
Performance Evaluation of Scheduling Applications with DAG Topologies on

Multiclusters with Independent Local Schedulers

Ligang He, Stephen A. Jarvis, Daniel P. Spooner and Graham R. Nudd

Department of Computer Science, University of Warwick

Coventry, United Kingdom, CV4 7AL
{liganghe, saj, dps, grn}@dcs.warwick.ac.uk

Abstract

Before an application modelled as a Directed Acyclic
Graph (DAG) is executed on a heterogeneous system, a

DAG mapping policy is often enacted. After mapping, the

tasks (in the DAG-based application) to be executed at
each computational resource are determined. The tasks

are then sent to the corresponding resources, where they
are orchestrated in the pre-designed pattern to complete

the work. Most DAG mapping policies in the literature

assume that each computational resource is a processing
node of a single processor, i.e. the tasks mapped to a re-

source are to be run in sequence. Our studies demon-

strate that if the resource is actually a cluster with multi-
ple processing nodes, this assumption will cause a mis-

perception in the tasks’ execution time and execution or-

der. This will disturb the pre-designed cooperation
among tasks so that the expected performance cannot be

achieved. In this paper, a DAG mapping algorithm is pre-

sented for multicluster architectures. Each constituent
cluster in the multicluster is shared by background work-

load (from other users) and has its own independent local

scheduler. The multicluster DAG mapping policy is based
on theoretical analysis and its performance is evaluated

through extensive experimental studies. The results show

that compared with conventional DAG mapping policies,
the new scheme that we present can significantly improve

the scheduling performance of a DAG-based application
in terms of the schedule length*.

1. Introduction

Clusters are becoming popular platforms for the proc-

essing of scientific and commercial applications. Multiple

*
This work is sponsored in part by grants from the NASA AMES Re-

search Center (administrated by USARDSG, contract no. N68171-01-C-

9012), the EPSRC (contract no. GR/R47424/01) and the EPSRC e-

Science Core Programme (contract no. GR/S03058/01).

separate clusters can be further interconnected to obtain

multicluster computing architectures (or grids) [8]. These

constituent clusters may locate within a single organiza-

tion or across wide geographical sites [2][9].

In this paper, a DAG mapping algorithm is presented

for multicluster architectures. Each constituent cluster is

shared by background workload (from other users) and

has its own independent local scheduler. Such an archi-

tecture is often encountered in grid environments.

Studies on the mapping of DAG-based applications to

heterogeneous systems have received a good deal atten-

tion [4][5][6][7][10]. Most DAG mapping algorithms can

be classified into two categories: list scheduling [5][7]

and graph partitioning [1][4][16].

A list scheduling algorithm gathers all current schedul-

able tasks (a task is schedulable if all of its parents have

completed execution or it has no parent) and maps each

task to a suitable resource according to a certain policy;

this policy differentiates the list scheduling algorithms

from one another. A large number of list scheduling algo-

rithms for heterogeneous systems have been presented in

the literature [3][5][7][11][14][15]. However, they are not

suitable for solving the scheduling problems in the sce-

nario considered in this paper.

First, these previous approaches consider each re-

source as a single processor, and tasks are mapped to

every single resource in the heterogeneous system. In this

paper, however, a cluster consisting of multiple process-

ing nodes has its own independent local scheduler and the

DAG mapping algorithm cannot specify the processing

node which a task should be mapped to.

Second, if a cluster is regarded as a single resource to

which tasks are allocated, these algorithms assume that

the tasks mapped to each resource are to be run in se-

quence. This assumption may cause a misperception in

the tasks’ execution time and execution order [12]; this is

illustrated below through a supportive case study.

Finally, in the scheduling scenario presented here,

background workload and the tasks from the DAG com-

pete for the cluster resources. This complicates the map-

1-4244-0054-6/06/$20.00 ©2006 IEEE

ping design and makes the list scheduling algorithms pre-

sented in the literature even less effective.

A case study is described to illustrate the mispercep-

tion caused by regarding a cluster as a single processing

node. Suppose three tasks v1, v2, v3 are schedulable. Their

computational volume is 6, 3 and 6 respectively. Now

consider a multicluster consisting of two clusters C1 and

C2, each with 3 processing nodes, and assume the service

rate of each processing node is 1. We also assume that

mapping a task to C2 incurs the inter-cluster communica-

tion cost of 1 time unit.

