be handled by communication 
protocols, using CRCs. The other failures (such as 
connector failure or electro-migration of a conductor 
on a chip) cause a permanent fault. Permanent faults 
may be either dynamic or static [14, 16]. Dynamic 
faults occur randomly and consequently intermittently 
in time while the system is operating. In static fault, a 
faulty component stops functioning permanently and 
requires to be repaired. Sever static faults may cause 
system failures and consequently shutting down the 
system.  

There are two different types of component failures: 
either the entire PE and its associated router can fail or 
just a physical link may fail. The former is referred to 
as a node failure, and the latter as a link failure [14]. 
On a node failure occasion, all physical links and 
virtual channels incident on the failed node are also 
marked faulty at adjacent routers.  Adjacent faulty 
nodes may be coalesced into fault regions. Fault 
regions extended by faulty components, may form 
convex (also known as block faults) or concave shape 
[1, 14]. |-shaped, ||-shaped or □-shaped and U-shaped, 



+-shaped, T-shaped, H-shaped are examples of convex 
and concave regions, respectively. Some examples of 
fault regions are illustrated in Fig. 1. 

Fig. 1:  Examples of coalesced fault regions in a 2-D torus 
network.

4. Software-Based fault-tolerant routing in 
n-D torus networks

In this section we briefly describe the Software-Based 
approach to fault-tolerant routing in wormhole-
switched networks. This proposed technique is 
applicable to both deterministic and adaptive routing 
and specially targeted toward commercial 
multiprocessors where the mean time to repair (MTTR) 
is much smaller than the mean time between failures 
(MTBF). The main idea of 2-D Software-Based routing 
is as follows. When a message encounters faulty 
component, it is absorbed (ejected from the network) 
and delivered to the message passing layer of the local 
node. In order to keep track of a manner in which a 
message is re-routed, the header of message should be 
modified to reflect a different, non-minimal path 
around the fault region. It is evident that care must be 
taken to prevent a message from livelock and deadlock 
due to the occurrence of some combination of fault 
regions. When re-routed messages are absorbed at 
nodes due to faults, the algorithm uses three tables in 
making the re-routing decision for the message. 
Absorbed messages have priority over new messages to 
prevent starvation. In summary, these tables attempt to 
capture the following ideas. When a message 
encounters a fault, it is first re-routed in the same 
dimension in the opposite direction. If another fault is 
encountered, the message is routed in an orthogonal 
dimension in an attempt to route around the faulty 
regions. To the best of our knowledge, the Software-
Based algorithm is only designed for two dimensional 
networks. Recent systems, however, mainly employed 
higher order dimensional interconnection topologies. 

Hence, it is essential to develop a suitable routing 
algorithm for higher dimensional networks.  

Fig. 2 shows deadlock free fault-tolerant Software-
Based routing in an n-dimensional torus network 
(which is depicted by SW-Based-nD in this figure). 
The algorithm uses two subroutines, namely 
detRouting2D and adapRouting2D. The detRouting2D 
subroutine deterministically routes messages in the 
network. In the absence of faults, detRouting2D 
subroutine is equivalent to e-cube [13] (also known as 
dimension order routing) algorithm. Similarly, 
adapRouting2D subroutine is implemented to 
adaptively route messages toward their destinations 
using modified DP fully adaptive routing [15].  

Fig. 2:  Extension of Software-Based routing scheme in n-D 
torus networks. 

Subroutine detRouting2D (Xcur, Ycur, Xdest, Ydest) 
Begin 

while (Xcur,Ycur) != (Xdest, Ydest) do
if no fault is encountered then  /* for normal cases*/  

update Xcur & Ycur using Dimension_Order_Routing
otherwise    /* for faulty cases */  

update Xdest, Ydest by applying SW-Based-2D.  
/*Software-Based routing algorithm for 2-D torus 
networks*/ 

fi 
od 

End 

Subroutine adapRouting2D (Xcur, Ycur, Xdest, Ydest) 
Begin 

while (Xcur,Ycur) != (Xdest, Ydest) do
if no fault is encountered then  /* for normal cases*/  

update Xcur & Ycur using Fully_Adaptive_Routing
otherwise   /* for faulty cases */ 

             routing_type:= Deterministic; 
detRouting2D (Xcur, Ycur, Xdest, Ydest); 

