
A Framework to Develop Symbolic

Performance Models of Parallel Applications

Sadaf R. Alam Jeffrey S. Vetter

Oak Ridge National Laboratory
Oak Ridge, TN, USA 37831
{alamsr,vetter}@ornl.gov

Abstract

Performance and workload modeling has numerous
uses at every stage of the high-end computing lifecycle:
design, integration, procurement, installation and tuning.
Despite the tremendous usefulness of performance models,
their construction remains largely a manual, complex, and
time-consuming exercise. We propose a new approach to
the model construction, called modeling assertions (MA),
which borrows advantages from both the empirical and
analytical modeling techniques. This strategy has many
advantages over traditional methods: incremental
construction of realistic performance models,
straightforward model validation against empirical data,
and intuitive error bounding on individual model terms.
We demonstrate this new technique on the NAS parallel
CG and SP benchmarks by constructing high fidelity
models for the floating-point operation cost, memory
requirements, and MPI message volume. These models are
driven by a small number of key input parameters thereby
allowing efficient design space exploration of future
problem sizes and architectures.

1 Introduction

Performance and workload modeling has numerous uses
at every stage of the high-end computing lifecycle: design,
integration, procurement, installation, tuning, and
maintenance. Despite the tremendous usefulness of
performance models, their construction remains largely a
manual, complex, and time-consuming exercise. In most
cases, researchers create models by manually interrogating
applications with an array of performance, debugging, and
static analysis tools to refine the model iteratively until the
predictions fall within expectations. In other cases,
researchers start with an algorithm description, and
develop the performance model directly from this abstract
description.

In this paper, we describe a new approach to
performance model construction, called modeling

assertions (MA), which borrows advantages from both the
empirical and analytical modeling techniques. This
strategy has many advantages over traditional methods:
isomorphism with the application structure, easy
incremental validation of the model with empirical data,
uncomplicated sensitivity analysis, and straightforward
error bounding on individual model terms. We
demonstrate the use of MA by designing a prototype
framework, which allows construction, validation, and
analysis of models of parallel applications written in
FORTRAN and C with the MPI communication library.
We use the prototype to construct models of NAS CG and
SP benchmarks [4].

MA generates two types of representations of the target
application: control flow models and symbolic models that
can be evaluated with MATLAB or Octave. Symbolic
models are generated for the number of floating-point and
memory operations, and for MPI point-to-point and
collective communication operations. Control flow models
provide a mechanism not only to understand the control
flow of an application but also to generate alternate model
representations in programming languages like C or
Python. The models are represented in terms of an
application’s input parameters. Thus, an application
parameter space can be explored efficiently using the MA
models. Furthermore, the control flow models can be
extended to produce synthetic traces like the ones
generated the by MPIDtrace utility [9] to predict
communication performance of an application.

In addition, the symbolic models can project
performance requirements and allow us to conduct
sensitivity analysis of workload requirements for future
and larger problem instances of an application. For
example, we studied the growth rate of the number of the
floating-point operations with respect to input parameters
(e.g., the array size and the number of nonzero elements)
for the NAS CG benchmark. Our results show that the
floating-point operation cost increases at a much faster
rate by increasing the number of nonzero elements than by
increasing the array size.

1-4244-0054-6/06/$20.00 ©2006 IEEE

The outline of the paper is as follows: the motivation
behind the modeling assertion technique is presented in
section 2. Section 3 explains the components of the
modeling assertion framework, and describes model
construction and validation using the NAS CG and SP
benchmarks. Section 4 presents the scalability of the NAS
CG and SP benchmarks together with an analysis of
sensitivity of workload requirements to the input
parameters of the benchmarks. Section 5 concludes with
benefits and contributions of the modeling assertions
approach to performance modeling studies.

