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Abstract

Since sensor nodes normally have limited resources in terms
of energy, bandwidth and computation capability, efficiency is
a key design goal in sensor network research. As one of tech-
niques to achieve efficiency, data aggregation has been exten-
sively investigated in recent literature. Previous research on
data aggregation has demonstrated its effectiveness in reduc-
ing traffic, easing congestion and decreasing the energy con-
sumption. However few are actually designed for a real-world
application and implemented in a running system. This paper
describes our design and implementation of a physical tracking
system, using an aggressive data aggregation architecture as
one of building blocks. This architecture can be generally ap-
plied to other sensor systems, where communication efficiency
is a paramount concern and networking resources are limited.1

1 Introduction

Traditional military surveillance systems, using long-range
cameras/radars, are effective in the open terrains where di-
rect line-of-sight is available. While in the urban areas and
forests, the effectiveness of these solutions is affected by the
obstacles such as tall buildings and trees. To address this is-
sue, the military starts to use wireless sensor networks as an
effective surveillance instrument to deal with the non-line-of-
sight (NLOS) situations, because that sensor nodes can be de-
ployed anywhere around an environment to provide ubiquitous
surveillance. Due to the stealthiness requirement of the mili-
tary surveillance systems, a tiny form factor is essential. Con-
sequently, sensor nodes have very limited resources, suffering
the bandwidth, energy and memory constraints that limit the
amount of information that could be transferred. These factors
are coupled with unpredictable traffic patterns and dynamic net-
work topologies, making the task of data delivery for such net-
works difficult. Theoretically, for a given energy budget avail-
able in the network, the total amount of bits that can be trans-
mitted is limited. It is desirable to have the capability to de-
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NEST project (grant number F336615-01-C-1905), the MURI award N00014-
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liver more information with the same amount of bits over the
air. It is often the case that the data represented by these bits
is redundant. For example, a series of sensing readings with
same values can be concisely described by an average with a
zero standard deviation. As one type of data aggregation tech-
niques, this parameterized description of the data distribution
can effectively reduce the amount of data transmitted. Since
data aggregation can reduce transmissions while still distribut-
ing information about the events of interests, it is deemed as a
very effective resort to balance the communication needs and
energy constraints.

This paper addresses the research challenges related to the
data aggregation technique in real-time surveillance applica-
tions. We identify the fundamental tradeoffs that can bal-
ance the performance within a three-dimensional design space:
namely the timeliness, the energy consumption and the infor-
mation availability. Ideally, we desire to deliver enough infor-
mation in real-time with minimal energy consumption. Unfor-
tunately, these performance goals are often at odds with each
other. For example, a swift delivery prevents a node accumulat-
ing sufficient data for energy-efficient data aggregation. It is an
interesting research problem to identify a performance surface
within this three-dimensional space, so that a system designer
can make guided decisions to trade off among the energy, time
and data availability, according to the application requirements
and system configurations.

To demonstrate our approach to achieve this goal, we em-
ploy a typical sensor tracking system, called VigilNet, as a case
study. We introduce the data aggregation architecture designed,
implemented and integrated in VigilNet and identify the trade-
offs VigilNet provides. Since VigilNet is a typical sensor net-
work system, we believe our studies can render insights for the
system designers of similar systems.

The contribution of this work lies in the following aspects: 1)
Unlike the previous approaches that mainly focus on the simula-
tion study, we demonstrate how various data aggregation tech-
niques can be designed and implemented practically in a real
world application. 2) We reveal the impact of data aggrega-
tion on the quality of surveillance, the timeliness and the related
overheads. Such an analysis can guide system designers to flex-
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ibly change the system configurations in order to accommodate
various kinds of operation scenarios. 3) Compared with the so-
lutions without data aggregation, we demonstrate analytically
that our approach significantly reduces the amounts of energy
consumed.

2 Related Work
In this paper, we focus on the data aggregation techniques

applicable to the wireless sensor tracking systems. We divide
our discussion into two categories: data aggregation techniques
and sensor tracking systems in general.