0 1 2 3 4 5 6 7

v3

v2
v1C1

C2

(a) Expected mapping and execution pattern

0 1 2 3 4 5 6 7

C1
v1

v2

C2
v3

(b) Actual mapping and execution

v1

v2

v3

0 1 2 3 4 5 6 7

C1

C2

(c) Optimal mapping and execution

Figure 1. A case study for the misperception
caused by regarding each cluster as a single
processing node

If each cluster is regarded as a single processing node,

whose service rate is 3, the execution time of the three

tasks (the execution time equals the computational vol-

ume divided by the service rate) will be 2, 1 and 2, re-

spectively.

From this perspective, the optimal mapping and execu-

tion of these three tasks should be as in Fig.1.a, where v3

starts at time 1 due to the inter-cluster communication de-

lay. The expected schedule length is 3 (the schedule

length is the duration from the time when the first task

starts running to the time when all tasks are completed).

However, if these three tasks are mapped as in Fig.1.a,

their actual execution will be as in Fig.1.b, if both C1 and

C2 consist of 3 processing nodes with the service rate of 1.

As a result, the actual schedule length is 7. Moreover, the

algorithm expects that v2 finishes first, followed by v1 and

v3. In the actual execution, however, the order in which

the tasks finish is v1, v2 and v3.

Considering the parallelism provided by the resource

C1, the optimal mapping and corresponding execution

should be as in Fig.1.c, where the schedule length is 6 and

is therefore better than that seen in Fig.1.b.

Graph partitioning adopts another approach to map-

ping DAGs to heterogeneous systems. It analyses the

DAG's topology and partitions the graph into several sub-

graphs according to a certain metric (e.g., the least

amount of communication cost among the different sub-

graphs). Each sub-graph is then mapped to a resource for

execution. Graph partitioning policies have also been pre-

sented in a number of research papers [1][4][16]. How-

ever, these graph partitioning algorithms also assume that

the sub-graph can be mapped to a specified resource, and

that the tasks in the sub-graph will be run in sequence,

which is not necessary the case for the scheduling scenar-

ios considered in this paper. Furthermore, these graph

partitioning algorithms do not take into account back-

ground workload on the resources.

The multicluster DAG mapping algorithm presented

here can be categorized as a list scheduling algorithm.

The algorithm aims to achieve the optimised schedule

length, which is defined as the duration between the time

when the first task starts and the time by which all tasks

are completed. It performs the mapping operation before

the application starts running. After mapping, the tasks to

be run in each cluster are determined. The tasks are then

sent to the corresponding clusters where they are further

scheduled by a local scheduler together with any back-

ground workload.

An approach is developed in this paper to compute the

finish time of a task in a cluster with background work-

load. An admission control mechanism is also introduced

to map as many tasks as possible to the same cluster until

a pre-defined condition is broken. The goal here is to

fully utilize the parallel processing capability, and at the

same time reduce the inter-cluster communication.

The rest of this paper is organised as follows. Section 2

presents the system and workload model. The multicluster

DAG mapping algorithm is proposed in Section 3. A per-

formance evaluation is conducted in Section 4. Finally,

Section 5 concludes the paper.

2. System and workload model

An application consists of a set of tasks with prece-

dence constraints, which is modelled as a Directed

Acyclic Graph (DAG). A DAG is denoted as J={V, E},

where V={v1, v2,…, vr}, which defines r tasks that consti-

tute the application. p is denoted as vp’s computational

volume; E represents the communication relationship and

the precedence constraints among tasks; epq=(vp, vq) E
represents a message sent from task vp to vq and it also

suggests vq can start running only after vp is complete and

vq receives message epq; vp is called vq’s parent and pq is

denoted as message epq’s volume. It is assumed in this

paper that a DAG has only one entry task, which has no

parents, and one exit task, which has no children.

The multicluster consists of n clusters, C1, C2,…, Cn;

where a cluster Ci (1 i n) consists of mi homogeneous

processing nodes (the size of cluster Ci is mi), each with a

service rate of ui. The nodes in the different clusters may

have different performance. The processing nodes in a

homogeneous cluster are connected by an intra-cluster

network. In cluster Ci, each communication link among

processing nodes is weighted li, which models the time it

takes to transfer one unit of a message between two proc-

essing nodes. Two clusters are connected by an inter-

cluster communication network. The communication link

between cluster Ci and Cj is weighted wij.