2 Motivating Examples

During the past two decades, the high-end computing
(HEC) community has successfully used performance
modeling for many activities. In this respect, researchers
have proposed numerous techniques for the creation and
validation of performance models, ranging from fully
analytical, manual methods to automatic, architecture-
specific approaches. Many of these techniques serve the
overall purpose of modeling but there have been few
common techniques have gained widespread acceptance
across the community. This situation has resulted in
additional problems including lack of modular,
interoperable performance models, and a lack of tools for
model creation, analysis, and validation.

The two basic methodologies for constructing
performance models are best represented by two case
studies. The first case study develops a performance model
of a protein folding application for the Blue Gene
architecture using a top-down, analytic approach. The
second case study demonstrates an empirical modeling
approach based on static and dynamic observations of a
target application on a specific architecture. The output of
both of these approaches is a predictive performance
model. With this model in hand, both methods typically
use measurements, simulations, and other performance
estimates to generate performance predictions for an
application on a specific architecture.

2.1 Top-down Algorithmic Model Creation

Many researchers have created analytical models of
important kernels and applications [3][5]. These models
range from calculating the number of operations necessary
to complete a common mathematical operation, such as a
matrix multiply, to complete models of entire codes, such
as protein folding. Almasi, et al. [3] present such a model
of the protein folding application for the original Blue
Gene architecture. Their analysis eloquently decomposes
the application into its main computational and
communication kernels. They, then, use simulations and
analytical models to generate performance predictions for
various system and application configurations.

2.2 ab initio Model Creation from Empirical

Observation

Another approach to model creation is based on static
and/or dynamic analysis of the characteristics of an
application on a specific architecture, using these
characteristics to generate an ab initio model. One such
system developed for empirical performance modeling is
the POEMS system [1]. POEMS used an elaborate
compiler system along with message tracing to generate a
performance model of target applications. To evaluate the
model with different configurations, users could, as in the
analytical modeling case, investigate a variety of
important machine parameters with simulators, modeling,
or measurement, and, then, feed those values into the
existing performance model.

2.3 Observations

Both top-down, analytical and ab initio techniques have
benefits and both generate valuable results. However, both
of these techniques also have shortcomings that have
limited their widespread adoption in the HEC community.

Empirical, ab initio model creation (2.2) typically relies
on some combination of static and dynamic analysis.
Developers must use tools [2] like debuggers, performance
monitors, and memory tracers [6] to ‘reverse engineer’ the
application to generate a performance model. If the
application has dynamic data dependencies in the control
flow, then the exercise becomes even more complex.
Moreover, this automated process might discover
hundreds of input parameters; whereas application users
typically recognize that only a subset of input parameters
may be important for a performance model. Users usually
can easily identify these important parameters; however,
that information is lost when relying solely on an
automated process. Another disadvantage to this approach
is that it has limited applicability to large, complex
scientific applications. Real applications, such as those
used in the DoE SciDAC program [7], have hundreds of
thousands of lines of multi-language source code. Unless
the automated tools take care to omit frequent operations,
such as trillions of memory loads and stores, the tools can
be impractical. Yet another issue with automated tools is
the lack of separation between the architecture dependent
and the architecture independent characteristics of the
application. Take, for example, a series of memory
operations fetching a floating point number through a
permutation index array. Each access to the floating point
number is restricted by the prior access to the permutation
array; however, since many accesses through this
permutation index array can occur concurrently, the
latencies for these operations may be overlapped (and
hidden). In contrast, when relying on memory address
tracing on a specific architecture, it would be impractical
and error-prone to ‘reverse engineer’ a compiler-mutated

address stream to this level of detail. This problem is even
more aggravated by the recent introduction of vector and
multithreaded architectures that can provide scatter/gather
hardware for these types of operations.

Top-down analytic model creation is the most common
method of creating a performance model. Any application
user can interrogate their application, develop a structure
for the model, introduce model terms, and refine the model
until it represents the performance with reasonable
fidelity. On the positive side, these types of models
typically emphasize exactly the important variables, input
parameters, and operations that are important to each
application. Although this modeling technique is
pervasive, it remains difficult, time-consuming, and error-
prone. Furthermore, because every user develops an
independent model, there are few (if any) widespread
performance modeling languages and toolkits. Without
these tools, the process of validating and debugging
performance models remain an ad-hoc endeavor.

