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Abstract

Generic role assignment is a programming abstraction
that supports the assignment of user-defined roles to sensor
nodes such that certain conditions are met. Many common
network configuration problems such as coverage (assign
roles ON and OFF to sensor nodes such that ON nodes
cover a physical area with their sensors), clustering, or
in-network data aggregation can be formulated as role as-
signment problems. Building on our previous work in this
area, we propose an extended role specification language
that supports the minimization or maximization of the use
of a given role. Moreover, we provide a mapping of this lan-
guage to integer linear programs and implement this map-
ping. We show how the resulting tool can be used analyze
aspects of role specifications such as feasibility and opti-
mality.

1. Introduction

In previous work [5, 14] we have introduced generic role
assignment as a programming abstraction for wireless sen-
sor networks to support the developer with a variety of dif-
ferent network configuration problems that commonly arise
in sensor network applications. Essentially, generic role as-
signment allows the definition of a set of roles that should
be assigned to sensor nodes such that a given set of rules is
satisfied. These rules can refer to properties (e.g., location,
battery level) of a sensor node and to properties of nodes in
a neighborhood.

For illustration of this concept, consider the coverage
problem [18], where two roles ON and OFF are defined that
should be assigned to sensor nodes such that each physi-
cal spot is within the sensing range of at least one sensor
node with role ON. The rationale behind this is that nodes
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with role OFF do not contribute to sensing coverage and can
thus be switched to a power-saving sleep mode. If a node
with role ON fails (e.g., due to depleted batteries), roles must
be re-assigned to ensure continuous coverage. Other role
assignment problems are clustering (using the three roles
clusterhead, gateway, and slave) and in-network data aggre-
gation (using roles source, aggregator, and sink).

In [5] we introduced a language to specify such role as-
signment problems, proposed parameterizable distributed
algorithms to find role assignments that match a given spec-
ification, and provided a mapping of language specifications
to algorithm parameters. Through experiments, we could
show that the proposed system performs well for a number
of different role assignment problems.

However, we did also mention a number of open issues
with this work. The first of these issues is termination.
The distributed algorithms we have proposed are based on a
distributed fixpoint iteration, where roles are iteratively re-
assigned to nodes until a global configuration is achieved
that satisfies all rules. While we could show that the ex-
amined role assignment specifications converge within very
few iterations, there are also infeasible specifications for
which no assignment of roles to nodes exists that satisfies
all rules. For such specifications, our distributed algorithms
do not converge. Mechanisms are therefore needed to detect
such faulty specifications to assist a developer. The second
open issue is that many practical role assignment problems
include some global optimization criteria, such as the min-
imization of the number of ON nodes in the above coverage
problem. Such problems cannot be expressed with our pre-
vious proposal.

The contribution of this paper is three-fold. Firstly, we
introduce a simple extension to our role assignment lan-
guage to express global optimization criteria. Secondly,
we provide a mapping of the modified language to Inte-
ger Linear Programs (ILP). This mapping is implemented
in an existing tool using the CPLEX solver. Using this tool,
we, thirdly, re-examine some of the role assignment prob-
lems presented in [5]. In particular, we show how infea-
sible (non-terminating) specifications can be detected, and
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quantify improvements that can be achieved by using global
optimization criteria.

Primarily, the contribution of the present work can be
characterized as a tool to analyze certain properties of role
specifications. The proposed approach could also be used
to actually implement role assignment in a sensor network
(as a replacement of our earlier distributed algorithms). For
this, however, a global view on the network topology and
node properties must be collected to solve the centralized
ILP, and computed role assignments must then be delivered
to the network. This is only sensible in networks with static
properties.

In the remainder of this paper, we propose an extended
specification language in Section 2 and describe the map-
ping of this language to integer linear programs in Section
3. Results that have been obtained with an implementation
of this mapping for existing role specifications are discussed
in Section 4.