It is assumed that a local scheduler is located at each

cluster and adopts a centralised queueing architecture, i.e.,

a single waiting queue is used by each local scheduler to

accommodate the DAG-based application and the work-

load from other users (called the background workload).

The mean arrival rate of background workload arriving at

cluster Ci is i and their mean task size is i. Each local

scheduler then schedules the tasks in the waiting queue

based on a First-Come-First-Served policy; where the

task at the head of the queue is sent to a free processing

node for execution.

All tasks placed in the waiting queue are ready to be

executed. When a set of tasks with precedence constraints

(including the tasks in the DAG-based application) arrive,

these tasks are first placed into a schedule queue. A task

is placed into the waiting queue as soon as it becomes

schedulable (a task is considered schedulable if all of its

parents have finished and the task has received all mes-

sages from its parents).

3. DAG mapping algorithm for multiclusters

In this section, an approach is presented to predict the

finish time of a task in the DAG. An admission control

mechanism is also introduced to exploit the parallel proc-

essing capabilities of the resources and guarantee that a

cluster does not become overloaded. The DAG mapping

algorithm for multiclusters is consequently presented.

3.1 Calculating a task’s finish time in a cluster

Many list scheduling algorithms need to know a task’s

start/finish time to make scheduling decisions

[3][5][7][11]. If the tasks are scheduled to every single

processing node, the start/finish time of a task is easy to

compute since the tasks at the processing node are run in

sequence, which is the case for the list algorithms in the

literature. In this paper, however, the tasks mapped to a

cluster are further scheduled by the local scheduler. It is

therefore a non-trivial task to compute the start/finish

time in a cluster. The task is further complicated by the

presence of background workload. Theoretical analysis is

conducted and a new approach is developed in this sub-

section to predict a task’ finish time in a cluster with

background workload.

Suppose the tasks currently allocated to cluster Ci are

ordered in increasing time when they become schedulable.

The sequence of tasks is denoted as <vi1, … vik>.

sum_et[i][j] and sum_msg[i][j] are the sums of the

execution time and the communication time of tasks

vi1, …vij (1 j k) in cluster Ci. idle_cap[i][j] is the idle

processing capability (measured in time units) before the

time when task vij becomes schedulable in cluster Ci.

The algorithm for computing the finish time of a task

in cluster Ci is shown in Algorithm 1.

Algorithm 1. Computing the finish time of task vp, de-

noted as ft(vp), in cluster Ci

Input: array sum_et, sum_msg, idle_cap and j (task vij is

the last task in the sequence of tasks <vi1, … vik> that be-

comes schedulable before vp in Ci)

Output: ft(vp)

1. get the maximum finish time of vp's parents, denoted

as ft_par;

2. if(i i ft_par+sum_et[i][j] miui (ft_par

il

jimsgsum]][[_) idle_cap[i][j])

3. st(vp)=ft_par+ }'|max{ parentssvisv
bwid

pq

qp ,

where bwid is li if vq is scheduled to Ci and bwid is

wji if vq is scheduled to Cj (i j);

4. else

5. st(vp)=ft_par+(i i ft_par+sum_et[i][j] miui

(ft_par

il

jimsgsum]][[_)+idle_cap[i][j])/miui+

i

pqqp

l

parentssvisv)'|max(;

6. endif

7. ft(vp)=st(vp)+

i

p

u
;

Algorithm 1 is analyzed as follows. It computes Ci's

total computing capabilities (i.e., total computational vol-

ume that Ci is able to finish) and the idle computing capa-

bilities (because the system utilization is less than 1) dur-

ing the period between the time when starting mapping

the DAG-based application and the time when task vp be-

comes schedulable. The algorithm also calculates the

newly generated workload (including the tasks from the

DAG and background workload) during this period. If the

generated workload is less than the available computing

capabilities of Ci, which is the difference between Ci's to-

tal and idle computing capabilities, the workload can be

completed in a timely fashion and therefore, task vp’s ac-

tual start time equals its earliest start time, which is the

time when vp becomes schedulable. Otherwise, the unfin-

ished workload will queue (in the waiting queue) so as to

delay the start of task vp.