3 Modeling Assertions Overview

Based on these observations, we have designed
Modeling Assertions (MA) to facilitate the creation of
symbolic performance models. MA is a new technique that
combines the benefits from both analytic and empirical
approaches, and it adds some new advantages, such as
incremental model validation. Advantages gained from
modeling assertions include the following:
1. The symbolic models are parameterized, architecture-

independent models that can be evaluated with a variety
of tools, such as MATLAB.

2. MA performance models are modular, portable, and
composable.

3. Users construct performance models incrementally with
MA, validating components of the model, and adding
more resolution for significant operations as necessary.

4. Models constructed with MA reflect the structure of the
application so that application users can understand and
easily modify the model. Furthermore, if entirely new
architectures are proposed, it is straightforward to
incorporate models for these new architectures into
existing models.

From the perspective of constructing, validating, and
evaluating performance models, we believe that MA offers
many benefits over conventional techniques throughout
the performance lifecycle.

3.1 MA Framework

In order to evaluate our approach of developing
symbolic models with MA, we have designed a prototype
framework. This framework has two main components: an
API and a post-processing toolset. Figure 1 shows the
components of the MA framework. The MA API is used
to annotate the source code. As the application executes,

the runtime system captures important information in trace
files. These trace files are then post-processed to validate,
analyze, and construct models. The post-processing toolset
is a collection of tools: a model validation tool, a control-
flow model creation tool, and a symbolic model generation
tool. For example, the symbolic model shown in Figure 1
is for the MPI send volume of an application. This
symbolic model can be evaluated and is compatible with
MATLAB and Octave scripts.

Figure 1: Design components of the Modeling Assertion
(MA) framework

The modeling assertion API provides a set of functions
to annotate a given FORTRAN or C code. For example,
ma_loop_start, an MA API function, can be used to mark
the start of a loop. Upon execution, the code instrumented
with MA API functions generates trace files. For parallel
applications, one trace file is generated for each MPI task.
The trace files contain traces for ma_xxx calls and MPI
communication events. Most MA calls require a pair of
ma_xxx_start and a ma_xxx_end calls. A typical format
for a ma_xxx_start and end calls are shown Figure 2:

ma_xxx_start(char *identifier, char
*expression, int exp_value)
ma_xxx_name(char *identifier, int
measured_value)

Figure 2: Pair of Modeling Assertion API calls.

The ma_xxx_end traces are primarily used to validate the
modeling assertions against the runtime values. The
assertions for hardware counter values,
ma_flop_start/stop, invoke the PAPI hardware counter
API [9]. The ma_mpi_xxx assertions on the other hand are
validated by implementing MPI wrapper functions (PMPI)
and by comparing ma_mpi_xxx traces to PMPI_xxx traces.
Additional functions are provided in the MA API to
control the tracing volume, i.e. size of the trace files, by

Post-processing toolset

Source code annotation

Model

validation

Symbolic

model

ma_subroutine_start/end
ma_loop_start/end

ma_flop_start/stop
ma_heap/stack_memory
ma_mpi_xxxx

ma_set/unset_tracing

Runtime
system
generate

trace files

send =
niter*(l2npcols*(dp*2)
+l2npcols*(dp)+cgitmax
(l2npcols(dp*na/num_
proc_cols)+dp*na/num_p
roc_cols+l2npcols*(dp)
+l2npcols*(dp))+l2npco
ls*(dp*na/num_proc_col
s)+dp*na/num_proc_cols
+l2npcols*(dp))

Classes of API

calls currently
implemented
and tested

MA API in C

(for Fortran &
C applications

With MPI)

enabling and disabling the tracing at compile time and also
at runtime.

Figure 3 shows the step-by-step process for creating a
performance model with MA. To create a performance
model with MA, a user must instrument their application
with source code annotations that describe the important
variables and operations in their application.

