
Improving Cluster Utilization through Intelligent Processor Sharing

Gary Stiehr and Roger D. Chamberlain
Dept. of Computer Science and Engineering, Washington University in St. Louis

garystiehr@wustl.edu, roger@wustl.edu

Abstract
A dedicated cluster is often not fully utilized even when

all of its processors are allocated to jobs. This occurs
any time that a running job does not use 100% of each

of the processors allocated to it. We increase the

throughput and efficiency of the cluster by scheduling
background jobs to run concurrently with the

“primary” jobs originally scheduled on the cluster.

We do this while maintaining the quality of service
provided to the primary jobs. Our results come from

empirical measurements using production applications.

1. Introduction

In a cluster environment, where processors are
only allocated to a single application at a time, some
parallel applications do not fully utilize the processors
to which they have been assigned. For example,
certain classes of applications, when parallelized,
require a high amount of communication between
individual parallel processes running on different
processors. Depending on the latency and bandwidth
of the connection between the individual processors,
the frequency and/or size of inter-process messages can
cause these processes to underutilize the processors on
which they are running. This is particularly prevalent
in dedicated clusters where a relatively high-overhead
network, such as Ethernet, connects the processors.

It is desirable to allow other “guest” processes to
run in the background concurrently with these
applications and benefit from the unused processor
time. This would help to increase the throughput and
efficiency of the cluster. We do not, however, want to
interfere with the primary task being performed on a
given processor. To help avoid interference, we do not
want to schedule other processes in the background
that utilize the same resource that is the bottleneck for
the primary task. In addition, we must be able to
control the guest processes’ resource usage to keep
them from interfering with the primary task (i.e., we
must maintain the primary task’s quality of service).

We envision a two-tier cluster scheduling system,
in which jobs are partitioned into two priority classes.
High-priority jobs are scheduled in a traditional
manner, consuming resources as they are allocated to
processors for execution. Low-priority jobs (also
called guest jobs) are scheduled on the same processing
nodes as the high-priority jobs; however, the
underlying OS scheduler is asked to ensure that the

low-priority jobs only consume otherwise underutilized
resources (i.e., the priority is strict).

This paper presents empirical results that quantify
the impact of allowing guest processes to co-exist with
primary processes on a dedicated compute cluster. We
refer to this as intelligent processor sharing. The goal
is to minimize the impact of the guest processes on the
execution of the primary processes (which we define as
maintaining the primary processes’ quality of service)
while allowing the guest processes to use otherwise
unused compute cycles on the system. We evaluate a
modification to the Linux kernel’s process scheduler
that supports the control of guest processes’ resource
usage. The modification was developed as part of the
Linger-Longer system [1,2,3] to provide fine-grained
cycle stealing in a network of workstations. In this
work, we apply the concept to a dedicated cluster.

Using a set of production applications from the
Linux cluster installed at the University of Missouri –
St. Louis (UMSL), we quantify the impact on overall
system throughput, efficiency, and response time as
well as quality of service for primary processes using
two mechanisms that support varying the service
priority for jobs. The first mechanism is the traditional
‘nice’ facilities built into the standard Linux scheduler,
and the second mechanism is the kernel modifications
provided by the Linger-Longer system.

We found that using the existing nice mechanism
significantly improves the throughput, efficiency and
average turnaround time of the cluster but only at the
expense of the quality of service of the primary jobs
(primary job run times increased 5-25%). On the other
hand, when using intelligent processor sharing we get
similar improvements in throughput, efficiency and
average turnaround time while not significantly
impacting the quality of service of the primary jobs
(primary job run times changed less than 1%).

2. Related Work

A goal of this work is to increase the throughput
and efficiency of a dedicated cluster by exploiting its
available idle time. At the same time, we would like to
maintain the average turnaround time and the quality of
service of the primary jobs. Condor [4], LSF [5],
NOW [6], and Linger-Longer [1,2,3,7] all present ways
to exploit the available idle time in a network of non-
dedicated workstations while taking steps to limit the
impact on the owner of the workstation.

1-4244-0054-6/06/$20.00 ©2006 IEEE

Condor, LSF and NOW attempt to limit the impact
on the user by removing guest processes whenever
CPU activity is generated by the primary processes (i.e.,
the processes that the workstation owner has started).
This makes these techniques ineffective in a dedicated
cluster environment.

