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Abstract 

Performance and workload modeling has numerous 
uses at every stage of the high-end computing lifecycle: 
design, integration, procurement, installation and tuning. 
Despite the tremendous usefulness of performance models, 
their construction remains largely a manual, complex, and 
time-consuming exercise. We propose a new approach to 
the model construction, called modeling assertions (MA), 
which borrows advantages from both the empirical and 
analytical modeling techniques. This strategy has many 
advantages over traditional methods: incremental 
construction of realistic performance models, 
straightforward model validation against empirical data, 
and intuitive error bounding on individual model terms. 
We demonstrate this new technique on the NAS parallel 
CG and SP benchmarks by constructing high fidelity 
models for the floating-point operation cost, memory 
requirements, and MPI message volume. These models are 
driven by a small number of key input parameters thereby 
allowing efficient design space exploration of future 
problem sizes and architectures. 

1 Introduction 

Performance and workload modeling has numerous uses 
at every stage of the high-end computing lifecycle: design, 
integration, procurement, installation, tuning, and 
maintenance. Despite the tremendous usefulness of 
performance models, their construction remains largely a 
manual, complex, and time-consuming exercise. In most 
cases, researchers create models by manually interrogating 
applications with an array of performance, debugging, and 
static analysis tools to refine the model iteratively until the 
predictions fall within expectations. In other cases, 
researchers start with an algorithm description, and 
develop the performance model directly from this abstract 
description. 

In this paper, we describe a new approach to 
performance model construction, called modeling 

assertions (MA), which borrows advantages from both the 
empirical and analytical modeling techniques. This 
strategy has many advantages over traditional methods: 
isomorphism with the application structure, easy 
incremental validation of the model with empirical data, 
uncomplicated sensitivity analysis, and straightforward 
error bounding on individual model terms. We 
demonstrate the use of MA by designing a prototype 
framework, which allows construction, validation, and 
analysis of models of parallel applications written in 
FORTRAN and C with the MPI communication library. 
We use the prototype to construct models of NAS CG and 
SP benchmarks [4].  

MA generates two types of representations of the target 
application: control flow models and symbolic models that 
can be evaluated with MATLAB or Octave. Symbolic 
models are generated for the number of floating-point and 
memory operations, and for MPI point-to-point and 
collective communication operations. Control flow models 
provide a mechanism not only to understand the control 
flow of an application but also to generate alternate model 
representations in programming languages like C or 
Python. The models are represented in terms of an 
application’s input parameters. Thus, an application 
parameter space can be explored efficiently using the MA 
models. Furthermore, the control flow models can be 
extended to produce synthetic traces like the ones 
generated the by MPIDtrace utility [9] to predict 
communication performance of an application. 

In addition, the symbolic models can project 
performance requirements and allow us to conduct 
sensitivity analysis of workload requirements for future 
and larger problem instances of an application. For 
example, we studied the growth rate of the number of the 
floating-point operations with respect to input parameters 
(e.g., the array size and the number of nonzero elements) 
for the NAS CG benchmark. Our results show that the 
floating-point operation cost increases at a much faster 
rate by increasing the number of nonzero elements than by 
increasing the array size.  
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The outline of the paper is as follows: the motivation 
behind the modeling assertion technique is presented in 
section 2. Section 3 explains the components of the 
modeling assertion framework, and describes model 
construction and validation using the NAS CG and SP 
benchmarks. Section 4 presents the scalability of the NAS 
CG and SP benchmarks together with an analysis of 
sensitivity of workload requirements to the input 
parameters of the benchmarks. Section 5 concludes with 
benefits and contributions of the modeling assertions 
approach to performance modeling studies. 

2 Motivating Examples 

During the past two decades, the high-end computing 
(HEC) community has successfully used performance 
modeling for many activities. In this respect, researchers 
have proposed numerous techniques for the creation and 
validation of performance models, ranging from fully 
analytical, manual methods to automatic, architecture-
specific approaches. Many of these techniques serve the 
overall purpose of modeling but there have been few 
common techniques have gained widespread acceptance 
across the community. This situation has resulted in 
additional problems including lack of modular, 
interoperable performance models, and a lack of tools for 
model creation, analysis, and validation. 