1. Declare important application variables.
2. Declare important application operations.
3. Incrementally refine performance model

a. Validate performance model empirically at
runtime using performance assertions.

b. Refine based on these error rates by adding
and modifying variable and operation
declarations.

c. Terminate when model is representative and
when error level is acceptable.

Figure 3: Process of model creation with modeling
assertion framework

3.2 Model Creation

 As a motivating example, we demonstrate MA on NAS
CG benchmark. NAS CG computes an approximation to
the smallest eigenvalue of a large, sparse, symmetric
positive definite matrix, which is characteristic of
unstructured grid computations. The main subroutine is
conj_grad, which is called niter times. The benchmark
results report time in seconds for the time step (do it =
1, niter) loop that is shown in Figure 4. Hence, we
started constructing the model in the main program,
starting from the conj_loop, as shown is Figure 4. The
first step was to identify the key input parameters, na,
nonzer, niter and nprocs (number of MPI tasks). Then,
using ma_def_variable_assign_int function, we
declared the essential derived values, which are later used
in the MA annotations to simplify the model
representation. Figure 4 only shows the MA annotations as
applied to NAS CG main loop. It does not show the
annotations in the conj_grad subroutine, which are similar
except for additional ma_subroutine_start and
ma_subroutine_end calls. The annotations shown in
Figure 4 capture the overall flow of the application at
different levels in the hierarchy: loops (e.g., conj_loop,
mpi), subroutines (e.g., conj_grad), basic loop blocks etc.
These annotations also define variables (e.g., na, nonzer,
niter, nprocs), which are important to the user in terms
of quantities that determine the problem resolution and its
workload requirements. At the lowest level is the
norm_loop as shown in Figure 4. The ma_loop_start and
ma_loop_end annotations specify that the enclosed loop
executes a number of iterations (e.g., l2npcols) with a
typical number of MPI send and receive operations. More
specifically, the ma_loop_start routine captures an
annotation name (i.e., l2npcols =

log2(num_proc_cols)), a symbolic expression that
defines the number of iterations in terms of an earlier
defined MA variable (i.e., num_proc_cols).

Figure 4 : Annotation of the CG benchmark with MA API
calls

Within the norm_loop the sizes of MPI send and receive
operations are given in symbolic expressions as well. In
the norm_loop, the message sizes for send and receive
operations are constant (16 bytes), while in the some
cases, this could depend on input parameters and workload
distribution schemes. For example, in Figure 5, the
number of floating-point operations depends on a derived
variable, num_proc_cols, which in turn depend on the
number of MPI tasks.

Figure 5: FP MA based on an input variable (na) and a
derived variable (num_proc_cols)

3.3 Runtime Execution

 At runtime, the MA runtime system (MARS) tracks and
captures the actual instantiated values as they execute in
the application. MARS creates an internal control flow
representation of the calls to the MA library as they are
executed. It also captures both the symbolic values and the
actual values of the expressions. These values are stored in
the trace files. The MA post-processing toolset processes
the trace files and creates an intermediate representation
file (shown in Figure 6) for individual MPI tasks. Multiple
calls to the same routines with similar parameters maps

call ma_def_variable_int(’na’,na)
call ma_def_variable_assign_int
(’num_proc_cols’,
’2ˆceil(log(nprocs)/(2*log(2)))’,
num_proc_cols)
call ma_def_variable_assign_int(’l2npcols’,
’log(num_proc_cols)/log(2)’, l2npcols)
........
call ma_loop_start(’conj_loop’, ’niter’,
niter)
 do it = 1, niter
 call conj_grad (colidx,
reduce_recv_lengths)
........
 call ma_loop_start(’norm_loop’,
’l2npcols’, l2npcols)
 do i = 1, l2npcols
 call ma_mpi_irecv(’nrecv’,’dp*2’,
dp*2,1)
 call mpi_irecv(norm_temp2, 2, dp_type
........
 call ma_loop_end(’norm_loop’,i-1)
........

call ma_flop_start ('flopzeta', '4 * na
/ num_proc_cols', 4*na/num_proc_cols)
do j=1, lastcol-firstcol+1
 norm_temp1(1)=norm_temp1(1)+x(j)*z(j)
 norm_temp1(2)=norm_temp1(2)+ z(j)*z(j)
enddo
call ma_flop_stop('flopzeta')

onto the same call graph, therefore, the data volume is
manageable.

