
A Study of MPI Performance Analysis Tools on Blue Gene/L

I-Hsin Chung, Robert E. Walkup, Hui-Fang Wen and Hao Yu

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598

{ihchung,walkup,hfwen,yuh}@us.ibm.com

Abstract

Applications on todays massively parallel supercom-
puters rely on performance analysis tools to guide them
toward scalable performance on thousands of proces-
sors. However, conventional tools for parallel perfor-
mance analysis have serious problems due to the large
data volume that may be required. In this paper, we
discuss the scalability issue for MPI performance anal-
ysis on Blue Gene/L, the worlds fastest supercomputing
platform. We present an experimental study of existing
MPI performance tools that were ported to BG/L from
other platforms. These tools can be classified into two
categories: profiling tools that collect timing summaries,
and tracing tools that collect a sequence of time-stamped
events. Profiling tools produce small data volumes and
can scale well, but tracing tools tend to scale poorly. The
experimental study discusses the advantages and disad-
vantages for the tools in the two categories and will be
helpful in the future performance tools design.

1 Introduction

The Blue Gene1/L (BG/L) supercomputer is a mas-
sively parallel system developed by IBM in partnership
with Lawrence Livermore National Laboratory (LLNL).
BG/L uses system-on-a-chip technology [16] to integrate
powerful torus and collective networks onto a single chip
with the processors, and it uses a novel software architec-
ture [14] to support high levels of scalability. The BG/L
system installed at LLNL contains 65,536 dual-processor
compute nodes. Operating at a clock frequency of 700
MHz, BG/L delivers 180 or 360 Teraflop/s of peak com-
puting power, depending on its mode of operation.

Solving a scientific problem on BG/L typically re-
quires more processors than conventional supercomput-
ers because BG/L has relatively low-power processors,
both in terms of Watts consumed and Flops produced.

1Trademark or registered trademark of International Business
Machines Corporation.

Therefore, to effectively utilize the enormous computa-
tion power provided by BG/L systems, it is critical to
explore scalability to the maximum extent. It has been
shown that a significant number of important real-world
scientific applications can be effectively scaled to thou-
sands or tens of thousands BG/L processors [18]. The
process of achieving such high level scalability and perfor-
mance is often difficult and time-consuming, but can be
guided with scalable parallel performance analysis tools.

Performance analysis tools produce information col-
lected at run-time to help program developers identify
performance bottlenecks and in turn improve application
performance. For massively parallel systems like BG/L
where scalability is the key, scalable tools for analyzing
communication are needed. On BG/L, communication is
via the message-passing interface, MPI. The MPI spec-
ification includes a “profiling” interface, which provides
entry points to intercept and instrument the message-
passing calls. One can distinguish between two types
of parallel performance tools: (1) profiling tools that
generate cumulative timing information, and (2) tracing
tools that collect and display a sequence of time-stamped
events. It is clear that tracing tools face a fundamen-
tal difficulty when there are thousands of processes in-
volved. The volume of trace data can easily get to be
unmanageable. As a result, post-mortem data reduction
schemes based on filtering the aggregate data may still
be untenable. Instead, it is necessary to carefully control
trace generation. In contrast, profiling tools are inher-
ently more scalable, because they retain only cumulative
data.

In this paper, we discuss the scalability of MPI profil-
ing and tracing tools on BG/L. We discuss existing MPI
tracing tools and show that they have serious problems
for large-scale BG/L systems. Specifically, we present
our study of existing tools that are ported onto BG/L
from other platforms.

The rest of the paper is organized as follows. Section
2 gives an overview of MPI on the BG/L. We study the
scalability of existing MPI performance analysis tools on
BG/L by using several real applications in Section 3 and

1
1-4244-0054-6/06/$20.00 ©2006 IEEE

4. The experiences and lessons learned are described in
Section 5. Related work is given in Section 6. Finally,
the conclusion is drawn in Section 7.

2 MPI on BG/L

On BG/L, each process can directly access only its
local memory, and message-passing is used for communi-
cation between processes. The current implementation of
MPI on BG/L [17] is based on MPICH2 [5] from Argonne
National Laboratory. The BG/L version is MPI-1.2 com-
pliant [15] and supports a subset of the MPI-2 standard.
There are parts of MPI-2, such as dynamic process man-
agement, that are not supported. Other parts of MPI-2,
such as one-sided communication, are under development
and testing at the time of this writing.