When computing the generated workload in Algorithm

1, all tasks from the DAG which become schedulable be-

fore task vp are counted. The calculation is correct for the

following reason. The local scheduler in each cluster

places a task in the DAG into the central waiting queue as

soon as it becomes schedulable. Therefore, task vp’s ac-

tual start time will be later than those tasks that become

schedulable before vp (although vp’s finish time may not

be later since the tasks are run in parallel).

3.2 Admission control mechanism

Since the inter-cluster communication is less efficient

than the intra-cluster communication, the multicluster

DAG mapping algorithm tries to map as many tasks as

possible to the same cluster until the capacity of the clus-

ter is reached. This policy can also make full use of the

parallel processing capabilities in a cluster.

In this paper, an admission control mechanism is in-

troduced to ensure that a cluster’s parallel processing ca-

pability can be effectively exploited, while at the same

time ensuring that the cluster is not overloaded in terms of

a particular metric. The metric used here is the expected

schedule length of a DAG. The expected schedule length

is changeable and it may be updated throughout the map-

ping procedure.

The multicluster mapping algorithm maps as many

tasks as possible to a cluster as long as the current ex-

pected schedule length is not exceeded. If the expected

schedule length cannot be met, the mapping algorithm

seeks to find another cluster which can do so. If no cluster

can be found, the task is mapped to the cluster which of-

fers the smallest excess and the expected schedule length

is then updated.

The initial value of the expected schedule length is im-

portant. If the initial value is set too high, the admission

control mechanism will not be effective, while a cluster’s

parallel processing capability cannot be fully exploited if

the value is set too low.

The lower bound of a DAG's schedule length is the

longest path in the DAG (called the critical path). When

only the tasks in the critical path are submitted to a cluster

with background workload, their schedule length can be

viewed as the lower bound of the DAG’s schedule length

in that cluster.

Suppose a DAG's critical path consists of k tasks, ,

, …, . If these k tasks are submitted to be run in

cluster C

cv1

cv2

c

kv

i, then their schedule length SL can be computed

as in Eq.1, where W0 is the mean waiting time encoun-

tered by the first task in the critical path.

)()1()()1
)1(

(

)()1()(

1

1

1,

0

1

1

1,

bum
uluum

um
W

aum
ulu

SL

iiii

i

k
k

p i

pp

i

p

ii

iiii

k

p

iiii

i

k

i

pp

i

p

(1)

The equation is explained as follows. At any one time,

only one task in the critical path can be executed because

of precedence constraints. Hence the remaining (mi-1)

processing nodes are still available for processing back-

ground workload. Suppose task vk is running. If the back-

ground workload is low, all background workload arriv-

ing during vk's execution can be completed by these (mi-1)

processing nodes. Therefore, vk's child can be executed as

soon as it becomes schedulable. This is the case for

Eq.1.a. However, if the background workload is too high

to be completed in a timely fashion, the tasks will be

queued in the waiting queue so as to delay the execution

of vk's child. This is the case for Eq.1.b. Eq.1 also gives

the conditions for differentiating between these two cases.

In Eq.1.b, W0 is the mean waiting time encountered by

the first task in the critical path. There are two approaches

for obtaining the value of W0. First, if the arrival process

of the background workload follows a certain probability

distribution (e.g., Poisson process), the value of W0 can be

obtained through theoretical analysis (for example, if

background workload follows the Poisson arrival, W0 is

calculated as in [13]). Second, W0 can be computed by

gathering the workload information in the cluster just be-

fore mapping the DAG.

The lower bound of the DAG is set to be the initial

value of the expected schedule length. This is reasonable

since it is possible that the actual schedule length of the

DAG is just the lower bound in a cluster.

In order to meet the initial expected schedule length,

any task vp in the DAG has a latest finish time (be-

cause of precedence constraints), which is calculated in

Eq.2, where et'(v

)(pvlt

p) is the earliest finish time of task vp,

which itself is a task in the critical path. et'(vp) can be cal-

culated when computing the lower bound of the schedule

length of the DAG using Eq.1.

otherwisechildsvisv
lu

vlt

pathcriticaltheintaskaisvvte

vlt
pq

i

pq

i

q

q

pp

p
}'|)(max{

)(

)(

 (2)

If a task’s actual finish time is after its latest finish

time, the current expected schedule length cannot be met.

The actual finish time can be calculated using Algorithm

1. The new value of the expected schedule length is up-

dated using its current value plus the excess of the task’s

actual finish time over its latest finish time. The new

value of the latest finish time of each remaining un-

mapped task is also updated using its current value plus

the excess. The feasibility of these calculations is shown

in Theorem 1 (the proof is omitted for brevity).