1:num_proc_cols:2ˆceil(log(nprocs)/(2*log
(2)))
2:loop:niter
3:loop:l2npcols
4:mpi_irecv:dp*2
4:mpi_send:dp*2
4:loop:cgitmax
5:loop:l2npcols
6:mpi_irecv:dp*na/num_proc_cols
........

Figure 6: Intermediate model representation.

The first integer in Figure 6 is the context of the calling
function that reveals the stack depth of the annotations,
which may be different than the actual stack depth of the
execution call graph itself. Variables derived from input
parameters like num_proc_cols do not have an associated
MA type like mpi_xxx operations. This intermediate
representation is used to create user-defined symbolic
models. For example, a user may wish to identify the
computational intensity within a loop or within an
important function using ma_flop and ma_load/store
assertions. Similarly, other quantities like byte-to-flop and
message-volume-to-flop ratios can also be studied at
different resolutions.

3.4 Validating Modeling Assertions

The validation of an MA performance model is a two-
stage process. When a model is initially being created,
validation plays an important role in guiding the resolution
of the model at various phases in the application. Later,
the same model and validation technique can be used to
validate against historical data and across the parameter
space.

Although the model validation tool is part of the post-
processing toolset, it can be invoked separately. This helps
in the model building process, as the key parameters and
expressions are being identified. For instance, in Figure 7,
the MPI send message size is (send_len * sizeof

(double)). The send_len is calculated from the input
parameters na, nprocs, and subsequently from
num_proc_cols. Hence, the incremental process enables a
user to design the model with only a small number of key
input parameters.

call ma_mpi_send(’l3snd’,
’dp*na/num_proc_cols’,
call mpi_send(w(send_start),
send_len,dp_type,............

Figure 7: Send message size depend on na and a derived
parameter (num_proc_cols).

A model validation output file is shown in Figure 8. The
format is ma_id: type: predicted_value:

measured_value: error_rate: passes: failures. In
the NAS CG benchmark, the sizes of MPI messages do not

change at runtime, therefore, all MPI assertions are
successful. On the other hand, the numbers of floating-
point operations are dependent on the compiler and
underlying system design. Nonetheless, we can define an
acceptable error rate. In this case, the maximum error rate
is less than 20%, which is acceptable for the floating-point
operation count.

cgmain:ma_loop:25:25:0.0:PASS=2:FAIL=0
floprhopq:ma_flop:21001:21001:0.0:.PASS=50:

FAIL=0
cj_rho:ma_loop:1:1:0.0: PASS=50: FAIL=0
l5rcv:ma_mpi_irecv:8:8:0.0:PASS=50:FAIL=0
l5snd:ma_mpi_send:8:8:0.0: PASS=50: FAIL=0
flopbeta:ma_flop:7002:7001:1.426E-4: PASS=6:

FAIL=44
flopnzx:ma_flop:3503:4347:-0.194: PASS=0:

FAIL=2

Figure 8: Model validation output.

In order to benchmark parallel systems with Teraflops-
scale processing power and increasing memory capacities,
the NAS parallel benchmarks provide different problem
resolutions or classes. Class S is typically the smallest
problem size, which is considered too small to even
benchmark a current single processor system. However,
these problem instances provided us a mechanism to
develop, validate, and test the MA approach. Table 1 lists
the input parameters for the NAS CG and SP benchmarks
that define the problem resolution. In addition to input
parameters listed in Table 1, the number of MPI tasks
(also an input parameter) determines some derived
parameters like the num_proc_cols in CG and the square-
root of number of processors in the SP benchmark.