The two basic methodologies for constructing 
performance models are best represented by two case 
studies. The first case study develops a performance model 
of a protein folding application for the Blue Gene 
architecture using a top-down, analytic approach. The 
second case study demonstrates an empirical modeling 
approach based on static and dynamic observations of a 
target application on a specific architecture. The output of 
both of these approaches is a predictive performance 
model. With this model in hand, both methods typically 
use measurements, simulations, and other performance 
estimates to generate performance predictions for an 
application on a specific architecture. 

2.1 Top-down Algorithmic Model Creation 

Many researchers have created analytical models of 
important kernels and applications [3][5]. These models 
range from calculating the number of operations necessary 
to complete a common mathematical operation, such as a 
matrix multiply, to complete models of entire codes, such 
as protein folding. Almasi, et al. [3] present such a model 
of the protein folding application for the original Blue 
Gene architecture. Their analysis eloquently decomposes 
the application into its main computational and 
communication kernels. They, then, use simulations and 
analytical models to generate performance predictions for 
various system and application configurations. 

2.2 ab initio  Model Creation from Empirical 

Observation 

Another approach to model creation is based on static 
and/or dynamic analysis of the characteristics of an 
application on a specific architecture, using these 
characteristics to generate an ab initio model. One such 
system developed for empirical performance modeling is 
the POEMS system [1]. POEMS used an elaborate 
compiler system along with message tracing to generate a 
performance model of target applications. To evaluate the 
model with different configurations, users could, as in the 
analytical modeling case, investigate a variety of 
important machine parameters with simulators, modeling, 
or measurement, and, then, feed those values into the 
existing performance model. 

2.3 Observations 

Both top-down, analytical and ab initio techniques have 
benefits and both generate valuable results. However, both 
of these techniques also have shortcomings that have 
limited their widespread adoption in the HEC community. 

Empirical, ab initio model creation (2.2) typically relies 
on some combination of static and dynamic analysis. 
Developers must use tools [2] like debuggers, performance 
monitors, and memory tracers [6] to ‘reverse engineer’ the 
application to generate a performance model. If the 
application has dynamic data dependencies in the control 
flow, then the exercise becomes even more complex. 
Moreover, this automated process might discover 
hundreds of input parameters; whereas application users 
typically recognize that only a subset of input parameters 
may be important for a performance model. Users usually 
can easily identify these important parameters; however, 
that information is lost when relying solely on an 
automated process. Another disadvantage to this approach 
is that it has limited applicability to large, complex 
scientific applications. Real applications, such as those 
used in the DoE SciDAC program [7], have hundreds of 
thousands of lines of multi-language source code. Unless 
the automated tools take care to omit frequent operations, 
such as trillions of memory loads and stores, the tools can 
be impractical. Yet another issue with automated tools is 
the lack of separation between the architecture dependent
and the architecture independent characteristics of the 
application. Take, for example, a series of memory 
operations fetching a floating point number through a 
permutation index array. Each access to the floating point 
number is restricted by the prior access to the permutation 
array; however, since many accesses through this 
permutation index array can occur concurrently, the 
latencies for these operations may be overlapped (and 
hidden). In contrast, when relying on memory address 
tracing on a specific architecture, it would be impractical 
and error-prone to ‘reverse engineer’ a compiler-mutated 



address stream to this level of detail. This problem is even 
more aggravated by the recent introduction of vector and 
multithreaded architectures that can provide scatter/gather 
hardware for these types of operations.  