The MPI implementation on BG/L utilizes three high-
speed networks: a three dimensional (3D) torus network
for point-to-point communication [13], a collective net-
work for broadcast and reduction operations, and a global
interrupt network for fast barrier synchronization. For
the torus network, each compute node is connected to its
six neighbors through bidirectional links, and the links
can be “trained” to wrap around on partitions that are
multiples of a midplane (a unit with 512 nodes in an
8x8x8 torus network configuration).

Another important architectural feature of BG/L is
that each compute node has two processors. A compute
node can operate in one of two modes. In coprocessor
mode, a single-threaded MPI process occupies each node,
and the second processor is used to aid in MPI commu-
nication. In virtual node mode, there are two single-
threaded MPI processes per node, each with access to
half of the node memory. The two processors on each
chip do not have hardware support for cache coherency,
so pthreads or OpenMP are not currently supported on
BG/L. As a result, MPI has a very important role for
parallel applications on BG/L.

3 MPI Performance Analysis Tools for
BG/L

A number of MPI performance analysis tools have
been made available for BG/L users by joint efforts of
IBM and collaborators. In this section, we first give
brief introductions to these tools. Then, in Section 4,
we present an experimental evaluation of the scalabil-
ity, efficiency, and overhead of these tools when applying
them on BG/L. Table 1 lists the MPI performance tools
that were ported to BG/L and used in this study. These
tools can be classified into two categories: (1) profiling
tools that provide cumulative data, and (2) tracing tools
that provide time-stamped records of MPI events.

Table 1. Existing MPI Performance Analysis
Tools

Tool Function References
IBM HPCT profiling and tracing [3]
Paraver tracing [8, 26]
KOJAK tracing [4, 25]
TAU profiling and tracing [9, 23]
mpiP profiling [6]

3.1 IBM High Performance Computing
Toolkit

The IBM High Performance Computing Toolkit (IBM
HPCT) contains MPI profiler and tracer libraries [3] to
collect profiling and trace data for MPI and SHMEM
programs. This toolkit was originally developed for AIX
Power clusters and now is ported to BG/L. The IBM
HPCT generates two types of output files that work
with the visualization tools Peekperf and Peekview to
identify performance bottlenecks. Peekperf integrates a
source-code browser with cumulative performance met-
rics obtained with the profiler library (Figure 1(a)), a
nd Peekview displays the time-stamped MPI trace file
obtained via the tracer library (Figure 1(b)).

3.2 Paraver

Paraver [8,26] is a program visualization and analysis
tool that supports both shared-memory and distributed-
memory parallel applications. It has three major com-
ponents: a tracing facility, a trace merge tool, and a
visualizer. For MPI tracing, the MPItrace library is used
to intercept MPI calls and save individual trace files dur-
ing application execution. The individual files are then
merged, and the merged trace file is displayed using the
viewer, which has many display and analysis features. An
example of Paraver for MPI trace visualization is shown
in Figure 2. Both the trace merge tool and the viewer run
on BG/L front-end nodes, while trace generation is done
from the BG/L compute nodes. Paraver is best suited
for parallel applications at a modest scale by BG/L stan-
dards, because at large process counts the trace files be-
come large and hard to work with. This basic difficulty
affects all tracing tools to some extent.

3.3 KOJAK

KOJAK (Kit for Objective Judgment and Knowledge-
based Detection of Performance Bottlenecks) [4, 25] is a
collaborative research project aiming at the development
of a generic automatic performance analysis environment
for parallel programs. It includes a set of tools perform-
ing program analysis, tracing, and visualization. The

2

(a) Source Code Performance Metrics Mapping

(b) Trace Visualization

Figure 1. IBM HPCT Visualization for MPI Per-
formance Analysis

Figure 2. Paraver Visualization for MPI Tracing

(a) Hotspot Analysis

(b) Topology

Figure 3. KOJAK Visualization for MPI Profiling

instrumentation for MPI is obtained with the PMPI in-
terface, which intercepts calls to MPI functions. KOJAK
uses the EPILOG run-time library, which provides mech-
anisms for buffering and trace-file creation. On BG/L,
the resulting trace files can be quite large. In terms of
visualization, KOJAK provides several options including
tree-style hot spot analysis (Figure 3(a)). The user can
identify performance bottlenecks by exploring the tree.
There is also a topology view (Figure 3(b)) to help the
user map performance metrics back to the compute nodes
in terms of the physical layout on the torus network.