fi 
od 

End 

Algorithm:  
Software-Based Fault-Tolerant Routing in n-D Torus 
Networks 
Var 
     routing_type: {Deterministic, Adaptive};
Procedure SW-Based-nD 
/* called by a node to route the messages initiated at the source 
node towards the destination node*/ 
Input  
     (cur1, cur2, …, curn): source node; 
     (dest1, dest2, …, destn): destination node; 
     n: network dimension;   
Begin 
    for i=1,2,3,…,n-1 do   
        if routing_type = Deterministic then  
              detRouting2D (curi, curi+1, desti, desti+1); 
        otherwise  
              adapRouting2D (curi, curi+1, desti, desti+1); 
        fi 
    od 
End 



Note that in this case once a message finds the 
outgoing channel at a node leads to a fault, the message 
is absorbed at a local node and then detRouting2D 
subroutine will be called. From this point, faulted 
messages are always routed using detRouting2D 
subroutine and effectively follow the deterministic 
paths. 

Deadlock freedom 

A fault-tolerant routing algorithm should guarantee the 
delivery of messages in the presence of faulty 
nodes/links. When a message is blocked by a fault, 
message follows an alternative path to reach its 
destination. Deadlock freedom is an essential attribute 
of any routing algorithm and a challenging part is 
therefore devoted to prove that a proposed algorithm is 
deadlock free. The proof is based on demonstrating 
that the channel dependency graph of the routing 
algorithm is acyclic [14-16]. It has been proved in [1] 
the two dimensional Software-Based routing (i.e., SW-
Based-2D in Fig. 2) is deadlock free. In our proposed 
n-dimensional routing algorithm, a message traverse 
two consecutive dimensions at each passing step (i.e., 
dimension i and i+1). Since, messages do not use more 
two dimensions at each step; following the same 
reasoning based on [1], the dependency graph is 
acyclic in intermediate steps. Moreover, the acyclicity 
of the channel dependency graph for the path through 
all dimensions is demonstrated by noting the fact that 
message traverses dimension in a monotonically 
increasing or decreasing order. Consequently, the 
routing algorithm SW-Based-nD is deadlock free.  

Livelock freedom  

Unlike deadlock, livelock messages continue to move 
through the network, but never reach their destination. 
This is primarily a concern for non-minimal routing 
algorithms that can misroute messages. If there is no 
guarantee on the maximum number of times a message 
may be misrouted, the message may remain in the 
network indefinitely [16]. In [1] it has been proved that 
depending on the location and shape of the fault 
patterns, livelock freedom property can be guaranteed 
for large number of faults. Livelock freedom property 
of SW-Based-nD routing is very similar to the one for 
SW-Based-2D routing because messages are routed in 
two dimensions at each passing step.  

5.  Performance evaluation 

This section starts with introducing the assumptions 
made in this study and then describes the simulation 
experiments and their results. 

5.1 Assumptions 

The following assumptions have been made for the 
networks examined. 

(a) Nodes generate traffic independently of each 
other, and which follows a Poisson process with a 
mean rate of λ messages/node/cycle.  

(b) The arrival process at a channel is approximated 
by an independent Poisson process. 

(c) Message length is fixed.  
(d) Messages are transferred to the local PE as soon 

as they arrive at their destinations through the 
ejection channel. 

(e) V virtual channels (V≥1) are used per physical 
channel. At a given routing step, a message 
chooses randomly one of the available virtual 
channels at one of the physical channels, if 
available, that brings it closer to its destination.    

(f) When a header flit reaches a router, a routing 
decision selects the next output channel. The 
router’s decision time is assumed to Td. 

(g) A flit is transmitted from one node in one cycle 
unit time if the corresponding buffer in the next 
node is empty. 

(h) Faults distributed randomly or may be coalesced 
in fault regions. Furthermore, faults do not 
disconnect the network.      

(i) When a message encounters a faulty component 
upon reaching an intermediate node, it is removed 
from the network by the local router and delivered 
to the messaging layer of the local node’s 
operating system. The message passing software 
either i) modifies the header so the message may 
follow an alternative path or ii) computes an 
intermediate node address [1]. It is assumed that 
the message encounters delay overhead of ∆
cycles due to it’s re-injected at the intermediate 
node.      