2. Role Specifications

In this section we briefly review the role specification
language that has been introduced in [5] and describe an
extension to specify optimization criteria.

2.1. Syntax and Semantics

A role specification consists of a list of role definitions,
where each role definition consists of a role identifier and
an associated predicate (i.e., a rule). The latter is a Boolean
expression formulating conditions on the local properties of
a sensor node and on the properties of well-defined sets of
nodes in the neighborhood of the node.

Let us first consider a simple example before giving a
more formal definition of the language elements. Figure
1 (a) shows the code for a simplified variant of the cover-
age problem discussed in the introduction, where the sens-
ing and communication ranges are assumed to be identical.
Two role definitions are shown for role ON (lines 1-5) and
for role OFF (line 6). The specification requests that role
ON is assigned to a node which has a battery level above a
certain threshold (line 2), and where at most one other node
(line 5) with role ON (line 4) is within communication and
sensing range (lines 3-5). Role OFF is assigned if and only
if the conditions for role ON are not met (line 6).

More formally, a language specification is a list of pairs
(k, ck) with role identifiers k and predicates ck. Without
loss of generality, we assume that ck is given in disjunctive
normal form:

ck = (ck
11 ∧ · · · ∧ ck

1n1
) ∨ (ck

21 ∧ · · · ∧ ck
2n2

) ∨ . . . (1)

Three types of atomic predicates ck
ij are supported:

2.1.1 Simple predicates

Simple predicates are essentially Boolean expressions for-
mulated in terms of node properties and constants, possibly
involving basic arithmetic operations. Example:

battery >= threshold

2.1.2 Count predicates

Count predicates have the form

count(scope) { pred } rel const

and can be used to count nodes that match a nested predicate
pred within a given number of hops scope around the
current node and compare the result to a constant expression
const using a given relation rel, for example:

count(1 hop) {
role == CH

} <= 1

2.1.3 Retrieve predicates

Retrieve predicates are similar to count predicates, these
have the form

p == retrieve(scope,size) { pred }

and can be used to bind the identities of a set of nodes
matching pred to a local property variable p. A parame-
ter size specifies that at least size matching nodes must
exist, otherwise the predicate evaluates to false. After eval-
uation, p contains the IDs of the matching nodes and can be
used as a local property. Example:

clusterheads == retrieve(1 hop, 2) {
role == CH

}

In count and retrieve operators, the nested predicate
pred specifies the conditions under which a remote node
is counted or retrieved, respectively. These conditions are
arranged in a disjunctive normal form in which, essentially,
only simple predicates are allowed. Because the properties
used in pred generally reference property values of remote
nodes, it is furthermore possible to prepend super to prop-
erty names to reference properties of the original node in-
stead:

count(2 hops) {
super.battery < battery

}



Property values such as battery in the above example
are stored in a so-called property directory on each node.
This directory supports entries of numeric and Boolean
types (e.g., battery, temp-sensor), further node po-
sitions, sets of node IDs (e.g., clusterheads), and the
enumeration role (i.e., the role that has been assigned to
the node). When comparing node property values, equality
is supported for all properties, while the usual ordering re-
lations (such as <, ≤ etc.) are additionally available for all
numeric properties.

Note that retrieve predicates bind local properties that
can be referenced by other count and retrieve statements.
Hence, predicates must be evaluated in an order that ensures
that properties are set before they are used. This also im-
plies that there must not be circular dependencies between
any two retrieve statements that are part of the conditions of
any role.

In addition to these role definitions which have been in-
troduced in previous work [5], we allow the specification of
global optimization criteria of the form min role or max
role, where role can be any of the roles that have been
defined, for example:

min ON

We allow multiple such specifications to demand minimiza-
tion or maximization of the respective set of roles.