3.4 TAU

TAU [9, 23] is a program and performance analysis
framework. It includes a suite of static and dynamic
tools that form an integrated analysis environment for
parallel applications. TAU includes automatic instru-
mentation to capture data for functions, methods, basic
blocks, and program statements. In addition to auto-
matic instrumentation, TAU provides an API for man-
ual instrumentation. TAU can be used for either profiling
(collecting cumulative data) or tracing (recording time-
stamped events). TAU includes a visualizer, Paraprof,

3

for profile data. For trace data, TAU does not include
it’s own trace viewer, but it can convert trace files for
use with other visualization tools, such as Paraver. TAU
has many features and has been ported to a variety of
platforms. In our experiments with TAU, we used only
the MPI profiling capability.

3.5 mpiP

mpiP [6] is a light-weight profiling library for MPI ap-
plications. It collects cumulative information about MPI
functions. It uses communication only during report gen-
eration, typically at the end of the program execution.
Since it collects only cumulative information, the output
size is very small compared to MPI tracing tools, and
the execution time overhead is normally small. However,
the detailed time history of communication events is not
available with this tool.

4 Performance Study

In this section, we study the scalability, efficiency, and
overheads of the existing MPI performance analysis tools
on BG/L.

4.1 Applications

We used a collection of scientific applications on BG/L
to examine the strengths and limitations of parallel per-
formance tools. The applications are briefly described
below.

SAGE [22] is an Adaptive Grid Eulerian hydrodynam-
ics application from Science Applications International.
SAGE uses blocks of cells in a three-dimensional Carte-
sian framework. SAGE has many features including the
ability to do automatic mesh refinement. Two input sets
were used: one that does significant computational work
but has a static mesh, and another that exercises the
automatic mesh refinement capability.

FLASH [2] is a parallel adaptive-mesh multi-physics
simulation code designed to solve nuclear astrophysical
problems related to exploding stars. The particular test
case that we used was a two-dimensional weak scaling
problem [29], which includes an expanding shock wave
and exercises the adaptive-mesh refinement capability.

SOR is a program for solving the Poisson equation
using an iterative red-black SOR method. This code uses
a two dimensional process mesh, where communication
is mainly boundary exchange on a static grid with east-
west and north-south neighbors. This results in a simple
repetitive communication pattern, typical of grid-point
codes from a number of fields.

POP (Parallel Ocean Program) [12,20,21,28] is a par-
allel ocean circulation model. We used the input file in-
cluded in POP version 2.0.1, with a fixed domain size

as the test case. The domain is decomposed into blocks,
and blocks are distributed among the processors. In con-
trast to the other codes, POP was used in a strong-scaling
mode, where the total problem size is fixed, and the work
per processor decreases as the application is scaled up.

sPPM [10] is a simplified version of the Piecewise
Parabolic Method (PPM), a hydrodynamics algorithm
which is particularly useful when there are discontinu-
ities such as shock waves . The application uses a three-
dimensional process mesh, and communication is by ex-
change with nearest neighbors in +/-x, +/-y, and +/- z
directions. This communication pattern fits nicely onto
the 3D torus network, and as a result sPPM scales almost
perfectly on BG/L.

SWEEP3D [11] is a simplified benchmark program
that solves a neutron transport problem using a pipelined
wave-front method and a two-dimensional process mesh.
Input parameters determine problem sizes and blocking
factors, allowing for a wide range of message sizes and
parallel efficiencies.

4.2 Performance Measurement

In this section we report measurements using the ex-
isting MPI performance tools with the collection of ap-
plications listed in Section 4.1. Two metrics were cho-
sen to characterize the tools: (1) execution-time over-
head ((elapsed time−reference time)/reference time,
where the reference time is measured without profiling
or tracing), and (2) the volume of collected data.