Theorem 1. Suppose task vp’s latest finish time is lt(vp)

and the expected schedule length of the DAG is sl. If vp’s

actual finish time is lt(vp)+a (a>0), then the earliest possi-

ble schedule length of the DAG is sl+a, and in order to

meet this earliest possible schedule length, the latest fin-

ish time of an arbitrary task vq is lt(vq)+a.

Algorithm 2. The multicluster DAG mapping algorithm

1. calculate the lower bound of the critical path in each

cluster using Eq.1;

2. calculate the tasks’ latest finish time using Eq.2;

3. obtain the cluster with the least lower bound of the

schedule length, suppose it is C1;

4. initialize all elements in arrays sum_et, sum_msg and

idle_cap to zero;

5. i=1; excess=0;

6. if there are schedulable tasks

7. get task vp, which becomes schedulable first in

cluster Ci among all current unallocated and

schedulable tasks;

8. count=1; T={Ci};

9. while(count n)

10. get the greatest j so that vij becomes schedul-

able before vp;

11. call Algorithm 1 to compute fti(vp);

12. call Algorithm 1 to compute fti(viq), 1 q j;

13. excessi=max(fti(vs) (lt(vs)+excess)),where

vs {vp} {vi1,…, vij};

14. if(excessi<0)

15. task vp is mapped to Ci;

16. break;

17. else

18. get such Ck that the bandwidth between Ck

and Ci is the highest and Ck is not in T;

19. i=k; count++; T=T {Ck};

20. end while

21. if(count>n)

22. obtain the cluster Ck with the least excessi, vp

is mapped to Ck;

23. i=k; excess+=min{excessi};

24. insert task vp into the task sequence <vi1,…, vik>

and update arrays sum_et, sum_msg and idle_cap;

25. update schedulable tasks;

26. go to Step 6;

When task vp is allocated to a cluster, vp may become

schedulable before some of the tasks that have been pre-

viously allocated to the cluster. Hence the execution of

these tasks may be delayed since a cluster has its inde-

pendent local scheduler and task vp will be placed into the

waiting queue before those tasks. Hence, when the current

expected schedule length of the DAG is computed, the

impact of vp on other previously allocated tasks should be

taken into account.

The multicluster mapping algorithm is outlined in Al-

gorithm 2. Its time complexity is O((n(r+1)r/2+3r+g),

where n is the number of clusters, r is the number of tasks

and g is the number of edges in the DAG.

4. Performance evaluation

An experimental simulator has been developed to

evaluate the performance of the Multicluster DAG Map-

ping algorithm (denoted as MDM) presented in this paper.

The experiments are conducted under a wide range of

system configurations and workload levels.

The multicluster consists of a collection of clusters;

and the number of processing nodes in each cluster is uni-

formly chosen between MIN_M and MAX_M. In every

cluster a central computer acts as the local scheduler and

schedules workload on a First-Come-First-Served basis.

In a DAG, task vp’s execution time on cluster Ci is cal-

culated as
ip u/ . Similarly, message epq’s communication

time is
ipq l/ , if both vp and vq are scheduled to Ci; oth-

erwise, the communication time is , if v
ijpq w/ p is

scheduled to Ci and vq to Cj. Cluster Ci’s service rate is

uniformly chosen between MIN_U and MAX_U. This

range reflects the level of computational heterogeneity.

The bandwidth of a intra-cluster network is uniformly

chosen between MIN_L and MAX_L. This range reflects

the level of communication heterogeneity in the clusters.

The ratio of the bandwidth of a inter-cluster network to

the mean bandwidth of all local networks is uniformly

chosen between MIN_W and MAX_W.

In the experiments, a DAG has a randomly generated

topology with a given number of tasks. The number of a

task’s children is uniformly chosen between MIN_CH and

MAX_CH, which reflects the degree of parallelism. The

greater the value of MAX_CH, the more tasks in the DAG

can potentially be run in parallel. A task’s computational

volume is uniformly chosen between MIN_CV and

MAX_CV and the volume of a message among tasks is

uniformly chosen between MIN_ MV and MAX_MV.