Finally, we note that in our previous distributed imple-
mentations of role assignment [5], roles defined earlier in
the specification are given priority over later ones. That is,
if the predicates of multiple roles match, the role that is de-
fined first is assigned. This relieves the programmer from
(the often non-trivial) task of ensuring that all role predi-
cates are logically disjoint. The mapping of role specifica-
tions to ILP described later will implement the same seman-
tics.

2.2. Example Specifications

The above specification language can be used to describe
a variety of different role assignment problems, please re-
fer to [5] for details. However, to make the paper self-
contained, we will briefly discuss the specification of a
clustering problem in addition to the coverage specification
which has already been introduced in the previous section.

Clustering is a common technique to improve the effi-
ciency of data delivery (e.g., flooding, routing) [11]. With
clustering, one of the three roles CH, GW, SLAVE is as-
signed to each node. A clusterhead CH acts as a hub for
slaves in its neighborhood such that slaves directly commu-
nicate with their clusterhead only. Gateways GW are slaves
of more than one cluster and interconnect multiple clusters
by forwarding messages between them.

1 ON :: {
2 battery >= threshold &&
3 count(1 hop) {
4 role == ON
5 } <= 1 }
6 OFF :: else

(a) Simplified coverage.

1 CH :: {
2 count(1 hop) {
3 role == CH
4 } == 0 }
5 GW :: {
6 clusterheads == retrieve(1 hop, 2) {
7 role == CH
8 } &&
9 count(2 hops) {

10 role == GW &&
11 clusterheads == super.clusterheads
12 } == 0 }
13 SLAVE :: else

(b) Clustering.

Figure 1. Sample role specifications.

Consider Figure 1 (b), which shows a role specification
implementing clustering. A node that does not have any
clusterhead among its neighbors declares itself clusterhead
(CH, lines 1-4). Nodes should be assigned the role gate-
way (GW) if they are neighbors to at least two clusterheads
but are not aware of any other gateway nodes interconnect-
ing the same two clusterheads. For this, the retrieve op-
erator is used to identify clusterheads in the 1-hop neigh-
borhood of the node and to bind them to the local property
clusterheads in line 6. Using the clusterheads
property, we require in lines 9-12 that within 2 hops no other
gateways should interconnect the same set of clusterheads.

The second parameter to retrieve in line 6 re-
quests any two matching nodes. If not enough match-
ing nodes exist, the retrieve expression evaluates to
false. In this case, the GW role is not assigned, the property
clusterheads remains undefined, and the evaluation of
lines 9-12 can be omitted.

Only if a node is neither a gateway nor a clusterhead, it
is assigned role SLAVE in line 13.

3. Mapping Role Specifications to Integer Pro-
grams

In this section we provide a mapping of role specifica-
tions to integer linear programs. An instance of a role as-
signment problem consists of a role specification with m
roles using the language described in Section 2, all property
values of all nodes that are referenced by the role specifica-



tion, and a sensor network graph G = (V, E) with n = |V |
participating nodes.

G is used to define the elements of the h-hop neighbor-
hood matrices A(h) as follows:

A
(h)
ij =

⎧⎨
⎩

1 ∃ path from node i to node j
with length ≤ h

0 otherwise

A total of h = 1 . . . S such matrices will be generated,
where S denotes the maximum scope that occurs in all
count and retrieve statements of a specification. Note that
these matrices can be readily computed from the adjacency
matrix A(1). We will use the above notation A

(h)
ij to formu-

late the ILP constraints of count and retrieve operators in
Section 3.3 below.

In the next section, we introduce the variables we use
to encode the outcome of the role assignment algorithm.
Unless otherwise noted, all variables are binary with values
∈ {0, 1}.

3.1. Role Assignment Variables

We use a set of binary variables xik to encode whether a
node i satisfies the predicate ck of a given role k:

xik =

{
1 if node i satisfies ck

0 otherwise
(2)

By ck we refer to the Boolean predicate describing the con-
ditions for assuming role k as discussed in Section 2.1. We
will ensure that (2) holds by translating ck into a set of
equivalent constraints on xik in Section 3.3.