Figures 4(a) and 4(b) show the measurements, using
weak scaling (work per processor remains constant) for a
set of applications, with 512, 1,024, and 2,048 compute
nodes on BG/L in coprocessor mode. The execution-time
overhead for the profiling methods provided by TAU and
mpiP was less than 3% and is not shown in the figures.
In our experience, profiling tools can provide useful cu-
mulative data up to very large systems, including the full
64K-node Blue Gene/L at Livermore, with relatively lit-
tle overhead. In contrast, the execution-time overhead
for the tracing methods used by IBM HPCT, Paraver,
and KOJAK grows faster than linearly with the number
of MPI processes, and is already of order 100(factor of
two slower performance) with 1,024 processes. The over-
all performance is slowed down significantly with 2,048
or more MPI processes. Also, the volume of trace data
collected, shown in Figure 4(b), can quickly grow to of
order 100 GBytes, which is too large for efficient analysis
or visualization. At very large process counts, it is sim-
ply not practical to save all time-stamped records from
every MPI rank.

A closer examination reveals that the execution-time
overhead is substantially affected by the generation of
trace file output. The trace file I/O behavior is not uni-
form over the course of program execution. For exam-
ple, the I/O bandwidth obtained when tracing FLASH

4

1

10

100

1,000

Paraver KOJAK IBM ACTC

HPCT

Paraver KOJAK IBM ACTC

HPCT

Paraver KOJAK IBM ACTC

HPCT

Paraver KOJAK IBM ACTC

HPCT

SOR SWEEP3D FLASH sPPM

O
v
e
rh

e
a
d

 (
%

)

512 1024 2048

(a) Execution Time Overhead

1

10

100

1,000

10,000

100,000

Paraver KOJAK IBM ACTC

HPCT

Paraver KOJAK IBM ACTC

HPCT

Paraver KOJAK IBM ACTC

HPCT

Paraver KOJAK IBM ACTC

HPCT

SOR SWEEP3D FLASH sPPM

MByte
s

512 1024 2048

(b) Performance Data Size

Figure 4. MPI Performance Analysis Tool Applications

5

0

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8

Normalized execution time

O
b

s
e
rv

e
d

 I
/O

 b
a
n

d
w

id
th

 (
M

B
/s

)

1

Paraver KOJAK IBM ACTC HPCT TAU

(a) FLASH, 1,024 Compute Nodes

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

Normalized execution time

O
b

s
e
rv

e
d

 I
/O

 b
a
n

d
w

id
th

 (
M

B
/s

)

Paraver KOJAK IBM ACTC HPCT TAU

(b) sPPM, 1,024 Compute Nodes

Figure 5. Performance Analysis Tool I/O Distri-
butions

and sPPM is shown in Figure 5 as a function of time.
The tracing tools use buffers in memory to save event
records, but when the buffers are full it is necessary to
write data to the file-system. In order to minimize the
performance impact of tracing on systems like BG/L that
only supports blocked I/O, it is advantageous to use large
memory buffers, and delay file I/O until near the end of
program execution. In our experiments, Paraver follows
this approach and achieves somewhat better utilization of
I/O bandwidth. The execution-time overhead for tracing
could be kept to a minimum by keeping all trace data in
memory, but that is not feasible for long-running appli-
cations with large numbers of events. The BG/L system
that we used for these experiments did not have a parallel
file system attached to it. The output files were written
to an NFS file system mounted on the nodes. An ag-
gressive parallel file-system could significantly reduce the
execution-time overhead caused by trace file generation.
However, the problem of managing the vast amounts of
trace data would remain.

5 Discussion

Weak scaling and strong scaling are commonly used
to study the scalability for a given application. For weak
scaling, as the number of processors increases, the work-
load per processor remains the same. In other words,
total workload increases with the number of processors.
For strong scaling, total workload remains the same so
when the number of processors increases, workload re-
duces for each processor.

Among the applications we studied in Section 4.2,
POP is run with strong scaling configuration. As the
number of processors increases, the execution overhead
becomes very large. We suspect that when the workload
or data for each processor is too small, it requires more
communications for each processor to finish its share of
the job (i.e. the communication and computation ratio
increases). The application POP fails to run with Par-
aver and KOJAK when using 1,024 and 2,048 compute
nodes. One possible reason is that in order to record nu-
merous communication information, the memory usage
per process exceeds the 512 MBytes limit on BG/L.

Due to the limitations for each compute node on BG/L
(e.g., physical memory size, single thread/single process,
performance counter events), many program execution
behaviors are difficult to measure. For example, memory
usage is only estimated by using heap and stack sizes.
We expect in the next generation of Blue Gene system,
Blue Gene/P, a lot of such performance measurement
obstacles can be removed. For example, with multiple
threads on a single compute node, we would be able to
measure the I/O activities more precisely.