Linger-Longer is based on Linux kernel
modifications that allow the guest processes to persist
on the owner’s workstation despite CPU activity from
the primary processes. The kernel modifications keep
the guest processes from being scheduled on the CPU
when primary processes are runnable. Once the
primary processes’ CPU activity subsides, the Linger-
Longer system will allow the guest processes to
proceed. The Linger-Longer system has been evaluated
using benchmarks, models and simulations. In [1],
benchmarks were run as host processes and guest
processes. The effect on the run time of the host
processes was measured. In [2] and [3], the efficiency
with which idle cycles were used by guest jobs as well
as the change in the throughput of guest jobs was
evaluated using simulation. In [7], the impact of I/O
and network resources is considered, which is beyond
the scope of the present work.

We are not proposing modifications to the cluster-
level scheduler. The node scheduler modifications
would be made on each of the computers comprising
the dedicated cluster. Any cluster-level scheduler,
such as those found in Condor, LSF, PBS [8] and Sun
GridEngine [9], can be used to allocate processors to
the primary jobs. Additionally, any cluster-level
scheduler can then be used to fill the CPU time not
being used by the primary jobs by scheduling guest
jobs with complimentary resource requirements to run
concurrently.

3. Experimental Environment and

Applications

The production Linux cluster mentioned above
consists of thirty-two dual processor servers. Of the
sixty-four available processors, thirty-four are 1.4 GHz
Pentium IIIs and thirty are 1 GHz Pentium IIIs. All of
the nodes are on the same 100 Mb/s Ethernet network.
That is, each node has one full-duplex 100 Mb/s
Ethernet connection to a network switch. Each node
has 1 GB of 133 MHz SDRAM and an 18 GB Ultra3
SCSI (160 MB/s) 10,000 RPM hard drive. Each node
runs an SMP Linux kernel (2.4.x). The resource
management software used on the cluster is OpenPBS
[8], commonly referred to as PBS. Parallel processes
may be started via the PBS API or via other methods,
such as MPICH [10].

For our experiments, we used four nodes from the
production cluster. To reduce the degrees of freedom
in our experiments, we chose to boot each of these

nodes with a 2.4.20 uniprocessor Linux kernel. This
effectively made the nodes single-processor servers.
As a result, each parallel application we ran used a
maximum of four processors each on a different node.
This means that each processor had exclusive access to
the entire 1 GB of memory in the node.

A number of applications were used for this
investigation. As shown in Table 1, these applications
are either CPU-bound or I/O-bound and consist of
either one sequential process or four parallel processes
(i.e., their degree of parallelism is either one or four).
The I/O-bound applications vary in their level of CPU
usage. With the exception of HPL, these applications
are in use by the cluster’s users to do production runs
for research purposes.

Table 1. Application properties.

Name CPU-

bound

I/O-

bound

Degree of

Parallelism

GAUSS X 1

HAL1 X 4

HPL X 4

MrBayes X 4

WRF X 4

PAUP X 1

GAUSS is a mathematical and statistical package
that provides a matrix programming language [11]. It
is used by a research group in the UMSL Economics
Department. HAL1 was developed in the UMSL
College of Business Administration and uses an
intelligent enumeration algorithm to analyze possible
locations for hub arcs in a logistics network [12]. It is
parallelized using MPICH. HPL is a software package
that solves a (random) dense linear system of equations.
It is a freely available implementation of the High
Performance Computing Linpack Benchmark [13].
HPL is used as a benchmark code on the cluster and is
an MPI program. MrBayes is a program for the
Bayesian estimation of phylogeny [14]. It is used by
the UMSL Biology Department. WRF is a flexible,
state-of-the-art atmospheric simulation system that is
suitable for use in a broad range of applications across
scales ranging from meters to thousands of kilometers
[15]. Finally, PAUP (Phylogenetic Analysis Using
Parsimony) is a package for inference of evolutionary
trees [16]. It is used by researchers in the UMSL
Biology Department. Additional details on the cluster,
the individual applications, and the experimental setup
and data gathering methodology can be found in [17].

The empirical results come from 7 sets of
experiments that are grouped into 3 categories.
Group A (sets 1 and 2) provide baseline data on each
application when run in isolation. Group B (sets 3
and 4) measure the impact on the quality of service
provided to primary jobs when other jobs are executed

concurrently. Group C (sets 5, 6, and 7) measure the
overall impact of processor sharing in the cluster. The
naming convention for experiments is sXeY, where X

identifies the set and Y identifies the individual
experiment within the set.