In the experimental studies, the background workload

(sequential tasks) arrives at cluster Ci following a Poisson

process and the workload’s computational volume fol-

lows an exponential distribution. The average arrival rate

is uniformly chosen from MIN_ARV and MAX_ARV and

Table 1. Parameters for the simulation studies

Parameter Explanation Value

MAX_U/MIN_U Max/min service rate 1.0/0.2

MAX_M/MIN_M The number of processing nodes in a cluster 16/4

MAX_L/MIN_L Max/min bandwidth for intra-cluster network 1.0/0.5

MAX_W/MIN_W Max/min ratio of intra- to inter-cluster bandwidth 10.0/1.0

MAX_CV/MIN_CV Max/min computation volume 25/1

MAX_MV/MIN_MV Max/min message volume 5/1

SU Utilization by background workload 0.5

TASKNUM Task number in a DAG 60

Multicluster size The number of clusters in the multicluster 4

MAX_CH/MIN_CH Max/min degree of parallelism used to generate a DAG 16/1

the mean workload volume from MIN_VOL and

MAX_VOL. The system utilization (SU) provided by the

background workload for cluster Ci is used as the metric

for measuring the background workload level in Ci.

The values of the simulation parameters are given in

Table 1 unless otherwise stated.

The performance metric evaluated in these experi-

ments is the schedule length of a DAG. The experimental

results demonstrate the performance advantages of the

multicluster DAG mapping algorithm over the scheduling

policies that regard each resource as a single processor.

The DAG scheduling algorithm presented in [7] (denoted

as SDS) is selected as a representative. The SDS algo-

rithm also aims to reduce a DAG’s schedule length. It

schedules a task to the single-processor node that is best

able to offer the shortest response time in a heterogeneous

cluster.

In the experimental studies, the SDS algorithm regards

a cluster as a single processor node, whose service rate is

the total service rate of all processing nodes in the cluster.

The schedule length of a DAG is also obtained by sched-

uling all tasks to the same cluster, that is the one with the

greatest value of (miui- i i). The schedule length is used

as a base line to measure the extent to which the perform-

ance is improved by the multicluster DAG mapping algo-

rithm presented in this paper.

4.1 Degree of parallelism

The degree of parallelism in a DAG determines

whether its tasks can be effectively run in parallel. Fig.2

shows the impact of the degree of parallelism on the

schedule length under the different scheduling policies.

The first observation from Fig.2 is that the schedule

length of the DAG decreases as its degree of parallelism

increases, as is to be expected. As can be observed further

from Fig.2, the multicluster DAG mapping algorithm

(MDM) achieves the same performance as the base line

when the degree of parallelism is low (from 2 to 4). This

is because when the degree of parallelism is low, MDM

also schedules all tasks in the DAG to the same cluster.

This is verified by our experimental results. However, as

the degree of parallelism increases further, the MDM

schedule increasingly allocates more tasks to the other

clusters so that the tasks are effectively run using a higher

degree of parallelism. This reduces the schedule length of

the DAG.

200

300

400

500

600

700

800

2 4 6 8 10 12 14 16

Degree of parallelism

S
ch

ed
u

le
 l

en
g

th

base line

MDM

SDS

Figure 2. Performance comparison under the in-
creasing degree of parallelism

Another interesting observation is that the schedule

length achieved by the SDS algorithm is worse than that

achieved by scheduling all tasks to the same cluster (the

base line) when the degree of parallelism in the DAG is

low (from 2 to 6). This result can be explained as follows.

The SDS algorithm regards a cluster as a single processor

node and in so doing assumes that all tasks scheduled to a

cluster will be run sequentially. Because of this, the algo-

rithm may schedule some tasks to different clusters to

achieve a higher degree of parallelism. However, the par-

allelism is achieved at the expense of higher communica-

tion costs (inter-cluster communication). If these tasks

can be scheduled to the same cluster, they can be run in

parallel with lower communication costs (intra-cluster

communication). It can be observed from Fig.2 that

MDM outperforms SDS significantly in all cases. This is

because the MDM algorithm takes into account the paral-

lel processing capability of a cluster and calculates the

impact of background workload with a greater degree of

sensitivity.

4.2 Background workload

Fig.3 shows the impact of the background workload on

the schedule length. The level of background workload is

measured by the observed system utilization. Each cluster

is presented with the same level of background workload

in the experiments.