2.1 Data Aggregation Approach

Data aggregation techniques have been widely used in wire-
less sensor networks. In [13], Intanagonwiwat proposes several
basic forms of data aggregation methods, including 1) the Cen-
ter at the Nearest Source method (CNS), where the source near-
est to the destination aggregates the data from other nodes; 2)
The shortest Path Trees (SPT) method, where data aggregation
happens at the intermediate nodes within a shortest path tree
rooted at the sink; and 3) the greedy Incremental Trees (GIT)
method, where an aggregation tree is constructed by connecting
each destination sequentially to the existing tree via a short-
est path. GIT assumes a complete knowledge of global topol-
ogy information; therefore it provides more opportunities for
data aggregation. TAG provides a hierarchical data aggregation
scheme at a data collection phase. Using an acquisitional query
processor for data collection, TinyDB [17] optimizes the query
process to aggregate data with a low energy overhead. Directed
Diffusion [14], as a popular data-centric architecture for data
acquisition, can be augmented by aggregating data along the re-
inforced paths from the sources to the sinks. Another type of
data aggregation techniques focuses on the data placement of
caching services. Bhattacharya et al. [1] investigate the optimal
placement of caches between multiple sensor sources and sinks.
These caches aggregate the updates from the source nodes and
distribute data to leaf sink nodes with minimal requested rates.
Since all aforementioned approaches are designed for the sys-
tems with no stringent time requirement, the designers of these
systems naturally treat the timeliness as a less important issue
related to the data aggregation. The closest research related to
this work is the AIDA protocol [8]. AIDA takes the timely de-
livery of messages as well as the protocol overhead into account
to adaptively adjust aggregation strategies in accordance with
assessed traffic conditions and expected sensor network require-
ments. Through simulations, it demonstrates the feasibility to
reduce the energy consumption and the end-to-end communica-
tion delay simultaneously. Our work presented here differs from
aforementioned approaches in several aspects: First, this work
deals with the real-time issue along with the data aggregation.
Second, this work introduces not only the usage of multiple ag-
gregation techniques, but also how these techniques can be in-
tergraded within a tiered architecture. Third, our work is not a
simulation study. Instead it is designed for a realistic tracking
application with a running implementation.

2.2 Research on Sensor-based Tracking

Traditional surveillance systems are widely used for decades.
Due to space constraints, we only name a few directly related
ones. The ASDE system [3] and Secure Perimeter Area Net-
work (SPAN) [4], normally use long-range cameras/radars with
a 360-degree view of an area as the instruments for the detec-
tion. While these infrastructure protection systems are effec-
tive, they are subject to several limitations: First, they can not
be emplaced swiftly without infrastructure, which makes such
system not suitable for spontaneous military deployment in the
remote areas. Second, the large form factor of these systems
makes them easily detectable and evadable. Third, the number
of surveillance points is small, which makes systems vulnera-
ble to attack. To overcome these limitations, sensor networks is
pursued recently by [2, 10, 11, 20, 19] as a more efficient mech-
anism to accomplish the remote unmanned surveillance mis-
sions. Feng et al. [20] design a surveillance and tracking sys-
tem using a distributed Bayesian estimation technique. Brook
et al. [2] propose a distributed surveillance system based on ex-
tended Kalman filter techniques. These solutions provide very
nice features to improve the surveillance performance in one as-
pect or another, however ignoring other performance goals. For
example, some systems provide high performance at cost of the
system lifetime - a critical performance metric for long-term
surveillance. The difference between our proposed work and
aforementioned approaches is that we adopt our solution in a
multiple-dimensional design space, where we consider not only
the tracking performance, communication efficiency through
data aggregation, but also the timeliness in delivery. This re-
quires a balanced and flexible system design. Another highlight
of our approach is the system implementation, which addresses
many practical issues hard to capture in the simulated tracking
scenarios.