4. Scheduler Modifications

The 2.4 Linux kernel was updated so that if a
process is given the lowest nice value of 19, it will be
considered a guest process. In the modified kernel, if a
normal process is runnable, it will always be chosen to
run over a guest process. Any statistics normally
gathered by the kernel, such as the “goodness” value,
are ignored for guest processes when being compared
to a normal process. When deciding between multiple
guest processes, however, the normal CPU scheduling
mechanisms are used including any statistics kept for
these processes.

next = DUMMY_PROCESS;
weight = -1000;
Foreach runnable process p do {
 process_weight = calculate_weight(p);
 If (process_weight > weight)
 weight = process_weight;
 next = p;
}
schedule_on_CPU(next);

(a) original scheduler

next = DUMMY_PROCESS;
weight = -1000;
Foreach runnable process p do {
 process_weight = calculate_weight(p);
 if ((p == guest process) XOR
 (next == guest process)) {
 if ((p is not a guest process) ||
 (weight < 0)
 weight = process_weight;
 next = p; }
 else {
/* both are primary OR guest processes */
 if (process_weight > weight)
 weight = process_weight;
 next = p; }
}
schedule_on_cpu(next);

(b) modified scheduler

Figure 1. Modified Linux 2.4 CPU scheduler.

As provided from its developers, the Linger-
Longer kernel modifications were for the 2.0.x and
2.2.x Linux kernels. In those kernels, the nice value
assigned to a process was its priority. In the 2.4.x
Linux kernel, the nice value is just one of the quantities
used to calculate the priority of a process at any given
time. Over time, the priority of a given process in the
2.4 kernel will change. At each call to the CPU
scheduler, the weight or “goodness” value for a process

is calculated. The runnable process with the highest
weight is selected to run. When a primary process is
runnable, a guest process will never be run even if it
has a higher weight according to the kernel’s normal
scheme. However, if there are no runnable primary
processes, but one or more guest processes, the guest
process with the highest weight will run (i.e., the
normal kernel scheduling algorithm is applied). As
provided, the Linger-Longer kernel code relied on the
priority being set to the nice value. It considered a
process with a priority of 19 (the lowest nice value
inside the kernel) to be a guest process. This worked
with the static priorities of the 2.0.x and 2.2.x kernels.
However, we cannot use this method to classify guest
processes in the 2.4 kernel since the priority changes
over time. We instead looked explicitly at the nice
value of the process to determine if it was a guest
process. Pseudocode for the core of the original 2.4
Linux kernel CPU scheduler and our modified CPU
scheduler is shown in Figure 1.

5. Experiments and Results

Baseline Application Performance (Group A)

The initial group of experiments is intended to
establish the baseline performance for each of the
applications used. Group A consists of two experiment
sets. Set 1 consists of each application being executed
in isolation using an unaltered kernel. Set 2 consists of
each application being executed on the modified kernel.
Throughout the paper, presented performance results
represent the mean of three independent executions of
the same experiment. The variation across these
independent executions was quite small. Further
details are available in [17]. Figure 2 and Figure 3
show the run (wall clock) time and processor efficiency
for the group A experiment sets. Table 2 shows the
applications used in experiments e1 through e6 of sets
s1 and s2 as referenced in Figure 2 and Figure 3.

Table 2. Applications used in sets s1 and s2.

Experiment Application Name

e1 GAUSS

e2 HAL1

e3 HPL

e4 MrBayes

e5 WRF

e6 PAUP

This data helps us to confirm the claims in Table 1
about the properties of the applications. The high
efficiency measured for GAUSS, HAL1, and PAUP
demonstrate that they are CPU-bound. Likewise, we
can see that HPL, MrBayes and WRF are not CPU-
bound in our experiments (the properties of the cluster
interconnect network slowed these applications down).

0

100

200

300

400

500

e1 e2 e3 e4 e5 e6

Experiment

A
v
e
ra

g
e
 W

a
ll

 C
lo

c
k

T
im

e
 (

s
)

s1 s2

Figure 2. Application run time.

0%

20%

40%

60%

80%

100%

e1 e2 e3 e4 e5 e6

Experiment

A
v
e
ra

g
e
 E

ff
ic

ie
n

c
y

s1 s2

Figure 3. Application efficiency.