Top-down analytic model creation is the most common 
method of creating a performance model. Any application 
user can interrogate their application, develop a structure 
for the model, introduce model terms, and refine the model 
until it represents the performance with reasonable 
fidelity. On the positive side, these types of models 
typically emphasize exactly the important variables, input 
parameters, and operations that are important to each 
application. Although this modeling technique is 
pervasive, it remains difficult, time-consuming, and error-
prone. Furthermore, because every user develops an 
independent model, there are few (if any) widespread 
performance modeling languages and toolkits. Without 
these tools, the process of validating and debugging 
performance models remain an ad-hoc endeavor. 

3 Modeling Assertions Overview 

Based on these observations, we have designed 
Modeling Assertions (MA) to facilitate the creation of 
symbolic performance models. MA is a new technique that 
combines the benefits from both analytic and empirical 
approaches, and it adds some new advantages, such as 
incremental model validation. Advantages gained from 
modeling assertions include the following: 
1. The symbolic models are parameterized, architecture-

independent models that can be evaluated with a variety 
of tools, such as MATLAB. 

2. MA performance models are modular, portable, and 
composable.  

3. Users construct performance models incrementally with 
MA, validating components of the model, and adding 
more resolution for significant operations as necessary.  

4. Models constructed with MA reflect the structure of the 
application so that application users can understand and 
easily modify the model. Furthermore, if entirely new 
architectures are proposed, it is straightforward to 
incorporate models for these new architectures into 
existing models. 

From the perspective of constructing, validating, and 
evaluating performance models, we believe that MA offers 
many benefits over conventional techniques throughout 
the performance lifecycle. 

3.1 MA Framework 

In order to evaluate our approach of developing 
symbolic models with MA, we have designed a prototype 
framework. This framework has two main components: an 
API and a post-processing toolset. Figure 1 shows the 
components of the MA framework. The MA API is used 
to annotate the source code. As the application executes, 

the runtime system captures important information in trace 
files. These trace files are then post-processed to validate, 
analyze, and construct models. The post-processing toolset 
is a collection of tools: a model validation tool, a control-
flow model creation tool, and a symbolic model generation 
tool. For example, the symbolic model shown in Figure 1 
is for the MPI send volume of an application. This 
symbolic model can be evaluated and is compatible with 
MATLAB and Octave scripts.  

Figure 1: Design components of the Modeling Assertion 
(MA) framework 

The modeling assertion API provides a set of functions 
to annotate a given FORTRAN or C code. For example, 
ma_loop_start, an MA API function, can be used to mark 
the start of a loop. Upon execution, the code instrumented 
with MA API functions generates trace files. For parallel 
applications, one trace file is generated for each MPI task. 
The trace files contain traces for ma_xxx calls and MPI 
communication events. Most MA calls require a pair of 
ma_xxx_start and a ma_xxx_end calls. A typical format 
for a ma_xxx_start and end calls are shown Figure 2: 

ma_xxx_start(char *identifier, char 
*expression, int exp_value) 
ma_xxx_name(char *identifier, int 
measured_value)

Figure 2: Pair of Modeling Assertion API calls.  

The ma_xxx_end traces are primarily used to validate the 
modeling assertions against the runtime values. The 
assertions for hardware counter values, 
ma_flop_start/stop, invoke the PAPI hardware counter 
API [9]. The ma_mpi_xxx assertions on the other hand are 
validated by implementing MPI wrapper functions (PMPI) 
and by comparing ma_mpi_xxx traces to PMPI_xxx traces. 
Additional functions are provided in the MA API to 
control the tracing volume, i.e. size of the trace files, by 
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enabling and disabling the tracing at compile time and also 
at runtime.  

Figure 3 shows the step-by-step process for creating a 
performance model with MA. To create a performance 
model with MA, a user must instrument their application 
with source code annotations that describe the important 
variables and operations in their application.  

1. Declare important application variables. 
2. Declare important application operations. 
3. Incrementally refine performance model 

a. Validate performance model empirically at 
runtime using performance assertions. 

b. Refine based on these error rates by adding 
and modifying variable and operation 
declarations. 

c. Terminate when model is representative and 
when error level is acceptable.  