3 Data Aggregation Requirements in VigilNet
The VigilNet is an online surveillance system, which consists

of hundreds of tiny sensor nodes. These nodes detect, track and
classify incoming targets in a timely and energy efficient man-
ner. The final results are reported to a remote back-end via a
long-haul bandwidth-constrained satellite links. In the current
hardware platform, each node is equipped with three types of
sensors. Magnetic sensors can detect the changes in the mag-
netic field caused by the movement of ferrous objects. Motion
sensors can detect the changes in the infrared radiation caused
by warm objects such as personnel. The acoustic sensors detect
sound waves. Target signatures can be identified in VigilNet by
sampling aforementioned three sensors at the particular rates
(e.g. 10bits data at 1000HZ from acoustic sensors). Suppose
100 sensors participate in a tracking process, VigilNet could
generate 1Mbit data in one second by using the acoustic sensor
alone. The total amount of data to be transmitted multiplies with
the number of hops over the network. Given the fact that the cur-
rent long-haul satellite link only provides a 1200bps data rate,
VigilNet can only send approximately 1-bit aggregated data out
of every 1,000 bits of raw sensor readings generated from the
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Figure 1. Four Tier Data Aggregation Architecture

network. This requires us to design an aggressive data aggrega-
tion architecture in VigilNet.

4 Four-Tier Data Aggregation Architecture

Normally, data aggregation ratio for a given system is sim-
ply the size of the original data divided by the size of the aggre-
gated data. Based on our experience, a single data aggregation
strategy is neither sufficient nor flexible to achieve an aggres-
sive a 1000:1 data aggregation ratio. If data aggregation is only
done at the node level, information could be lost too early to
be useful. If data aggregation is only done at a central site,
a sensor network spends too much energy in transmitting the
data and possibly suffers severe network congestion and mes-
sage losses. To balance energy efficiency and data availability,
we design and implement a four-tier data aggregation architec-
ture in VigilNet as shown in figure 1.

1. The first layer (T1) is the raw data aggregation layer, which
takes the sensor readings form the individual sensors and
converts them to the detection confidences, values between
zero and one, indicating how confident a detection algo-
rithm of the individual sensor is about the existence of the
target. The data aggregation ratio at this layer is largely
determined by the slowest raw sampling rate and the fre-
quency in generating the confidence values. VigilNet can
achieve approximately a 50 ∼ 100 : 1 ratio at this layer.

2. At the second layer (T2), a node takes the detection confi-
dence values from different sensors to form a single clas-
sification vector, which indicates the target type and the
corresponding confidence values. With three sensors, this
layer achieves a 3:1 aggregation ratio.

3. At the third layer (T3), all nodes that detect the same target
join the same logic group to track the target. Each group is
represented by a leader to maintain the status of the target
by aggregating all the reports from the member nodes. The
leader node aggregates not only the location of reporting
nodes as well as their confidence vectors together. Period-
ically, the leader node sends a report, consisting of a time
stamp, an aggregation location and a confidence vector, to
the base. The sensing density determines the aggregation
ratio. In the VigilNet case, we expect an aggregation ratio
between 3:1 and 10:1.

4. The fourth layer of aggregation (T4) happens at the base. A
base aggregates the individual reports form the same logic
group (a group that tracks the same target) together to gen-
erate a final report which contains the target type, bear-
ing, speed and detection time-stamp. The aggregation ratio
in this layer is determined by the tracking history length.
Normally an aggregation ratio between 2:1 and 10:1 can
be achieved.

In the next several sections, we give more detail on each
layer, and provide the analysis that reflects the tradeoffs be-
tween energy efficiency and other properties of the system such
as the timeliness.

5 T1: Sensor-Level Data Aggregation

The sensor data is the raw input to the network’s computa-
tion work flow. It provides the foundation of the information
processing for tracking events in the network. Data aggregation
at this layer should meet following requirements.

• Meet real-time constraints: Because the system deals with
transient events, such as fast-moving targets, in the net-
work, the sensor data needs to be processed in a timely
manner. If the processing latency is too long, a target
would move out of the sensing range before the detection
finishes

• Deal with a large volume of inputs: Endeavoring to ac-
complish reliable, timely, and quality sensing and tracking,
a surveillance application often uses multiple sensors and
samples them at very high rates. As a result, the combined
sampling rate is high, especially, when the acoustic sens-
ing is employed, and the volume of the sensor data input is
large.

In the rest of this section, we first introduce different types
of sensors and sensor data in the VigilNet, then discuss possi-
ble aggregation methods, and finally evaluate the aggregation
method used in this layer.