Class CG SP

S na=1400, nonzer=7 problem_size=12

W na=7000, nonzer=8 problem_size=36

A na=14000, nonzer=11 problem_size=64

B na=75000, nonzer=13 problem_size=102

C na=150000, nonzer=15 problem_size=162

Table 1: Values of the input parameters for the different
problem instances (Classes)

We validated our MA models on an IBM p690 SMP
cluster. Each processing node on the SMP cluster is
composed of 32 Power4 processors with floating-point
MAC units. The runtime hardware counter data is
collected using the PAPI hardware counter PAPI_FP_OPS
since the PAPI_FP_INS considers a multiply and add
instruction as a single FP execution entity [8].

Figure 9 and Figure 10 compare the measured value
with the predicted values of the number of floating-point
operations for single time step iteration per processor for
NAS CG and SP benchmarks, respectively. For both CG
and SP benchmarks, the maximum error rate is less than
30% (typical error rate < 10%). The MPI assertions are
validated using the PMPI (MPI profiling library) runtime
values. There is no error for CG and SP MPI assertions,

since the message sizes and message count do not change
at runtime.

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

S W A B C

Problem instances (classes)

N
u

m
b

e
r

o
f

F
lo

a
ti

n
g

-p
o

in
t

o
p

e
ra

ti
o

n
s

CG (measured)
CG (predicted)

Figure 9: Measured vs. predicted number of FP operations
for NAS CG

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

S W A B C

Problem instances (classes)

N
u

m
b

e
r

o
f

F
lo

a
ti

n
g

-p
o

in
t

o
p

e
ra

ti
o

n
s

SP (measured)
SP (predicted)

Figure 10: Measured vs. predicted number of FP
operations for NAS CG

3.5 MA Model Output

Upon termination of a runtime experiment, MA outputs
a control flow model representation (shown in Figure 11),
an intermediate file (Figure 6), and symbolic models for
three factors: number of floating-point, load-store, and
communication operations. The control flow model
representation is similar to the actual code annotations
(Figure 4); that is, it is a high level, visual flow of the
annotated parts of the application. From this
representation, a user can create several different models
with important application parameters.

The intermediate representation serves as an input to
develop symbolic models for user-defined characteristics,
such as the send message volume or relative quantities like
computational intensity or memory byte-to-flop ratio. For
instance, a user can create models for load/store-to-flop
ratios using the intermediate representation (figure 1
shows MATLAB/Octave compatible symbolic model
representation for CG communication operations). Only
three input parameters are required to evaluate this model,

nprocs (number of MPI tasks), na, and nonzer. The goal
is to be able to generate symbolic models that represent
the architecture independent requirements of an
application and that can be evaluated efficiently by
existing mathematical software frameworks.

loop (NAME=conj_loop)(COUNT=niter)
 {
 loop (NAME=norm_loop)(COUNT=l2npcols)
 {
 mpi_irecv(NAME=nrecv)(SIZE=dp*2)
 mpi_send(NAME=nsend)(SIZE=dp*2)
 mpi_wait (NAME = nwait)
 }
 conj_grad()
 {
 loop (NAME=cj1)(COUNT=l2npcols)

Figure 11: Example of a control-flow model

4 Evaluation of Modeling Assertions

4.1 Scaling Studies

We conducted scalability studies of the NAS CG and SP
benchmarks using their validated MA models.

Figure 12 shows the message volume and the message
count for the two benchmarks for Class C problem
instance. The message size to message count ratio can
determine whether an application sends a large number of
small messages or small number of very large messages.