Figure 3: Process of model creation with modeling 
assertion framework 

3.2 Model Creation 

 As a motivating example, we demonstrate MA on NAS 
CG benchmark. NAS CG computes an approximation to 
the smallest eigenvalue of a large, sparse, symmetric 
positive definite matrix, which is characteristic of 
unstructured grid computations. The main subroutine is 
conj_grad, which is called niter times. The benchmark 
results report time in seconds for the time step (do it = 
1, niter) loop that is shown in Figure 4. Hence, we 
started constructing the model in the main program, 
starting from the conj_loop, as shown is Figure 4. The 
first step was to identify the key input parameters, na,
nonzer, niter and nprocs (number of MPI tasks). Then, 
using ma_def_variable_assign_int function, we 
declared the essential derived values, which are later used 
in the MA annotations to simplify the model 
representation. Figure 4 only shows the MA annotations as 
applied to NAS CG main loop. It does not show the 
annotations in the conj_grad subroutine, which are similar 
except for additional ma_subroutine_start and 
ma_subroutine_end calls. The annotations shown in 
Figure 4 capture the overall flow of the application at 
different levels in the hierarchy: loops (e.g., conj_loop,
mpi), subroutines (e.g., conj_grad), basic loop blocks etc. 
These annotations also define variables (e.g., na, nonzer,
niter, nprocs), which are important to the user in terms 
of quantities that determine the problem resolution and its 
workload requirements. At the lowest level is the 
norm_loop as shown in Figure 4. The ma_loop_start and 
ma_loop_end annotations specify that the enclosed loop 
executes a number of iterations (e.g., l2npcols) with a 
typical number of MPI send and receive operations. More 
specifically, the ma_loop_start routine captures an 
annotation name (i.e., l2npcols = 

log2(num_proc_cols)), a symbolic expression that 
defines the number of iterations in terms of an earlier 
defined MA variable (i.e., num_proc_cols). 

Figure 4 : Annotation of the CG benchmark with MA API 
calls 

Within the norm_loop the sizes of MPI send and receive 
operations are given in symbolic expressions as well. In 
the norm_loop, the message sizes for send and receive 
operations are constant (16 bytes), while in the some 
cases, this could depend on input parameters and workload 
distribution schemes. For example, in Figure 5, the 
number of floating-point operations depends on a derived 
variable, num_proc_cols, which in turn depend on the 
number of MPI tasks. 

Figure 5: FP MA based on an input variable (na) and a 
derived variable (num_proc_cols) 

3.3 Runtime Execution 

 At runtime, the MA runtime system (MARS) tracks and 
captures the actual instantiated values as they execute in 
the application. MARS creates an internal control flow 
representation of the calls to the MA library as they are 
executed. It also captures both the symbolic values and the 
actual values of the expressions. These values are stored in 
the trace files. The MA post-processing toolset processes 
the trace files and creates an intermediate representation 
file (shown in Figure 6) for individual MPI tasks. Multiple 
calls to the same routines with similar parameters maps 

call ma_def_variable_int(’na’,na) 
call ma_def_variable_assign_int 
(’num_proc_cols’,
’2ˆceil(log(nprocs)/(2*log(2)))’,
num_proc_cols)
call ma_def_variable_assign_int( ’l2npcols’, 
’log(num_proc_cols)/log(2)’, l2npcols) 
........
call ma_loop_start(’conj_loop’, ’niter’, 
niter)
  do it = 1, niter 
    call conj_grad ( colidx, 
reduce_recv_lengths ) 
........
    call ma_loop_start(’norm_loop’, 
’l2npcols’, l2npcols) 
    do i = 1, l2npcols 
      call ma_mpi_irecv(’nrecv’,’dp*2’, 
dp*2,1)
      call mpi_irecv( norm_temp2, 2, dp_type 
........
    call ma_loop_end(’norm_loop’,i-1) 
........

call ma_flop_start ('flopzeta', '4 * na
/ num_proc_cols', 4*na/num_proc_cols) 
do j=1, lastcol-firstcol+1 
   norm_temp1(1)=norm_temp1(1)+x(j)*z(j) 
   norm_temp1(2)=norm_temp1(2)+ z(j)*z(j) 
enddo
call ma_flop_stop('flopzeta')



onto the same call graph, therefore, the data volume is 
manageable. 