5.2 Simulation experiments

Simulation experiments have been realized using a 
discrete-event simulator that mimics the behaviour of 
Software-Based routing algorithm with faulty 
components at the flit level. It accept several 
parameters including network size, message length, 
number of virtual channels, buffer length, message 
generation rate, number of faulty components, router 
decision time, delay overhead for re-routing and many 
other parameters. Extensive simulations for several 
networks, message length and buffer sizes have been 
carried out for two different routings: namely 
deterministic and adaptive. The results were very 
interesting and we mention here some results as a 
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Fig. 3:  The mean message latency provided by the simulation against the traffic rate using deterministic and adaptive routing in an 8-ary 
2-cube with message length M=32 and 64 flits, different number of virtual channels per physical channel V=4, 6, 10 and different number 
of failed nodes nf=0, 3, 5. 
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Fig. 4: The mean message latency provided by the simulation against the traffic rate in an 8-ary 3-cube using deterministic and adaptive 
routing with message length M=32 and 64 flits, different number of virtual channels per physical channel V=4, 6, 10 and different number 
of failed nodes nf=0, 12. 



summary of results for concluding. In all experiments 
mentioned here we assumed the router decision time, 
Td, and the overhead delay of local queue for re-
injection are equal to zero. It is due to the fact that, the 
decision time and overhead delay compared to the 
channel cycle time are usually negligible. For each 
generation rate a total of 100,000 messages are derived. 
Statistics gathering was inhibited for the first 10,000 
messages to avoid distortions due to the startup 
transient. The simulator uses the assumptions were 
mentioned in Section 5.1, and some of these 
assumptions are detailed here with a view of making 
the network operation clearer. The network cycle time 
is defined as the transmission time of a single flit from 
one router to the next. Messages are generated at each 
node according to a Poisson process with a mean inter-
arrival rate of λ messages/node/cycle. Message length 
is fixed in term of flits. Random faulty nodes are 
determined using a uniform random number generator. 
The mean message latency is defined as the mean 
amount of time from the generation of a message until 
the last data flit reaches the local PE at the destination 
node. Our approach provides fault-tolerance in n-
dimensional torus networks. Hence, numerous 
experiments have been performed for different sizes of 
the network and message length. However, for the sake 
of the clarity, the experimental results will mainly be 
based on a two and three dimensional torus networks.  
Our method can tolerates both node and link failures. A 
link failure can be modelled by the failure of two nodes 
connected to it. Therefore, we focus only on node 
failures. In what follows, we investigate the mean 
message latency in networks in the presence of faults.  

Results for deterministic and adaptive routing with 
random failed nodes   

In this section, we investigate the mean message 
latency for the number of random failed nodes with 
deterministic and adaptive routing. Figs. 3 and 4 
illustrate the mean latency curves provided by the 
simulator for 8×8 and 8×8×8 torus networks when 
deterministic and adaptive routing are used, 
respectively; with different message lengths, M=32, 64 
flits, V=4, 6, 10 virtual channels per physical channel 
and different number of random failed nodes nf=0, 3, 5 
and 12. The horizontal axis in the figures shows the 
traffic generation rate at each node (λ) while the 
vertical axis shows the mean message latency. The 
figures reveal that as the number of faulty nodes 
increases, the mean message latency also increases and 
the network saturates at lower traffic rates. This is 
because the percentage of messages that encounter the 
fault and re-injected to the network is increases. 

Moreover, it is evident from the figures that, the 
latency for longer messages (i.e., 64-flit) is higher than 
shorter messages (i.e., 32-flit). The reason behind this 
observation is that the message latency is proportional 
to message length. 

Results for deterministic and adaptive routing with 
different fault regions

In this section, we capture the mean message latency 
for various fault regions using deterministic and 
adaptive routing algorithm. Fig. 5 depicts the mean 
message latencies of deterministic and adaptive routing 
for some of convex and concave fault regions. As is 
evident from this figure, due to the greater difficulty in 
entering and exiting a concave fault region, the mean 
message latency is greater in the presence of concave 
than for convex fault regions. Also, the message 
latency for adaptive routing is substantially lower than 
the message latency for deterministic routing. 
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Fig. 5:  The mean message latency provided by the 
simulation as a function of traffic generation rate in an 8-ary 2-
cube using deterministic and adaptive routing with message 
length M=32 flits, V=10 virtual channels per physical channel 
and various fault regions.