Furthermore, we require that at least one role predicate
must match for every node, otherwise, the role assignment
is not feasible, giving rise to the constraint:

∑
k

xik ≥ 1 ∀k, i (3)

Note that to avoid infeasibility, the programmer can al-
ways specify an else role q which does not imply any
constraints as it does not have any sub-predicates (see Sec-
tion 2). Therefore, the predicate of an else role would
always be satisfied, and, according to the above definition
(2), a solution would set xiq to 1.

This points to a different property of the variables xik:
The properties and network neighborhood of a given node i
could satisfy the conditions for more than one role, as we do
not require the programmer to specify disjunct conditions
in the predicates ck. Therefore, more than one ck can be
satisfied, requiring (because of (2)) that more than one xik

is set to 1 for a given node i. Thus, xik cannot be used as a
result of role assignment according to the semantics defined

in Section 2, which imply that the first matching role with
xik = 1 is assumed at a node i.

We implement these first role matches semantics using
an additional set of binary result variables yik which we re-
quire to be 1 only if the conditions for roles 1, ..., k−1 (i.e.,
roles specified prior to k) are not satisfied. Here we assume
that k denotes role k’s position in the list of roles speci-
fied by the programmer (we can achieve this by simply re-
numbering the roles). The following constraint formulates
the necessity that yik = 1 if the given xik is 1 while all xil

with l < k are 0:

xik −
k−1∑
l=1

xil ≤ yik ∀k, i (4)

Moreover, we also require in (5) that role k can only be
assigned if the corresponding predicate matches, i.e., xik =
1, and further in (6) that exactly one role should be assigned.

yik ≤ xik ∀k, i (5)∑
k

yik = 1 ∀i (6)

Finally, we introduce binary variables for node sets
that are bound to the results of retrieve predicates, e.g.,
clusterheads for the role gateway of the clustering ex-
ample. For each such set p bound by a retrieve predicate,
we include an additional set of variables qp

i (j) with j ∈ V
with the following interpretation:

qp
i (j) =

{
1 if the set p at node i contains node j

0 otherwise
(7)

To preserve a readable notation, we will sometimes omit
the index p and just write qi(j) implicitly referring to the
respective property p.

3.2. Objective Function

We can now reformulate the optimization criteria de-
scribed in Section 2.1 into an objective function in terms of
the variables yik. Assume that among a set of roles R, for a
given problem instance, the user would like to minimize the
set of roles m ⊂ R and maximize the set of roles M ⊂ R
in the network. The corresponding objective function is:

min
∑
i∈V

( ∑
k∈m

yik −
∑
k∈M

yik

)

Note that it would be easily possible to formulate more
complex optimization criteria using the yik, such as main-
taining certain ratios between ON and OFF in the coverage
example.



3.3. Translating Predicates

In this section we will show the mapping of role predi-
cates ck to respective ILP constraints on xik. Note that the
constraints will depend on i because the network neighbor-
hood is a function of the node identity i.

Consider a role predicate given in the normal form of
Section 2.

ck = (ck
11 ∧ · · · ∧ ck

1n1
)︸ ︷︷ ︸

ak
1

∨ (ck
21 ∧ · · · ∧ ck

2n2
)︸ ︷︷ ︸

ak
2

∨ . . . (8)

As a first step, we translate the Boolean operations to ILP
constraints. This is done by means of a (standard) ILP mod-
eling technique, which uses additional indicator variables
ui(c), similar to xik, for each atomic predicate c occurring
in (8) that indicate whether c is satisfied at a given node i.