1:num_proc_cols:2ˆceil(log(nprocs)/(2*log
(2)))
2:loop:niter
3:loop:l2npcols
4:mpi_irecv:dp*2
4:mpi_send:dp*2
4:loop:cgitmax
5:loop:l2npcols
6:mpi_irecv:dp*na/num_proc_cols
........

Figure 6: Intermediate model representation. 

The first integer in Figure 6 is the context of the calling 
function that reveals the stack depth of the annotations, 
which may be different than the actual stack depth of the 
execution call graph itself. Variables derived from input 
parameters like num_proc_cols do not have an associated 
MA type like mpi_xxx operations. This intermediate 
representation is used to create user-defined symbolic 
models. For example, a user may wish to identify the 
computational intensity within a loop or within an 
important function using ma_flop and ma_load/store
assertions. Similarly, other quantities like byte-to-flop and 
message-volume-to-flop ratios can also be studied at 
different resolutions.  

3.4 Validating Modeling Assertions 

The validation of an MA performance model is a two-
stage process. When a model is initially being created, 
validation plays an important role in guiding the resolution 
of the model at various phases in the application. Later, 
the same model and validation technique can be used to 
validate against historical data and across the parameter 
space.  

Although the model validation tool is part of the post-
processing toolset, it can be invoked separately. This helps 
in the model building process, as the key parameters and 
expressions are being identified. For instance, in Figure 7, 
the MPI send message size is (send_len * sizeof 

(double)). The send_len is calculated from the input 
parameters na, nprocs, and subsequently from 
num_proc_cols. Hence, the incremental process enables a 
user to design the model with only a small number of key 
input parameters. 

call ma_mpi_send(’l3snd’,
’dp*na/num_proc_cols’, ............ 
call mpi_send(w(send_start), 
send_len,dp_type,............

Figure 7: Send message size depend on na and a derived 
parameter (num_proc_cols). 

A model validation output file is shown in Figure 8. The 
format is ma_id: type: predicted_value: 

measured_value: error_rate: passes: failures. In 
the NAS CG benchmark, the sizes of MPI messages do not 

change at runtime, therefore, all MPI assertions are 
successful. On the other hand, the numbers of floating-
point operations are dependent on the compiler and 
underlying system design. Nonetheless, we can define an 
acceptable error rate. In this case, the maximum error rate 
is less than 20%, which is acceptable for the floating-point 
operation count.  

cgmain:ma_loop:25:25:0.0:PASS=2:FAIL=0
floprhopq:ma_flop:21001:21001:0.0:.PASS=50:

FAIL=0
cj_rho:ma_loop:1:1:0.0: PASS=50: FAIL=0 
l5rcv:ma_mpi_irecv:8:8:0.0:PASS=50:FAIL=0
l5snd:ma_mpi_send:8:8:0.0: PASS=50: FAIL=0 
flopbeta:ma_flop:7002:7001:1.426E-4: PASS=6: 

FAIL=44
flopnzx:ma_flop:3503:4347:-0.194: PASS=0: 

FAIL=2

Figure 8: Model validation output. 

In order to benchmark parallel systems with Teraflops-
scale processing power and increasing memory capacities, 
the NAS parallel benchmarks provide different problem 
resolutions or classes. Class S is typically the smallest 
problem size, which is considered too small to even 
benchmark a current single processor system. However, 
these problem instances provided us a mechanism to 
develop, validate, and test the MA approach. Table 1 lists 
the input parameters for the NAS CG and SP benchmarks 
that define the problem resolution. In addition to input 
parameters listed in Table 1, the number of MPI tasks 
(also an input parameter) determines some derived 
parameters like the num_proc_cols in CG and the square-
root of number of processors in the SP benchmark. 