There are a number of ways to reduce the data vol-
ume. For example, if the application does similar work

6

for many time-steps, one could limit tracing to just one
or two time-steps, either by inserting calls to start/stop
tracing within the application, or by setting run-time pa-
rameters to limit the total number of time-steps in the
numerical simulation. By selectively tracing just one part
of the application, the data volume can be dramatically
reduced. Also, the nature of large-scale parallel applica-
tions is that many MPI processes are doing very similar
work, so one can limit trace generation to a subset of
MPI ranks and still obtain useful insight into the time-
dependent behavior of the application. Our experience
has been that good insight can be obtained by saving
data from about 100 MPI processes, which can reduce
the data volume by roughly a factor of 1,000 for large
BG/L systems. One can imagine a number of ways to se-
lect MPI ranks. For example, one could pick a contiguous
range of MPI ranks, or one could define a communication
neighborhood based on actual communication patterns,
or one could choose a contiguous block of processes based
on the topology of the network (a three-dimensional torus
for BG/L).

6 Related Work

Performance tools like Dyninst [1, 19], Paradyn [7, 24]
provides on general framework for performance tuning
for parallel application. Dyninst provides a C++ class
library for program instrumentation. Using this library,
it is possible to instrument and modify application pro-
grams during execution. A unique feature of this library
is that it permits machine-independent binary instrumen-
tation programs to be written. Numerous projects in-
cluding TAU are utilizing this library. Paradyn, based
on Dyninst, is a performance measurement tool for par-
allel and distributed programs. Performance instrumen-
tation is inserted into the application program and mod-
ified during execution. The instrumentation is controlled
by a Performance Consultant module. The Performance
Consultant has a well-defined notion of performance bot-
tlenecks and program structure, so that it can associate
bottlenecks with specific causes and specific parts of a
program. The instrumentation overhead is controlled by
monitoring the cost of its data collection.

Software like pSigma [27] can utilize the tool to min-
imize human intervention. PSigma is an infrastructure
for instrumenting parallel applications. It enables the
users to probe into the execution of an application by
intercepting its control-flow at selected points.

7 Conclusion

In this paper we examined existing MPI profiling and
tracing tools on Blue Gene/L. The profiling tools collect
only cumulative timing data, and can scale to very large

systems with relatively little overhead. Tracing tools col-
lect and analyze time-stamped events, but the trace files
tend to grow to unmanageable sizes when the number of
MPI processes is large. To control the volume of trace
data, one can limit trace generation to a subset of MPI
ranks and/or a selected time window, and still obtain
useful insight into the time-dependent behavior of par-
allel applications. We discuss a possible method to con-
trol trace generation. This method will provide flexible
control of trace generation, and can be used for more
complex tasks, such as automatically detecting and log-
ging a repeated sequence of MPI calls. In the near future
we plan to implment and verify our proposed method to
have a scalable MPI performance analysis tool.

Acknowledgment

The authors would like to thank Manish Gupta, David
Klepacki, and Jose Castanos for their supports and re-
views.

References

[1] An Application Program Interface (API) for
Runtime Code Generation. [Online]. Available:
http://www.dyninst.org

[2] FLASH homepage. [Online]. Available:
http://flash.uchicago.edu/website/home/

[3] IBM Advanced Computing Technology Cen-
ter MPI Tracer/Profiler. [Online]. Available:
http://www.research.ibm.com/actc/projects/mpitracer.shtml

[4] Kit for Objective Judgement and Knowledge-based
Detection of Performance Bottlenecks. [Online].
Available: http://www.fz-juelich.de/zam/kojak/

[5] MPICH-A Portable Implementation of
MPI. [Online]. Available: http://www-
unix.mcs.anl.gov/mpi/mpich/

[6] mpiP: Lightweight, Scalable MPI Profiling. [Online].
Available: http://www.llnl.gov/CASC/mpip/

[7] Paradyn:Parallel Performance Tools. [Online].
Available: http://www.paradyn.org

[8] PARAVER homepage. [Online]. Available:
http://www.cepba.upc.es/paraver/

[9] TAU: Tuning and Analy-
sis Utilities. [Online]. Available:
http://www.cs.uoregon.edu/research/tau/home.php

[10] The ASCI sPPM Bench-
mark Code. [Online]. Available:
http://www.llnl.gov/asci benchmarks/asci/limited/ppm/asci sppm.html

7

[11] The ASCI sweep3d Benchmark Code. [Online]. Available:
http://www.llnl.gov/asci benchmarks/asci/limited/sweep3d/asci sweep3d.html

[12] The Parallel Ocean Program (POP). [Online]. Available:
http://climate.lanl.gov/Models/POP/

[13] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E.
Giampapa, P. Heidelberger, S. Singh, B. D. Steinmacher-Burow,
T. Takken, M. Tsao, , and P. Vranas, “Blue Gene/L Torus In-
terconnection Network,” IBM Journal of Research and Devel-
opment, vol. 49, no. 2/3, pp. 265–276, 2005.