Disjunctions and conjunctions can be expressed in terms
of ILP constraints as follows. Assume a conjunctive term
of the form (c = c1 ∧ · · · ∧ cp), consisting of p terms, and
let ui(c1) . . . ui(cp) be the respective indicator variables for
a given node i. We will use an additional variable ui(c)
to indicate whether the whole conjunction c is true. We
require therefore that

∑
ui(cq) ≥ p if and only if ui(c) =

1. The constraints modeling necessity and sufficiency for
every node i are:

p∑
q=1

ui(cq) ≤ ui(c) + p − 1

p∑
q=1

ui(cq) ≥ p × ui(c)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∀i (9)

Similarly, for an analogous disjunction of the form a = a1∨
· · ·∨ap, we require that at least one of the indicator variables
ui(aq) of a node i is 1, thus

∑
ui(aq) ≥ 1 if and only

if ui(a) = 1, for all nodes i. The constraints modeling
necessity and sufficiency are:

p∑
q=1

ui(aq) ≤ p × ui(a)

p∑
q=1

ui(aq) ≥ ui(a)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∀i (10)

We will use (9) and (10) on several occasions when we
need to model conjunctions or alternatives.

In the following, we show how the atomic predicates ck
qr

of (8) are mapped to constraints on the indicator variables
ui(cqr).

3.3.1 Simple predicates

We begin with simple predicates c that are local in that they
refer only to the properties of a given single node. These can

be formulated in terms of known property values of a node
– essentially constants – and can be evaluated before gener-
ating the ILP. Hence, the indicator variable ui(c) would be
replaced by either 0 or 1 in this case.

Simple predicates that are nested in count or retrieve
statements are special cases that will be considered in Sec-
tion Nested Predicates below.

3.3.2 Count predicates

Consider a count predicate c of the form:

count(scope) { pred } <= lim

In the following we formulate equivalence between ui(c) =
1 and c. Let u(pred)j be the variable indicating whether
pred is true at a node j. We constrain ui(c) as follows
to formulate the necessity that (ui(c) = 1) → c:

∑
j �=i

A
(scope)
ij u(pred)j ≤ (1 − ui(c))M + lim

We use M to denote a constant value greater than n. Note
that the above reduces to either (11) or (12) if the indicator
ui(c) is 1 or 0, respectively:

∑
j �=i

A
(scope)
ij u(pred)j ≤ lim (11)

∑
j �=i

A
(scope)
ij u(pred)j ≤ M + lim (12)

The former case (11) exactly formulates the semantics
of the above count predicate c, namely that the number of
nodes j within scope that match pred should be less or
equal to lim. In the latter case (12), the constraint is nulli-
fied by M , as M > n and the left-hand sum will never be
larger than the number of nodes.

In a second step we formulate the constraints for suffi-
ciency, namely that c → (ui(c) = 1), i.e., either ¬c or
ui(c) = 1:

∑
j �=i

A
(scope)
ij u(pred)j ≥ (lim+ 1)(1 − ui(c))

Note that count operators using relations other than ≤
can be treated analogously.

3.3.3 Retrieve predicates

A retrieve predicate c of the form

p == retrieve(scope,size) { pred }



can only be true if the following three requirements are met.
Firstly, at least size nodes must exist within scope

that match the given nested predicate pred. We model this
requirement as a count statement of the form:

count(scope) { pred } >= size

Secondly, we must ensure that every retrieved node j that is
in the set p of node i really is in scope and also matches
the predicate pred:

qpi (j) ≤ A
(scope)
ij u(pred)i (13)

Thirdly, we require that the number of elements in the set p
is size:

n∑
j=1

q(p)i (j) = size (14)

And finally, we can formulate that u(c) = 1 if and only
if all of the above requirements hold at the same time using
the approach in (9).

3.3.4 Nested predicates

In the following consider predicates that occur nested in
count or retrieve statements with a given scope.

For a nested predicate c that refers to the role of the node,
i.e., role==k, we set uj(c) to the value of the respective
variable indicating whether the role of a node j is k, namely
yjk. In fact, a separate respective indicator variable uj(c) is
not needed in this case, as uj(c) can be replaced with yjk.