Class CG SP 

S na=1400, nonzer=7 problem_size=12 

W na=7000, nonzer=8 problem_size=36 

A na=14000, nonzer=11 problem_size=64 

B na=75000, nonzer=13 problem_size=102 

C na=150000, nonzer=15 problem_size=162 

Table 1: Values of the input parameters for the different 
problem instances (Classes)  

We validated our MA models on an IBM p690 SMP 
cluster. Each processing node on the SMP cluster is 
composed of 32 Power4 processors with floating-point 
MAC units. The runtime hardware counter data is 
collected using the PAPI hardware counter PAPI_FP_OPS
since the PAPI_FP_INS considers a multiply and add 
instruction as a single FP execution entity [8].  

Figure 9 and Figure 10 compare the measured value 
with the predicted values of the number of floating-point 
operations for single time step iteration per processor for 
NAS CG and SP benchmarks, respectively. For both CG 
and SP benchmarks, the maximum error rate is less than 
30% (typical error rate < 10%). The MPI assertions are 
validated using the PMPI (MPI profiling library) runtime 
values. There is no error for CG and SP MPI assertions, 



since the message sizes and message count do not change 
at runtime. 
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Figure 9: Measured vs. predicted number of FP operations 
for NAS CG  
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Figure 10: Measured vs. predicted number of FP 
operations for NAS CG 

3.5 MA Model Output 

Upon termination of a runtime experiment, MA outputs 
a control flow model representation (shown in Figure 11), 
an intermediate file (Figure 6), and symbolic models for 
three factors: number of floating-point, load-store, and 
communication operations. The control flow model 
representation is similar to the actual code annotations 
(Figure 4); that is, it is a high level, visual flow of the 
annotated parts of the application. From this 
representation, a user can create several different models 
with important application parameters.  

The intermediate representation serves as an input to 
develop symbolic models for user-defined characteristics, 
such as the send message volume or relative quantities like 
computational intensity or memory byte-to-flop ratio. For 
instance, a user can create models for load/store-to-flop 
ratios using the intermediate representation (figure 1 
shows MATLAB/Octave compatible symbolic model 
representation for CG communication operations). Only 
three input parameters are required to evaluate this model, 

nprocs (number of MPI tasks), na, and nonzer. The goal 
is to be able to generate symbolic models that represent 
the architecture independent requirements of an 
application and that can be evaluated efficiently by 
existing mathematical software frameworks. 

loop (NAME=conj_loop)(COUNT=niter) 
  { 
   loop (NAME=norm_loop)(COUNT=l2npcols) 
      { 
        mpi_irecv(NAME=nrecv)(SIZE=dp*2) 
        mpi_send(NAME=nsend)(SIZE=dp*2) 
        mpi_wait (NAME = nwait) 
      } 
    conj_grad() 
      { 
        loop (NAME=cj1)(COUNT=l2npcols)

Figure 11: Example of a control-flow model 

4 Evaluation of Modeling Assertions 

4.1 Scaling Studies 

We conducted scalability studies of the NAS CG and SP 
benchmarks using their validated MA models.  

Figure 12 shows the message volume and the message 
count for the two benchmarks for Class C problem 
instance. The message size to message count ratio can 
determine whether an application sends a large number of 
small messages or small number of very large messages.  
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Figure 12: Message size (bytes) and message count 
scaling for NAS CG and SP 

Generally, small messages are considered latency bound
while large messages are bandwidth bound on large-scale 
systems. We calculated the message count and size 
distribution for Class C CG benchmark on 1024 
processors. Approximately 65% of messages are 8 bytes 
while the remaining messages are over 37 Kbytes.  For a 
1600 processor SP Class C run, over 95% of messages are 
about 28 Kbytes, 2% are 50 Kbytes and 1% are 64 Kbytes. 
Hence, a first-order analysis of the overall communication 
pattern shown in  

Figure 12 does not determine the actual message 
distribution. Thus, an analysis that is primarily based on 



the data shown in Figure 12 could be misleading. A 
detailed model generated by MA is necessary to 
understand the communication behavior for larger 
problem instances and large-scale system runs. Using this 
analysis, we can determine that a machine with a very high 
communication bandwidth and with slightly higher MPI 
latency like Cray XT3 (PingPong latency=~6usec) will not 
scale the CG problem as shown in Figure 13. The SP 
benchmark scales because the message sizes are not too 
small (order of tens of Kbytes). 
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Figure 13: Speedup on the Cray XT3. 