100

200

300

400

500

600

700

800

900

0.125 0.25 0.375 0.5 0.625 0.75 0.875

background workload

S
ch

ed
u

le
 l

en
g

th

base line

MDM
SDS

Figure 3. The impact of the background workload
on the schedule length

It can be seen from Fig.3 that the schedule length in-

creases as the background workload increases, as is to be

expected. However, the increase ranges are different for

different policies. The curve for the base line is the sharp-

est, while the other two curves are relatively even. This

can be explained as follows. The background workload

and the tasks from the DAG compete for the resources.

As the background workload in a cluster increases, it be-

comes increasingly difficult for the DAG tasks to find

enough free processing nodes so as to be run in parallel.

Hence, the performance of the base line deteriorates

sharply. However, the MDM and SDS algorithms can

schedule the tasks to different clusters so as to gain a

greater chance of being run in parallel.

As can be observed from Fig.3, MDM performs sig-

nificantly better than SDS under all levels of background

workload. This result again shows the benefit of develop-

ing this new DAG mapping algorithm for multiclusters.

4.3 Task and message volume

Fig.4 shows the impact of the ratio of the task volume

to message volume on the schedule length. The task vol-

ume is uniformly chosen from the range [MIN_CV,

MAX_CV] and the task volume from [MIN_MV,

MAX_MV]. In the experiments, both MIN_CV and

MIN_MV are fixed to be 1. The MAX_CV/MAX_MV ratio

varies from 25/5 to 5/25, which indicates that the task

volume in the DAG decreases and the message volume

increases while their volume sum remains unchanged.

It can be observed from Fig.4 that the schedule length

decreases as the task-volume/message-volume ratio in-

creases in all cases. This may be caused by the fact that

the tasks from the DAG compete for computational re-

sources with the background workload. As the task vol-

ume decreases, the competition is gradually moderated so

that the schedule length is improved.

300

400

500

600

700

25/5 20/10 15/15 10/20 5/25

Task volume/Message volume

sc
h

ed
u

le
 l

en
g

th

base line

MDM

SDS

Figure 4. The impact of the ratio of task volume
to message volume on the schedule length

A further observation is that the advantage of MDM

over the base line becomes less prominent as the ratio of

task volume to message volume decreases. This is be-

cause as the message volume becomes gradually larger,

MDM tends to schedule the tasks to the same cluster so as

to reduce the communication cost via the inter-cluster

network with lower bandwidth. This leads to similar

scheduling results as those of the base line, which are

verified in the experimental results. Under MDM, compu-

tation-intensive applications can achieve a higher degree

of parallelism than communication-intensive applications.

4.4 Heterogeneity of inter-cluster and intra-

cluster communication

Fig.5 shows the impact of communication heterogene-

ity among the intra- and inter-cluster networks. The

communication heterogeneity is measured by the ratio of

the average bandwidth of the inter-cluster network to that

of the intra-cluster network (the average bandwidth of the

intra-cluster remains unchanged).

It is clear that the performance of the based line is not

influenced by the communication heterogeneity since all

tasks are scheduled to the same cluster.

It can be observed from Fig.5 that under MDM, the

schedule length increases and approaches that of the base

line as the communication heterogeneity increases. This is

because it incurs a higher communication cost to schedule

the tasks to different clusters as the communication het-

erogeneity increases. As a result, the tasks are more likely

to be scheduled to fewer clusters so as to reduce the ac-

tual degree of parallelism in the running tasks. This result

suggests that the MDM algorithm is more beneficial in

multicluster architectures with a smaller heterogeneity be-

tween the inter-cluster and intra-cluster communication.

200

300

400

500

600

700

800

1 3 5 7

Communication heterogeneity

sc
h

ed
u

le
 l

en
g

th

9

base line

MDM

SDS

Figure 5. The impact of the computation hetero-
geneity among the local and inter-cluster net-
works

As can be observed from Fig.5, the SDS algorithm

achieves the worse performance as compared to the base

line when the communication heterogeneity is high

(higher than 5 in Fig.5).This is consistent with the ex-

perimental results documented in Fig.4, where the per-

formance of SDS is worse than that of the base line when

the message volume is large.

It can be observed from Fig.5 that MDM consistently

outperforms SDS and the advantage becomes increasingly

prominent as the communication heterogeneity decreases.

This is because the potential of the MDM algorithm is

better exploited as the heterogeneity decreases. These ex-

perimental results imply once again that the MDM map-

ping algorithm is a better choice than SDS in multicluster

architectures.