5.1 Sensors and Sensor data

VigilNet uses the ExScal motes as sensor nodes. The major
difference between the ExScal mote and the Berkeley Mica2
mote is that the former integrates a magnetometer (Honeywell
HMC1052[12]), a microphone, and 4 PIR sensors on the same
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circuit board as the processor’s. Compared to sensors used
in other applications, such as the temperature sensors (e.g.,
the Panasonic ERTJ1VR103J thermistor used on Mica sensor
board) and light sensors (e.g., the Clairex CL9P4L photo sen-
sor), the PIR sensors and microphone on ExScal motes track
target signals with a relatively high frequency. For example, the
microphone can potentially detect a waveform of 16KHz. This
leads to a high degree of data availability at the sensor layer.
More specifically, we list the sensor and the sensor data used in
the following table.

Table 1. System parameters
Sensor Type Sampling rate Note
Magnetometer DC 32 8-bit POT 2-axis
PIR AC 50
Microphone AC 1000

5.2 Aggregation Methods

We call the sensor reading at a specific time on a specific
sensor on a specific node a sample point. When a sensor net-
work starts operation, each sensor on each node in the network
produces a sequence of sample points. All the sample points
produced by the network form a set and we call it the global
sample set.

The global sample set is the complete information about
what happens in the network. If all the nodes report their sam-
ple points to a base, the base can collect the global sample set
and perform computation with it. However, as mentioned in
Section 1, due to resource and energy limit, we prefer to deliver
same information with fewer bits.

Let’s first compute the amount of raw bits generated on one
sensor. They correspond to all the sample points generated on
one sensor. The magnetic sensor has two axes, each sampling at
32Hz, and the ADC output has 10 bits which are represented by
two bytes in the software. Since the ADC values are the rela-
tive readings to the reference, one additional 8-bit potentiometer
value is needed to record the reference value. Therefore, it takes
24 bits to record one sample point. In each second, 64 sample
points are generated, and are represented with 1,536 bits, or
192 bytes. Suppose a sensor node keeps awake for one minute
when some events of interest happen. The total number of data
for this event is 92,160 bits, or 11,520 bytes. Similarly, we can
compute the data generated by the PIR sensor has 48,000 bits,
or 6,000 bytes, and the acoustic sensor generates 960,000 bits,
or 120,000 bytes. In total, one event generates 1,100,160 bits,
or 137,520 bytes.

As we can see, even one event generates a relatively large
volume of sensor data. One potential method of aggregate the
sensor data is to merge identical data and send out a “summary”.
However, with noise existing, the ADC seldom generates iden-
tical data even with a constant input. Hence, such merging is
not effective.

Another way is to compute the differences between consec-
utive sample points, and record the difference, which is usually

in a smaller range and can be represented by fewer bits. This
leads to, virtually, a compression scheme. To assess the effec-
tiveness of such compression, we use compression tools on PC
to compress the sensor data, and examine the compression ratio.
Experiments reveal that the compression ratio on DC signals by
using gzip 1.3.3 is 100:37, and 100:31 with bzip2 1.0.2. Hence,
even for DC signals, which is a simpler case, on a high-power
platform with plenty of resources, the performance of the ag-
gregation using such a method can hardly be satisfactory – it
reduces approximately 2/3 of the data, but the remaining vol-
ume is still too large for sensor networks. Obviously, there are
three key limitations for us to employ a traditional compression
techniques: First, the transportation of 1/3 of the global sample
set consumes an exorbitant amount of energy; Second, sensor
nodes do not sufficient memory to accomplish these compres-
sion operations. Third, the latency to collecting and compress-
ing these sample points is too long for a system that must react
to the events in real-time.

Therefore, to enhance aggregation’s performance to the level
we desired, we design and implement a semantics based aggre-
gation. By analyzing sensor data to retrieve its semantics, we
achieves a highly efficient aggregation, as we will discuss next.