[14] N. Adiga, G. Almasi, G. Almasi, Y. Aridor, R. Barik, D. Beece,
R. Bellofatto, G. Bhanot, R. Bickford, M. Blumrich, A. Bright,
J. Brunheroto, C. Cacaval, J. Castaos, W. Chan, L. Ceze, P. Co-
teus, S. Chatterjee, D. Chen, G. Chiu, T. Cipolla, P. Crumley,
K. Desai, A. Deutsch, T. Domany, M. Dombrowa, W. Donath,
M. Eleftheriou, C. Erway, J. Esch, B. Fitch, J. Gagliano, A. Gara,
R. Garg, R. Germain, M. Giampapa, B. Gopalsamy, J. Gunnels,
M. Gupta, F. Gustavson, S. Hall, R. Haring, D. Heidel, P. Hei-
delberger, L. Herger, D. Hoenicke, R. Jackson, T. Jamal-Eddine,
G. Kopcsay, E. Krevat, M. Kurhekar, A. Lanzetta, D. Lieber,
L. Liu, M. Lu, M. Mendell, A. Misra, Y. Moatti, L. Mok,
J. Moreira, B. Nathanson, M. Newton, M. Ohmacht, A. Oliner,
V. Pandit, R. Pudota, R. Rand, R. Regan, B. Rubin, A. Ruehli,
S. Rus, R. Sahoo, A. Sanomiya, E. Schenfeld, M. Sharma,
E. Shmueli, S. Singh, P. Song, V. Srinivasan, B. Steinmacher-
Burow, K. Strauss, C. Surovic, R. Swetz, T. Takken, R. Tremaine,
M. Tsao, A. Umamaheshwaran, P. Verma, P. Vranas, T. Ward,
M. Wazlowski, W. Barrett, C. Engel, B. Drehmel, B. Hilgart,
D. Hill, F. Kasemkhani, D. Krolak, C. Li, T. Liebsch, J. Marcella,
A. Muff, A. Okomo, M. Rouse, A. Schram, M. Tubbs, G. Ulsh,
C. Wait, J. Wittrup, M. Bae, K. Dockser, L. Kissel, M. Seager,
J. Vetter, and K. Yates, “An Overview of the Blue Gene/L Su-
percomputer,” in Supercomputing ’02: Proceedings of the 2002
ACM/IEEE conference on Supercomputing. IEEE Computer
Society Press, 2002, pp. 1–22.

[15] G. Almasi, C. Archer, J. G. Castanos, J. A. Gunnels, C. C. Er-
way, P. Heidelberger, X. Martorell, J. E. Moreira, K. Pinnow,
J. Ratterman, B. D. Steinmacher-Burow, W. Gropp, and B. Too-
nen, “Design and implementation of message-passing services for
the Blue Gene/L supercomputer,” IBM Journal of Research and
Development, vol. 49, no. 2/3, p. 393, 2005.

[16] G. S. Almasi, D. Beece, R. Bellofatto, G. Bhanot, R. Bickford,
M. Blumrich, A. A. Bright, J. Brunheroto, C. Cascaval, J. Cas-
tanos, L. Ceze, P. Coteus, S. Chatterjee, D. Chen, G. Chiu, T. M.
Cipolla, P. Crumley, A. Deutsch, M. B. Dombrowa, W. Donath,
M. Eleftheriou, B. Fitch, J. Gagliano, A. Gara, R. Germain,
M. E. Giampapa, M. Gupta, F. Gustavson, S. Hall, R. A. Haring,
D. Heidel, P. Heidelberger, L. M. Herger, D. Hoenicke, R. D. Jack-
son, T. Jamal-Eddine, G. V. Kopcsay, A. P. Lanzetta, D. Lieber,
M. Lu, M. Mendell, L. Mok, J. Moreira, B. J. Nathanson, M. New-
ton, M. Ohmacht, R. Rand, R. Regan, R. Sahoo, A. Sanomiya,
E. Schenfeld, S. Singh, P. Song, B. D. Steinmacher-Burow,
K. Strauss, R. Swetz, T. Takken, P. Vranas, T. J. C. Ward,
J. Brown, T. Liebsch, A. Schram, , and G. Ulsh, “Cellular Su-
percomputing with System-on-a-Chip,” in IEEE International
Solid-State Circuits Conference (ISSCC), 2002, pp. 152–153.