A special case are simple predicates c that check equality
between two properties that represent node sets such as

clusterheads == super.clusterheads

in the clustering example.
Here we introduce additional indicator variables Qij that

are set to 1 iff the set clusterheads of node i is equal
to the set super.clusterheads at node j. The inter-
esting case is when the two sets are bound by retrieve pred-
icates (as in the above clustering example), and thus consti-
tute variables of the algorithm. In these cases, the parameter
size of the respective retrieve predicates indicates the size
of the set (we assume the sets are of equal size, otherwise
the compiler can already set u(c) to 0). In all other cases
Qij can be evaluated before generating the ILP and simply
noted as 1 or 0, respectively.

In the following, we describe the constraints on Qij .
These are formulated in terms of the variables qi(k) rep-
resenting the set of node i, where qi(k) = 1 iff the element
k ∈ {1, ..., n} is contained in the set at node i and 0 other-
wise, as defined in (7). Likewise, respective variables qj(k)
for node j are used. We first compute a set of n helper vari-
ables qij(k) = qi(k) ∧ qj(k) using Equation (9) as shown

in Figure 2 for two exemplary sets of size 2, where a black
circle indicates q∗(k) = 1.

of node

( )iq k
( )jq k

( ) ( ) ( )ij i jq k q k q k= ∧

n

i
j

additional 
helper variables

of node

1,k = 2, …3,

Figure 2. Set equality.

Using qij(k), we can formulate that variables Qij should be
1 if the intersection of the sets at node i and j contains at
least size elements (i.e., if the sets are equal):

n∑
k=1

qij(k) ≤ Qij − 1 + size (15)

Otherwise, Qij should be 0:

n∑
k=1

qij(k) ≥ size× Qij (16)

Finally, we can replace uj(c) that occur nested within a
count or retrieve statement of a given node i by the
corresponding Qij .

3.4. Complexity

Depending on the complexity of the role specifications,
the resulting integer programs are solvable in reasonable
time for up to 1000 nodes using the CPLEX [4] standard
solver. However, retrieve predicates introduce considerable
complexity due to the large number of indicator variables.
Note that the above mapping could be improved to reduce
the number of variables, which has been omitted for ease of
exposition. Below we will analyze the number of variables
used in the ILP mapping as an indicator for the complexity
of the generated ILP.

In the above Section 3.1 we used a total number of
n × m variables to encode the basic role-assignment de-
cision, where m denotes the number of specified roles and
n denotes the number of nodes in the network. Further,
we added another set of n variables for each node, to en-
code local properties containing node sets that are bound
by retrieve statements, resulting in another n2 × b vari-
ables, where b stands for the total number of local properties
bound by retrieve statements. In the mapping of predicates
in Section 3.3, we introduced a number of additional indica-
tor variables. A total of n × a variables are used to encode
atomic predicates at each node, where a is the number of
atomic predicates in the specification. The most complex



atomic predicate – set equality – required additional n in-
dicator variables for each pair of nodes, summing up to n3

variables.
However, it would be straightforward to reduce the num-

ber of variables by exploiting the locality (i.e., limited scope
of count and retrieve predicates) inherent in the role spec-
ification language. Note that the language was originally
aimed at supporting the user/programmer with a flexible
means to describe local configuration decisions taken at
each node. In previous work [5], we described a number
of distributed role assignment algorithms that exploited the
locality in the specification, such that the communication
overhead is strictly dependent on the scope used in count
and retrieve predicates.

Similarly, the minimal number of variables needed for
the ILP also depends on the size of the scope used in count
and retrieve statements. Consider a retrieve statement bind-
ing a local property p. Due to the limited scope, rather than
n variables, each node i will only need ki variables to en-
code p, where ki corresponds to the number of nodes in
the scope-hop neighborhood of i as illustrated in Figure 3.
Moreover, the set of nodes that needs to be encoded in the
helper variables qij is even smaller, as qij(p) must only be
provided for nodes p which are located in the intersection
of the scopes of nodes i and j.

ik

i j

jkvariables

scope of retrieve

jq

ij i jq q q= ∧

variables jq

Figure 3. The minimal number of variables
needed to represent retrieved node sets and
their equality is relatively small and depen-
dent on the given scopes.