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

4 8 9

1
6

2
5

3
2

3
6

6
4

1
2

1

1
2

8

2
2

5

2
5

6

4
0

0

5
1

2

9
0

0

1
0

2
4

1
6

0
0

Number of processors

CG (message volume (bytes))
CG (message count)
SP (message volume (bytes))
SP (message count)

Figure 12: Message size (bytes) and message count
scaling for NAS CG and SP

Generally, small messages are considered latency bound
while large messages are bandwidth bound on large-scale
systems. We calculated the message count and size
distribution for Class C CG benchmark on 1024
processors. Approximately 65% of messages are 8 bytes
while the remaining messages are over 37 Kbytes. For a
1600 processor SP Class C run, over 95% of messages are
about 28 Kbytes, 2% are 50 Kbytes and 1% are 64 Kbytes.
Hence, a first-order analysis of the overall communication
pattern shown in

Figure 12 does not determine the actual message
distribution. Thus, an analysis that is primarily based on

the data shown in Figure 12 could be misleading. A
detailed model generated by MA is necessary to
understand the communication behavior for larger
problem instances and large-scale system runs. Using this
analysis, we can determine that a machine with a very high
communication bandwidth and with slightly higher MPI
latency like Cray XT3 (PingPong latency=~6usec) will not
scale the CG problem as shown in Figure 13. The SP
benchmark scales because the message sizes are not too
small (order of tens of Kbytes).

0

50

100

150

200

250

300

350

1 4 9

2
5

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

Number of processors

S
p

e
e
d

u
p

CG SP

Figure 13: Speedup on the Cray XT3.

The scaling of the number of floating-point operations is
shown in Figure 14. Class C problem instances are scaled
up to 1024 processors for the CG benchmark and up to
1600 processors for the SP benchmark. The scaling pattern
for the two benchmarks is similar because the way in
which the MPI tasks are distributed is CG
(log2(log2(MPI_tasks))), the floating-point operation count
does not scale linearly with the number of processors. The
SP benchmark uses a square-root of MPI processor grid
and the scaling of the floating-point operation count scales
to the square-root of the MPI tasks. Nonetheless, the
sequential components of the code dominate the floating-
point operation count when large numbers of MPI tasks
are used. Thus, the floating-point operation count does not
change significantly on 900 and 1600 processor runs.

4.2 Sensitivity Analysis

One of the aims of creating the models of applications is
to be able to predict the application requirements for the
future problem sizes. We used our MA models to
understand the sensitivity of floating-point operations,
memory requirements per processor, and message volume
to applications’ input parameters. We started with a
validated problem instance, Class C, for both the NAS CG
and SP benchmarks, and scaled the input parameters. For
instance, na=150000 for CG Class C benchmark are x1 in
the figure below. For x2, na=300000 and for x10
na=1500000.

1.0E+06

1.0E+07

1.0E+08

1.0E+09

4 9

2
5

3
6

1
2

1

2
2

5

4
0

0

9
0

0

1
6

0
0

Number of processors

N
u

m
b

e
r

o
f

fl
o

a
ti

n
g

-p
o

in
t

o
p

e
ra

ti
o

n
s

CG SP

Figure 14: Scaling behavior of the number of FP operations
of NAS CG and SP benchmark

As shown in Figure 15, the floating-point operation cost
in CG is more sensitive to the increase in the number of
nonzer elements in the array. On the other hand, the
nonzer parameter has no effect on the message volume.
The floating-point operation count and average memory
per processor increase almost linearly with increase in na.

0

5

10

15

20

25

30

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
Increase in input paramters: na and nonzer (x1:

na=150000, nonzer=15, nprocs=1024)

In
c
re

a
s
e
 r

e
la

ti
v

e
 t
o

 C
la

s
s
 C

(x
1
)

FP Operations (na)
Average memory (na)
Messages Sent (na)
FP Operations (nonzer)
Average memory (nonzer)
Messages Sent (nonzer)

Figure 15: Sensitivity of NAS CG workload requirements as
a function of input parameters, na and nonzer.

The affect of the SP’s input parameter, problem_size,
to the system requirements in terms of number of floating-
point operations, average memory requirements, and
message volume is shown in Figure 16. The floating-point
operation cost increases exponentially by increasing the
problem_size. The memory requirements and message
volume also increase significantly with an increase in the
problem_size parameter.