[17] G. Almasi, C. Archer, J. G. Castanos, M. Gupta, X. Martorell,
J. E. Moreira, W. Gropp, S. Rus, and B. Toonen, “MPI on Blue
Gene/L: Designing an Efficient General Purpose Messaging So-
lution for a Large Cellular System,” in Proceedings of the 10th
European PVM/MPI Users Group Meeting, 2003, pp. 252–261.

[18] G. Almasi, G. Bhanot, A. Gara, M. Gupta, J. Sexton, B. Walkup,
V. V. Bulatov, A. W. Cook, B. R. de Supinski, J. N. Glosli, J. A.
Greenough, F. Gygi, A. Kubota, S. Louis, T. E. Spelce, F. H.
Streitz, P. L. Williams, R. K. Yates, C. Archer, J. Moreira, and
C. Rendleman, “Scaling physics and material science applications
on a massively parallel blue gene/l system,” in ICS ’05: Proceed-
ings of the 19th annual international conference on Supercom-
puting. New York, NY, USA: ACM Press, 2005, pp. 246–252.

[19] B. R. Buck and J. K. Hollingsworth, “An API for Runtime Code
Patching,” Journal of High Performance Computing Applica-
tions, vol. 14, pp. 317–329, 2000.

[20] J. K. Dukowicz and R. D. Smith, “Implicit free-surface method
for the Bryan-Cox-Semtner ocean model,” Journal of Geophysics
Research, vol. 99, pp. 7991–8014, Apr. 1994.

[21] J. K. Dukowicz, R. D. Smith, and R. C. Malone, “A Refor-
mulation and Implementation of the Bryan-Cox-Semtner Ocean
Model on the Connection Machine,” Journal of Atmospheric and
Oceanic Technology, vol. 10, no. 2, pp. 195–208, Apr. 1993.

[22] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasser-
man, and M. Gittings, “Predictive performance and scalability
modeling of a large-scale application,” in Supercomputing ’01:
Proceedings of the 2001 ACM/IEEE conference on Supercom-
puting (CDROM). ACM Press, 2001, pp. 37–37.

[23] A. D. Malony, S. Shende, R. Bell, K. Li, L. Li, and N. Trebon,
“Advances in the tau performance system,” pp. 129–144, 2004.

[24] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth,
R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and
T. Newhall, “The Paradyn Parallel Performance Measurement
Tool,” IEEE Computer, vol. 28, pp. 37–46, Nov. 1995.

[25] B. Mohr and F. Wolf, “KOJAK - A Tool Set for Automatic Per-
formance Analysis of Parallel Applications ,” in Euro-Par 2003:
Proceedings of the International Conference on Parallel and
Distributed Computing, Sept. 2003.

[26] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “PARAVER:
A tool to visualise and analyze parallel code,” in Proceedings
of WoTUG-18: Transputer and occam Developments, vol. 44.
Amsterdam: IOS Press, 1995, pp. 17–31.

[27] S. Sbaraglia, K. Ekanadham, S. Crea, and S. Seelam, “pSigma:
An Infrastructure for Parallel Application Performance Analysis
using Symbolic Specifications,” in The sixth European Workshop
on OpenMP - EWOMP’04, Oct. 2004.

[28] R. D. Smith, J. K. Dukowicz, and R. C. Malone, “Parallel ocean
general circulation modeling,” in Proceedings of the eleventh
annual international conference of the Center for Nonlinear
Studies on Experimental mathematics : computational issues
in nonlinear science. Elsevier North-Holland, Inc., 1992, pp.
38–61.

[29] G. A. Sod, “A survey of several finite difference methods for
systems of nonlinear hyperbolic conservation laws,” Journal of
Computational Physics, vol. 27, pp. 1–31, Apr. 1978.

8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