5.3 the Semantic-based Aggregation

The reason for collecting sensor data is to form tracking
knowledge. Hence, the semantics of the sensor data is the prob-
ability of the existence of specific targets. The VigilNet de-
tects four types of targets. Hence, we use a 4-element vector
(BV, SV, PF, PS), called confidence vector, to represent the
semantics of the sensor data.

In the confidence vector, the elements BV , SV , PF and PS
correspond to the four types of targets – big vehicle, small vehi-
cle, person with ferrous objects, and person. The numeric value
of these elements are the relative probability of the existence of
a target being of the specific type. By using sensor level sens-
ing and classification algorithms, we transform sensor data into
confidence vectors [7].

The tracking report rate is a configurable parameter in the
VigilNet. Suppose this rate is 2 reports per second, which is a
common setting in some deployed systems. We can evaluate the
aggregation performance of such a semantics based approach.
Each element of the confidence vector is represented by one
byte, hence the confidence vector contains 4 bytes. In each sec-
ond, at most two (zero in case of no even detection) confidence
vectors are needed for two tracking reports. Hence, aggregation
ratio for the magnetometer is 25:1, for the PIR sensor is 25:2,
and for the acoustic sensor is 250:1. Overall, the aggregation ra-
tio for all the sensors is 100:1. Obviously, the semantics based
aggregation is highly efficient.

6 T2: Node-Level Data Aggregation
Each sensor node has four PIR sensors, one magnetometer

with two axes, and one microphone. The node performs fur-
ther aggregation after collecting confidence vectors from the
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sensors. It computes the averages of the sensors’ confidence
vectors and form a single node-level confidence vector.

Because the three types of sensors form their own confidence
vectors per type, the input of the node-level sensing and classi-
fication module are three confidence vectors. Hence, the aggre-
gation ratio is 3:1. Combined with the 100:1 aggregation ratio
accomplished at the sensor level, the overall node-level aggre-
gation ratio is 300:1.

6.1 Analysis w/wo Aggregation

To retrieve semantics from sensor data and aggregate sensor
level confidence vectors, the sensing algorithms and the node-
level classification module need to buffer sensor data for a pe-
riod of time and then perform their specific processing. This
introduces delay into the network. Hence, we need to exam-
ine the length of the latency and verify that they are within a
reasonable limit.

The delay introduced by the magnetometer is minimal – it
buffers only one sample point and updates the confidence vec-
tor for each sample point. Hence, there is no delay introduce
except for the mandatory sampling interval, which is about 16
milliseconds. Similarly, the PIR sensor introduces little delay
because it buffers only a very small set of sample points. The
delay introduced is still at the millisecond level. The acoustic
sensor, however, buffers sensing data for about 1.2 seconds for
processing. Hence, it introduces a latency of 1.2 seconds plus
the sampling interval which is negligible in this case. Over-
all, the latency for accomplishing the best sensing and detection
result is the maximum of the three sensors’ latencies, i.e., 1.2
seconds.

The benefit, on the other hand, is obvious – with an aggre-
gation ratio of 300:1, we reduces 99.67% of the communication
payload. Though the semantics retrieval consumes CPU time
and energy, it is a known fact that communication imposes or-
ders of magnitude more energy overhead than computation in a
sensor device. Hence, our estimation of energy saving due to
data aggregation is still close to 99%.

7 Group-Level Data aggregation

After forming node-level detection results, VigilNet starts to
estimate the current position of the tracked target as well as
uniquely and identically represent the target in a logical space.
Estimation of target positions is usually done by calculating the
weighted average of the locations of nodes reporting detections,
using their individual detection confidence values as weights.
However, there is a design decision to be made on when and
where to conduct such calculations. Representation of targets,
as a traditional topic in target tracking, has been widely ad-
dressed by either centralized or distributed temporal and spa-
tial correlation algorithms. Our system borrows the distributed
group management algorithm from EnviroSuite [15], an pro-
gramming middleware for tracking and monitoring applications
in sensor networks. In the following subsections, we describe in
more detail the group aggregation algorithm used in the system

and provide a theoretical analysis of how it trades off among
information quality, delay and energy consumption.