5. Conclusions

This paper presents a DAG mapping algorithm for

multiclusters with background workload, where each

cluster is known to have its own local scheduler. An ap-

proach is developed to calculate the finish time of a task

in a cluster. Based on this, an admission control mecha-

nism is introduced to exploit the parallel processing capa-

bilities that the multicluster provides, this admission con-

trol also guarantees that a cluster is not overloaded. Ex-

tensive simulation experiments demonstrate that the mul-

ticluster DAG mapping algorithm significantly improves

the scheduling performance in terms of the schedule

length, compared with the traditional DAG scheduling al-

gorithms that treat a cluster of processing nodes as a sin-

gle computational resource.

6. References

[1] A Aleta, J Codina, J Sanchez, and A Gonzalez, “Graph-

partitioning based instruction scheduling for clustered proces-

sors”, Proceedings of the 34 Annual International Symposium
on Microarchitecture, 2001

th

[2] R Buyya and M Baker, “Emerging Technologies for Multi-

cluster/Grid Computing,” Proceedings of the 2001 IEEE Inter-

national Conference on Cluster Computing, 2001.

[3] J Cao, SA Jarvis, S Saini and GR Nudd, “GridFlow Work-

flow Management for Grid Computing”, 3rd International Sym-

posium on Cluster Computing and the Grid, 2003

[4] M Chu, K Fan and S Mahlke, “Region-based hierarchical

operation partitioning for multicluster processors”, Proceedings
of the ACM SIGPLAN 2003 conference on Programming lan-

guage design and implementation, 2003

[5] MM Eshaghian, YC Wu, “Mapping heterogeneous task

graphs onto heterogeneous system graphs”, 6th Heterogeneous
Computing Workshop, 1997

[6] B Fields, R Bodik, MD Hill, “Slack: maximizing perform-

ance under technological constraints”, 29th international Sympo-

sium on Computer Architecture, 2002

[7] L He, SA Jarvis, DP Spooner, GR Nudd, “Dynamic, capabil-

ity-driven scheduling of DAG-based real-time jobs in heteroge-

neous clusters”, Int. Journal of High Performance Computing

and Networking, 1(6-8), 2004

[8] L He, SA Jarvis, DP Spooner, X Chen, GR Nudd, "Dynamic

Scheduling of Parallel Jobs with QoS Demands in Multiclusters

and Grids", 5th IEEE/ACM International Workshop on Grid

Computing (Grid2004), Pittsburgh, USA, Nov 8, 2004

[9] L He, SA Jarvis, DP Spooner, GR Nudd, "Optimising static

workload allocation in multiclusters", Proceedings of 18th IEEE
International Parallel and Distributed Processing Symposium

(IPDPS'04), April 26-30, 2004, Santa Fe, New Mexico.

[10] L He, SA Jarvis, DP Spooner, GR Nudd, “Dynamic Sched-

uling of Parallel Real-time Jobs by Modelling Spare Capabilities

in Heterogeneous Clusters”, Proceedings of IEEE International

Conference on Cluster Computing (Cluster03), pp. 2-10. Hong

Kong, Dec 1-4, 2003

[11] M Iverson, F Ozguner, “Dynamic, Competitive Scheduling

of Multiple DAGs in a Distributed Heterogeneous Environ-

ment”, Proceedings of the Seventh Heterogeneous Computing
Workshop, 1998

[12] SA Jarvis, L He, DP Spooner, GR Nudd, "The impact of

predictive inaccuracies on execution scheduling", International
Journal of Performance Evaluation special issue on Perform-

ance Modelling and Evaluation of High-performance Parallel
and Distributed Systems, 60(1-4):127-139, 2005

[13] L Kleinrock, Queueing system, John Wiley & Sons, 1975.

[14] X Qin, H Jiang, "Dynamic, Reliability-driven Scheduling

of Parallel Real-time Jobs in Heterogeneous Systems," Proceed-
ings of the 30th International Conference on Parallel Process-

ing (ICPP 2001), pp.113-122, Valencia, Spain, September 3-7,

2001.

[15] A Radulescu, A van Gemund: “Fast and Effective Task

Scheduling in Heterogeneous Systems”, 9th Heterogeneous

Computing Workshop, 2000

[16] AG Ranade, “Scheduling loosely connected task graphs”,

Journal of Computer and System Sciences, 2003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