The scaling of the number of floating-point operations is 
shown in Figure 14. Class C problem instances are scaled 
up to 1024 processors for the CG benchmark and up to 
1600 processors for the SP benchmark. The scaling pattern 
for the two benchmarks is similar because the way in 
which the MPI tasks are distributed is CG 
(log2(log2(MPI_tasks))), the floating-point operation count 
does not scale linearly with the number of processors. The 
SP benchmark uses a square-root of MPI processor grid 
and the scaling of the floating-point operation count scales 
to the square-root of the MPI tasks. Nonetheless, the 
sequential components of the code dominate the floating-
point operation count when large numbers of MPI tasks 
are used. Thus, the floating-point operation count does not 
change significantly on 900 and 1600 processor runs. 

4.2 Sensitivity Analysis 

One of the aims of creating the models of applications is 
to be able to predict the application requirements for the 
future problem sizes. We used our MA models to 
understand the sensitivity of floating-point operations, 
memory requirements per processor, and message volume 
to applications’ input parameters. We started with a 
validated problem instance, Class C, for both the NAS CG 
and SP benchmarks, and scaled the input parameters. For 
instance, na=150000 for CG Class C benchmark are x1 in 
the figure below. For x2, na=300000 and for x10 
na=1500000. 
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Figure 14: Scaling behavior of the number of FP operations 
of NAS CG and SP benchmark 

As shown in Figure 15, the floating-point operation cost 
in CG is more sensitive to the increase in the number of 
nonzer elements in the array. On the other hand, the 
nonzer parameter has no effect on the message volume. 
The floating-point operation count and average memory 
per processor increase almost linearly with increase in na.
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Figure 15: Sensitivity of NAS CG workload requirements as 
a function of input parameters, na and nonzer. 

The affect of the SP’s input parameter, problem_size,
to the system requirements in terms of number of floating-
point operations, average memory requirements, and 
message volume is shown in Figure 16. The floating-point 
operation cost increases exponentially by increasing the 
problem_size. The memory requirements and message 
volume also increase significantly with an increase in the 
problem_size parameter. 

Using the MA models, we can get an insight into the 
workload distribution and scaling behavior of the number 
of floating-point operations within an application as a 
function of the problem_size parameter.  Figure 17 shows 
contribution of different functions in SP time step 
iterations. The z_solve is the most expensive function for 
runs with large number of processors. The cost of
x_solve and y_solve are identical and consistent. 
Moreover, we can safely ignore cost of txinvr and add
functions in the further analysis.  
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Figure 16: Sensitivity of application requirements as a 
function of NAS SP input parameter, problem_size. 
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5 Conclusions 

Clearly, performance modeling has numerous uses at 
every stage of the high-end computing lifecycle: design, 
integration, procurement, installation, tuning, and 
maintenance. But despite the tremendous usefulness of 
performance models, their construction remains largely a 
manual, complex, and time-consuming exercise. In this 
paper, we have proposed a new approach to symbolic 
performance model construction, called modeling 

assertions (MA), which borrows advantages from both the 
empirical and analytical modeling techniques. MA has 
many advantages over traditional methods: incremental 
construction of a realistic performance model, 
isomorphism with the application structure, 
straightforward model validation against empirical data, 
and intuitive error bounding on individual model terms. 
We demonstrate this new technique on the NAS CG and 
SP benchmarks, and show that MA does make the 
construction and use of performance models more 
practical than either empirical or analytical modeling 
techniques alone. 
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