7.1 Group Based Data Aggregation

As stated above, tracking of a target consists of two main
parts: position estimation and target representation. A simple
way to tackle these problems would be to send the detection
results and locations of individual nodes that detect targets to
a centralized base station. Based on these received node posi-
tions [9, 18] , the base is able to estimate current positions of
targets, and assign and maintain unique and consistent identi-
ties for targets by running temporal and spatial correlation algo-
rithms. However, such a centralized scheme is inefficient both
in energy and latency. It incurs excessive power consumption
due to communicating multiple reports to a centralized base
and may unduly increase latency, especially when targets are
far away from the base. In addition, this centralized scheme
can easily propagate the false alarms occurred in one part of the
network to the base, which could overwhelm the base when the
false alarm rate is high.

To avoid these limitations, we adopted a lightweight,
distributed solution proposed in our previous work Enviro-
Suite [15]. Different from centralized solutions, EnviroSuite
chooses to process data at or near the location where a target
is detected, and sends only aggregates to the base for further
processing. Specifically, EnviroSuite contains a set of group
management algorithms to 1) instantiate globally addressable
objects for targets as their logical representatives, 2)maintain a
unique mapping between objects and targets, 3) guarantee the
consistency of the mapping despite of target movements, and
4)suppress the false alarms locally.

Original EnviroSuite is completely dynamic, where nodes in
the vicinity of a target is dynamically organized into one group,
in which, a leader node is dynamically elected to host a corre-
sponding object for the target. Though the dynamics of Enviro-
Suite enhances its robustness to failures including both message
loss and node failures, it suffers a prolonged delay due to the
long latency during the leader election, which is undesirable.
To address this issue, our system uses a more static version of
EnviroSuite, called Lightweight EnviroSuite [16], where groups
are still dynamically formed while leaders are pre-elected in an
initialization phase.

The following part explains Lightweight EnviroSuite in more
details through a step-by-step description. Note that to be con-
cise, we review only features relevant to this paper. Concrete
descriptions of detailed algorithms on leader election and object
maintenance can be found in [16]. In the initialization phase, a
subset of nodes are elected to be potential leaders with the guar-
antee that they provide 100% sensing coverage. Later on in the
tracking phase, when a target gets detected by local nodes, these
nodes immediately report their locations and detection results
to their corresponding potential leaders (A potential leader L is
claimed to be one of node’s potential leaders if and only if L is
within 2 times sensing range from that node). These reports are
kept by the potential leaders until one of them have collected
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enough reports and is sensing the target. This potential leader
then becomes a real leader, estimates the current position of the
target and sends an aggregate report (containing position esti-
mation as well as aggregated confidence vectors) to the base.
Upon the reception of the aggregate report, other potential lead-
ers drop their collected data and start over from the beginning
again.

7.2 Analysis w/wo Aggregation

To aggregate, the leader running EnviroSuite waits for
enough reports from members. A configurable parameter DOA
(Degree of Aggregation) is introduced to measure whether there
are enough member reports. All potential leaders withhold their
aggregate reports to the base until the number of collected mem-
ber reports reaches DOA.

Intuitively it is expected that setting DOA to a very small
value (e.g., 1) would minimize delays, which, however, is
proved incorrect in a realistic, noisy environment the system
operates on. Field experiments reveal that in such an environ-
ment, false positives of individual nodes are so frequent that,
without filtering, excessive traffics between these nodes and the
base tend to congest the network and impose large latency to
other traffics that contain meaningful data. Therefore, it is crit-
ical to use a big DOA to filter out the false alarms of individual
nodes, which not only improves the quality of information but
also has positive affects on latency. Besides, energy consump-
tion is also reduced due to less traffic towards the base. On the
other hand, setting DOA to a high value (e.g., 5) is not desirable
either, since a high DOA inevitably introduces longer delay. A
DOA value higher than the number of nodes within a sensing
range should be avoid, otherwise no report will be generated
by the leader node. These tradeoffs between information qual-
ity, energy consumption and latency require that DOA has to
be carefully chosen to satisfy these various aspects of design
requirements. Analytical models on energy consumption and
group aggregation delay as functions of DOA are built below to
provide guidelines for system designers.