With these improvements, we obtain a much smaller
number of variables and coefficients. For example, for a
100 node network with nodes being placed randomly in a
300m by 300m area, the ILP implementing the clustering
specification shown in Figure 1 (b) contains only 2428 vari-
ables (rather than 1003) and is solvable within seconds us-
ing CPLEX [4].

4. Results

We extended the existing role assignment simulation
tool [5] with the capability of generating an ILP represent-
ing the execution of a given specification on a given topol-

ogy. The generated ILP is formulated using the ZIMPL [7]
modelling language, which we use as a front end for the
CPLEX [4] standard solver. Finally, the simulation tool vi-
sualizes the ILP’s results on the respective network topol-
ogy.

Using the above ILP mapping of role specifications,
we can re-examine the role-assignment specifications de-
scribed in [5] regarding optimality, feasibility and termina-
tion, which were open problems so far.

One new aspect of the generated ILP is that it enables
the programmer to express a desired optimality goal, i.e.,
to minimize or maximize the number of nodes that are as-
signed a certain role. While the existing specifications were
not written with a possible optimization in mind – rather,
these were designed as input for distributed algorithms that
assign roles in a greedy fashion –, it is nevertheless inter-
esting how the optimal results compare to the ones found
using the distributed algorithms described in [5].

As illustrated in Figure 4, we examined the minimal
number of ON nodes required to ensure coverage. Using
the specification in Figure 1 (a), we could easily solve the
resulting ILP for random networks with up to 600 nodes
using CPLEX. The nodes with a communication range of
33.5m were randomly distributed in a square of 300m by
300m.

Previously, we had studied the same specification with
several algorithms (caching, probabilistic and wave) in
terms of their efficiency regarding communication traffic,
but did not employ any strategy to minimize the number
of ON nodes. It is therefore not surprising that the ILP
approach can yield solutions with about half as many ON
nodes as the distributed algorithms. While we cannot ex-
pect to achieve the same results with a optimizing distrib-
uted algorithm (part of current work), the optimal solution
obtained via the ILP indicates the possible space for opti-
mization.

Moreover, optimization can provide interesting insights
into undesirable effects of a role specification. While the
clustering specification in Figure 1 (b) results in a connected
backbone network of clusterheads and gateways with the
distributed algorithms as depicted in Figure 5(b), minimiz-
ing the CH and GW roles results in a set of isolated clus-
ters as depicted in Figure 5(a), which may not be desirable
for practical applications. Here, the solution places clus-
terheads exactly three hops away from each other, thus en-
suring that each slave is a neighbor of at least one cluster-
head, while at the same time avoiding assignment of the
gateway role (as hardly any node has more than one clus-
terhead neighbor). This hints at a weakness of the specifi-
cation, namely that it does not enforce that clusterhead and
gateway nodes should provide a connected backbone.

For the case that clusterhead and gateway roles are maxi-
mized, an exemplary solution is shown in Figure 5(c). Here,
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(a) Minimizing (b) Greedy (c) Maximizing

Figure 5. Clustering results on a 9x9 grid, minimizing vs. maximizing clusterheads and gateways
(clusterheads are black, gateways are yellow, slaves are white, and edges between gateways and
their clusterheads are emphasized).

clusterhead nodes are exactly two hops away and arranged
in an ordered fashion that allows many gateway nodes. Es-
sentially, Figures 5(a) and 5(c) show two extremal outcomes
that may occur with the current clustering specification –
hinting the developer that there is a potential problem with
this specification.