Using the MA models, we can get an insight into the
workload distribution and scaling behavior of the number
of floating-point operations within an application as a
function of the problem_size parameter. Figure 17 shows
contribution of different functions in SP time step
iterations. The z_solve is the most expensive function for
runs with large number of processors. The cost of
x_solve and y_solve are identical and consistent.
Moreover, we can safely ignore cost of txinvr and add
functions in the further analysis.

0

200

400

600

800

1000

1200

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Increase in input parameter: problem_size (x1:

problem_size=162, nprocs=1600)

In
c
re

a
s
e

 r
e
la

ti
v
e

 t
o

 C
la

s
s
 C

 (
x

1
)

FP Operations (problem_size)
Average memory (problem_size)
Messages Sent (problem_size)

Figure 16: Sensitivity of application requirements as a
function of NAS SP input parameter, problem_size.

NAS SP (1024 processors)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Increase in the input parameter (problem_size). x1: problem_size=162

copy_faces txinvr x_solve y_solve z_solve add

Figure 17: Impact of individual functions on the overall
increase in the number of FP operations

5 Conclusions

Clearly, performance modeling has numerous uses at
every stage of the high-end computing lifecycle: design,
integration, procurement, installation, tuning, and
maintenance. But despite the tremendous usefulness of
performance models, their construction remains largely a
manual, complex, and time-consuming exercise. In this
paper, we have proposed a new approach to symbolic
performance model construction, called modeling

assertions (MA), which borrows advantages from both the
empirical and analytical modeling techniques. MA has
many advantages over traditional methods: incremental
construction of a realistic performance model,
isomorphism with the application structure,
straightforward model validation against empirical data,
and intuitive error bounding on individual model terms.
We demonstrate this new technique on the NAS CG and
SP benchmarks, and show that MA does make the
construction and use of performance models more
practical than either empirical or analytical modeling
techniques alone.

Acknowledgements

This research was sponsored by the Office of
Mathematical, Information, and Computational Sciences,
Office of Science, U.S. Department of Energy under
Contract No. DE-AC05-00OR22725 with UT-Batelle,
LLC. Accordingly, the U.S. Government retains a non-
exclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do
so, for U.S. Government purposes.

References

[1] V.S. Adve, R. Bagrodia et al., “POEMS: End-to-
End Performance Design of Large Parallel Adaptive
Computational Systems,” IEEE Trans. Software
Engineering, 26(11):1027-48, 2000.

[2] V.S. Adve, R. Bagrodia et al., “Compiler-
supported Simulation of Highly Scalable Parallel
Applications,” Proc. SC99 (electronic publication), 1999.

[3] G.S. Almasi, C. Cascaval et al., “Demonstrating
the scalability of a molecular dynamics application on a
Petaflop computer,” Proc. Int'l Conf. Supercomputing,
2001, pp. 393-406.

[4] D. Bailey, E. Barszcz et al., “The NAS Parallel
Benchmarks (94),” NASA Ames Research Center, RNR
Technical Report RNR-94-007, 1994,
http://www.nas.nasa.gov/Pubs/TechReports/RNRreports/d
bailey/RNR-94-007/RNR-94-007.html.

[5] M.J. Clement and M.J. Quinn, “Analytical
performance prediction on multicomputers,” Proc. SC
1993, 1993, pp. 886-94.

[6] A. Snavely, L. Carrington et al., “A Framework
for Performance Modeling and Prediction,” Proc. SC 2002
(electronic publication), 2002.

[7] US Department of Energy Office of Science, “A
Science-Based Case for Large-Scale Simulation,” US
Department of Energy Office of Science 2003,
http://www.pnl.gov/scales.

[8] S. Browne, J Dongarra, N Garner, G. Ho, P Mucci,
“A Portable Programming Interface for Performance
Evaluation on Modern Processors, ” The International
Journal of High Performance Computing Applications,
Volume 14, number 3, pp. 189-204, Fall 2000.

[9] G. Rodriguez, R. Badia, and J. Labarta, “Generation
of Simple Analytical Models for Message Passing
Applications, ” Euro-Par 2004 Parallel Processing, 10th
International Euro-Par Conference, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