7.2.1 Energy Gain with Data Aggregation

It is extremely challenging to analyze realistic systems com-
plicated by various factors, e.g., sensing range, target motion
model, and node density. However, a rough approximation can
be derived by making several simplified assumptions, including
circular sensing range (Rs), straight target trajectory with ve-
locity Vt, and uniformly distributed nodes with density d. This
approximation gives us some insight on the system performance
in general.

Assuming that a target enters the monitored field and moves
for time duration Tt as shown in Figure 2, we compares energy
consumption with/without aggregation as below. Since all the
node that can detect the target are located within the gray rect-
angle or semi-circle as shown in Figure 2, the total number of
reporting nodes is:

� �

� � � � � � � � � � � 	 
 � � � �

 � � � � � � � � � �

� � � � � � � �

Figure 2. The Detection Area

d(πR2

s/2 + 2RsVtTt) (1)

Without group-level aggregation, each node directly sends
its detection result to the base, where the expected energy con-
sumption without aggregation(Ewo aggr) is:

Ewo aggr = d(πR2

s/2 + 2RsVtTt)En̄ (2)

where E represents the energy consumed to send a one-hop
message and n̄ represents the average hop count between these
detection nodes and the base.

With aggregation, each node sends its detection result only
locally and, for every DOA detection nodes, there is an aggre-
gate report sent to the base. Therefore, the expected energy
consumption with aggregation (Ew aggr) becomes:

Ew aggr = d(πR2

s/2 + 2RsVtTt)E +

d(πR2

s/2 + 2RsVtTt)

DOA
E(n̄ − 1) (3)

Based on these equations, the percentage of conserved en-
ergy (P ) due to group aggregation can be calculated as:

P = 1 −
Ew aggr

Ewo aggr

= 1 −
1

n̄
−

1

DOA
(4)

when n̄ ≥ 2 and DOA ≥ 2. These equations reveal the re-
lation between energy consumption and DOA. As an example,
when DOA is set to be 3 and the base is 3 hops away on aver-
age, group-level aggregation consumes approximately 33% less
energy compared with the no-aggregation scheme.

� �

� � � � �  ! " # � #

$ %

Figure 3. Movement of a target during time pe-
riod T
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7.2.2 Delay Introduced by Aggregation
This section analyzes how tracking report latency is affected by
DOA settings. Figure 3 depicts the movement of a target during
time period Tt. The white circular and grey circular represent,
respectively, the detection area of the target before and after the
movement. Nodes located in the diagonally lined area are new
detectors of the target and send out member reports for aggrega-
tion during this time period, assuming that they have a common
potential leader. Let’s assume that an aggregate report has been
sent out just before the depicted movement, which means that
a new aggregate report is not to be sent until the number of re-
ports sent by these new detectors reaches DOA. Therefore, we
have the expected delay caused by group-level aggregation Tg:

Tg =
DOA

2RsVtd
(5)

This equation shows quantitatively the tradeoffs between delay
and DOA (indication of information quality). To be more con-
crete, Figure 4 illustrates different group aggregation delays for
varied target velocities and DOA values (setting sensing range
to be 10 m and node density to be 1 per 100 m2).
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Figure 4. Group aggregation delays for varied
DOA values and target velocities

We note here that as one part of the tier-architecture, the
group-level aggregation is not simply another method to fur-
ther reduce energy consumption. With the inputs from multi-
ple nodes, the group-level aggregation can eliminate the false
alarms due to the faulty nodes and improve data quality, which
can not be achieved by the node-level aggregation.

8 T4: Base-Level Data Aggregation

After receiving the reports from individual leader nodes, the
base needs to aggregate the information further, an operation to
serve three main objectives:

• Flow control: The long-haul link to the remote back-end
could be the bottle neck of the system. A base is required
to address the bandwidth mismatch between the sensor net-
work output and the long-haul link capability. This is more
likely to happen when the system tracks multiple objects
simultaneously.

• Filtering: A base needs to prevent sending the duplicate
reports as well as the false alarms to the back-end. To filter
out the false alarms, a system needs to correlate the spa-
tiotemporal properties of consecutive reports. Since the
base is the only place in the network that has the complete
global knowledge of a tracked target, it is at a better po-
sition than in-network nodes to filter out the system-wide
false alarms.