In order to make the results independent of relative 
positions of failures, we have run simulations (for each 
number of failures); each of them corresponding to a 
different randomly selected failures. Fig. 6 shows the 
mean overall network throughput achieved for different 
number of node failures in a 16×16 torus, with message 
length M=32 flits and V=6 virtual channels per physical 
channel using deterministic and adaptive routing.  
Throughput is the rate at which messages are delivered 
by the network for a particular traffic pattern [16]. It is 
measured by counting the messages that arrive at 
destination over a time interval for each flow in the 
traffic pattern and computing from these flow rates the 
fraction of the traffic pattern delivered. As is evident 
from the Fig. 6, the network performance is not 
seriously affected by the presence of failures in both 



cases. Moreover, this figure reveals that the throughput 
for deterministic routing is lower than adaptive routing. 
This is due to the fact that in deterministic routing 
when a message visits a faulty node or link on its way 
to destination is then delivered to the current node, 
which in turn encounters the software overhead upon 
re-injection to the network from its location. Adaptive 
routing, however, is not restricted to choose always one 
path to reach to destination and has the flexibility of 
selecting any profitable paths to destination. Thus, 
adaptive routing provides alternative paths to 
destination and a message is delivered to current node 
when all available paths are faulty. Therefore, this type 
of routing most of the time avoids the delivering of 
messages to the intermediate nodes and in turn is not 
suffering the big software overhead.   

The plots in Fig. 7 show the number of messages 
queued in adaptive and deterministic cases by message 
absorbing nodes for message injection rates of 70 and 
100 in the presence of random failed nodes ranging 
from 1 to 12 nodes. The number of messages queued is 
the number of messages absorbed due to faults. It is 
clear that, a given message contributes more than once 
to this count if it is absorbed multiple times. As the 
number of node faults increases, the number of 
messages is queued increases. 
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Fig. 6:  Comparison between the throughput of adaptive and 
deterministic Software-Based routing against the number of 
failed nodes in a 16-ary 2-cube with message length M=32 
flits and V=6 virtual channels per physical channel. 

This figure illustrates that the number of messages 
queued is much higher for deterministic routing than 
for adaptive case. Indeed, at the lower and higher 
injection rates, the number of messages absorbed 
remaining relatively constant for adaptive routing while 
approximately doubling for deterministic routing. This 
is due to the fact that, adaptive routing can provides 
different paths to deliver the messages to their 
destinations and a message only is delivered to the 
local queue of current node when all existing paths still 

to be visited are faulty. As a result, adaptive routing 
can avoids the delivering of messages to the local 
queue of the intermediate nodes.  

 8-ary 3cube, M=32, V=10

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

40000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of random faulty nodes

N
u

m
be

r 
of

 m
es

sa
ge

s 
qu

eu
ed

adaptive, Generation rate=100
determinis tic, Generation rate=100
adaptive, Generation rate=70
determinis tic, Generation rate=70

Fig. 7:  The number of messages in the local queue 
(messages queued) as a function of random node failures 
using adaptive and deterministic Software-Based routing for 
different traffic generation rates 70 and 100 in an 8-ary 3-cube 
with message length M=32 flits, and V=10 virtual channels per 
physical channel. 

6. Conclusions  

Fault tolerance and network routing have been among 
the most studied topics in the research of parallel 
processing and computer networking. A fault-tolerant 
routing algorithm should guarantee the delivery of 
messages in the presence of faulty components (i.e., 
nodes or links). In this paper, we have presented an 
approach to extend the 2-dimensional Software-Based 
fault-tolerant routing algorithm in multi-dimensional 
networks that enables us to study the behavior of these 
networks in terms of individual component failure. 
There are several advantages of such this approach. 
First, Software-Based routing can tolerate more traffic 
load than other routing algorithms in n-dimensional 
networks. This is because more messages in other 
routing algorithms transit the network at a given time; 
while faulty messages in Software-Based routing are 
always removed from the network releasing resources 
to be used by non-faulty messages. Second, routers 
designs will minimally impacted, and thus remain 
compact and fast. Only messages that encounter faulty 
components are affected, while the machine is ensured 
of continued operation until the faulty components can 
be replaced. Our next object is to develop an analytical 
modeling approach to investigate the performance 
behavior of Software-Based fault-tolerant routing 
algorithm.   
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