Enabling the programmer to formulate an additional con-
straint, namely that a set of roles should be connected,
would be an interesting research direction, which would
provide a complementary extension to related work [12]
that studies various criteria that determine whether a set of
roles is connected in the average case, as connected topolo-
gies are needed for a code deployment algorithm.

Finally, the ILP translation helps to better understand er-
roneous specifications that do not terminate when using the
current distributed algorithms. Consider the following toy
example from previous work [5]:

1 RED :: { count(1) { role == GREEN } >= 1 }
2 GREEN :: { count(1) { role == RED } <= 0 }

Here, a node requires the absence of RED neighbors to be-
come GREEN, yet its neighbors become RED as a direct con-
sequence of its own role having become GREEN. The dis-
tributed algorithms we developed in previous work would
change back and forth between the roles RED and GREEN.
Using the ILP mapping of the above specification we could
show that problem instances used in previous evaluations –
a varying number of 100–600 nodes randomly distributed
on a 300m by 300m area – were in fact infeasible since the
ILP did not have a solution.

While this approach shows infeasibility for a given net-
work graph, we can also reformulate the ILP to check
whether there exists any network graph for which the prob-
lem has a solution. Doing so for the above specification, we
obtained graphs of single isolated GREEN nodes, as the only
feasible combination of network topology and role specifi-
cation. When adding the (practical) requirement that every
node should have at least one neighbor, no solution can be



found, indicating infeasibility of the specification for any
possible network topology.

For illustration of this result, consider the simplest graph
with two nodes u, v and an edge (u, v) as shown in Figure 6.
Looking carefully, we can see that, out of the 4 assignments
that are possible in this graph, none is feasible. While the
last example (both nodes green) seems feasible at first, it is
not: As both nodes also match the predicate for RED, the
assignment does not comply with the requirement that the
first matching role should be assigned.

This example suggests that there is a close relationship
between specifications that do not terminate when executed
by the distributed algorithms and specifications that result
in infeasible ILPs. At the least, infeasible specifications are
highly likely to be non-terminating. However, this is a con-
jecture which needs to be confirmed as part of future work.

Green

Red

Figure 6. RED / GREEN example: Out of the 4
possible role assignments, none satisfies the
role specification.

5. Related Work

Numerous approaches for solving specific role assign-
ment problems have been devised. Examples include cov-
erage [15]; aggregator placement [3] and data fusion [10];
clustering, routing and addressing [8, 16, 17]. [8] uses
a fixed set of roles to build a network-wide backbone in-
frastructure.

The need for generic role assignment has been expressed
in previous work, among others, in [6] as part of the MiLAN
project, in [19] to allocate tasks to sensor nodes, and in [12]
in the context of role-based code updates.

Integer program formulations of network configuration
problems have also been applied in various settings. In
[2], the authors derive upper bounds on the lifetime of
data-gathering networks by computing optimal configura-
tions consisting of the roles sensor, relay, and aggregator.
Moreover, integer program formulations have been used
as a starting point for developing distributed approxima-
tion algorithms which solve problems that are related to our
specifications, most prominently the minimum dominating
set [9] and, recently, the facility location problem [13].

However, none of the approaches above are generic
frameworks that support the assignment of user-defined
roles in an application-specific manner.

6. Conclusion and Outlook

In this paper, we described an extension to our role as-
signment system that maps a given role assignment instance
– consisting of a network topology, a set of node properties,
and a role assignment specification – to an integer linear
program formulation.

We showed that this mapping, together with a simple ex-
tension to the role specification language that allows spec-
ifying global optimization criteria, provides the user with
a valuable tool for analyzing the feasibility, optimality, and
termination of role assignment specifications, aspects which
have been open questions so far. Most prominently, we were
able to show that a known non-terminating specification is
infeasible unless applied to a trivial network graph consist-
ing of isolated nodes.

Future work includes adding support for requesting con-
nectivity properties for certain roles [1], and finding ways
to identify non-terminating role specifications.
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