• Consolidated View: End users is more interested in a con-
solidated view of the tracked targets instead of the indi-
vidual sensing reports from the sensor network. Although
the group-level aggregation does provide some persistent
information such as object ID, it is not effective to keep a
long trace history of a target through a sequence of hand-
over operations among the leader nodes. To improve the
efficiency, a base should be used to create a consolidated
view instead.

8.1 Base-Level Data Aggregation

The base bridges the system back-end and the sensor net-
work. Its aggregation functionalities can be summarized as fol-
lows. First, the base takes the input from the in-network group
leaders, and creates logical targets according to the spatiotem-
poral correlations of the input reports. Second, according to the
information of the logic targets, the base filters out duplicate
reports, messages with long delays, and false alarms, and pro-
vides flow control to match the bandwidth of the upstream link.
Third, the base makes use of the incoming messages to provide
extra information for the logic targets, such as target velocity
and target classification information.

More specifically, when the base received a detection report
from a certain location, it tries to associate the report with the
closest logical target created recently. If the distance from the
location of the report to that of the logical target exceeds a pre-
defined threshold, a new logic target is created for the report. If
the distance is below the threshold, the report is added into the
history of the logical target and the location of the logical target
is updated according to the report. An exception is that if the
location of the report is the same as one of the last few loca-
tions in the history, the report is dropped as a duplicate report.
A logical target expires after a certain amount of time if there
has been no new report that is added into its history. By this
approach the reports are categorized into logical targets based
on their spatiotemporal correlations. When the base creates a
new logical target, it needs to differentiate valid target reports
from false alarms. This is done by accumulating spatiotemporal
correlated reports up to a certain length before confirming the
detection.

Another value that the base-level aggregation adds into the
system is velocity calculation for the logical target. Since each
message from the network includes a location and a time-stamp,
we can use the locations and time-stamps in the logical target’s
history to infer the velocity of the target. We use a standard lin-
ear regression procedure to calculate the velocity. The formula
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Figure 5. Velocity Calculation from Reported Lo-
cations

for calculation of the x-axis component of the velocity is

vx =

∑N

i=1
(xi − x̄)(ti − t̄)

∑N

i=1
(ti − t̄)2

(6)

in which xi is the x component of the ith location, and ti is
the ith time-stamp. The x component of the latest location is
denoted by x1, and that of the one right before it is x2, etc.
N denotes the number of reports and time-stamps used for the
calculation. The vy calculation is similar to the Equation 6. As
shown in Figure 5, vy is the slope of the fitting straight line (the
thick dashed line shown in Figure 5(b) ).

To deal with the bandwidth limit to the system back-end, a
flow rate parameter is set during the initial phase of the network
operation. The flow rate parameter can be used to calculate the
minimum interval between two consecutive reports of a logical
target from the base: Dbase = 1/Nr, in which N is the max-
imum allowable logical targets in the system and r is the flow
rate. Obviously, the worst case delay introduced by the base-
level aggregation is Dbase. Supposing the reporting rate of each
leader node is R, the aggregation ratio at the base is NR/r. We
note that a naive solution is to do flow control at the group-level
by setting the reporting rate of each leader node to r/N and the
base relays every report to the back-end. In this naive design, a
system could save more energy, however less data is available
to create a consolidated target view. For example, the veloc-
ity estimation becomes less accurate and less fresh with fewer
reports.

In summary, the base-level aggregation is essential and can
not be replaced or eliminated by the aggregation at other layers,
because of its ability to correlate the system-wide reports and
resolve the flow rate mismatch between a sensor network and
the link to back-end system.

9 Conclusion

In this paper, we describe a multi-tier data aggregation ar-
chitecture for target tracking applications. Due to space con-
straints, we omit the evaluation on this architecture. Details on
its performance can be found at [10]. Since sensing data has
different semantics at different layers, the pure in-network ag-
gregation leads to low data availability for the high-level aggre-
gation, while the pure centralized aggregation leads to exces-
sive energy consumption. In contrast, the architecture proposed

in the work can flexibly achieve the balance between energy,
timeliness and data availability.
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