Impact on Quality of Service for Primary Applications

(Group B)
The next group of experiments is used to explore

the impact that low-priority processes have on the
quality of service of primary processes. Group B
consists of two experiment sets. Set 3 uses the
unaltered kernel and its built-in nice mechanism, and
set 4 uses the modified kernel that supports intelligent
processor sharing. Table 3 shows the group B
experiments; applications in parentheses are started
simultaneously and applications in the third column are
only requesting a low level of service (i.e., they are
scheduled as “nice” or as a “guest”).

Table 3. Group B experiments.

Experiment Primary

Application

“Nice” or “Guest”

Applications

e1 GAUSS GAUSS

e2 MrBayes (GAUSS, GAUSS,
GAUSS, GAUSS)

e3 HAL1 PAUP

e4 WRF PAUP, PAUP

e5 WRF HAL1

e6 HAL1 PAUP

e7 HAL1 PAUP, PAUP,
PAUP, PAUP

e8 HAL1 PAUP, PAUP,
PAUP

We tested four of the applications: HAL1, WRF,
MrBayes and GAUSS. These particular applications
were chosen so that we would have half I/O-bound
applications (WRF, MrBayes) and half CPU-bound
applications (HAL1, GAUSS). The low-priority jobs
were CPU-bound applications chosen at random except
as follows. In experiment e6, the single guest PAUP
process was run concurrently with one HAL1 slave
process; in experiment e7, the four PAUP processes
were run currently with all HAL1 processes; and in
experiment e8, the three PAUP processes were run
concurrently with the three HAL1 slave processes.

Figure 4 shows the wall clock times for the
primary applications, and Figure 5 shows the percent
change from the baseline wall clock times for the
primary applications (our measure of quality of
service). The wall clock time is the time elapsed
between when the primary application’s first process
started and when its last process exited. The figures
show that running a low-priority job concurrently with
a primary job using the unaltered kernel consistently
impacts the quality of service of the primary job. For
an I/O-bound job, we would expect that the impact
would be less since it does not generally use the full
processor and thus is not giving up as much CPU time
as a CPU-bound job. This intuition is supported by the
data presented. The two I/O-bound jobs, MrBayes and
WRF, have the lowest percent increase in run time.

0

50

100

150

200
250

300

350

400

450

G
A
U
S
S

(e
1)

M
rB

ay
es

 (e
2)

H
A
L1

 (e
3)

W
R
F (e

4)

W
R
F

(e
5)

H
A
L1

 (e
6)

H
A
L1

 (e
7)

H
A
L1

(e
8)

Application

R
u

n
 T

im
e
 (

s
)

baseline s3 s4

Figure 4. Primary application run time.

While experiment set 3 used the unmodified kernel,
experiment set 4 shows how the run times of the
primary jobs have been affected by running a guest job
concurrently using the intelligent processor sharing
kernel. We see here that the kernel modifications have
had the desired effect. That is, the run times of the
primary jobs have not changed significantly from the
baseline run times found in the set 2 experiments.
Note that the largest percent increase from set 4 shown

in Figure 5 is well under 1%, making it difficult to see
in the figure. We can see that the kernel modifications
have virtually eliminated the impact on the primary
jobs that is seen when using the kernel’s existing
“nice” mechanism to enable low-priority processes.
Since we use the run time as our measure of the quality
of service received by the primary jobs, we can say that
running guest jobs concurrently with the primary jobs
does not impact the quality of service that the primary
jobs receive when using the intelligent processor
sharing kernel.

0%

10%

20%

30%

40%

50%

60%

70%

G
A
U
S
S

(e
1)

M
rB

ay
es

 (e
2)

H
A
L1

 (e
3)

W
R
F (e

4)

W
R
F (e

5)

H
A
L1

 (e
6)

H
A
L1

 (e
7)

H
A
L1

 (e
8)

Application

P
e
rc

e
n

t
In

c
re

a
s
e
 o

v
e
r

B
a
s
e
li

n
e

R
u

n
 T

im
e

s3 s4

Figure 5. Impact on primary application quality of
service.

Throughput, Efficiency, and Response Time (Group C)

The final group of experiments is used to assess
the effect of intelligent processor sharing on
throughput, efficiency, and response time in the cluster.
Group C consists of three experiment sets. Set 5 is
shown below. Applications in parentheses are started
simultaneously and applications in brackets are only
requesting a low level of service (i.e., they could be
scheduled as “nice” or as a “guest”). Experiments s5e1
and s5e2 specifically start only CPU-bound primary
jobs. Experiments s5e3 and s5e4 specifically start only
I/O-bound primary jobs. The remaining experiments
start a mixture of both CPU- and I/O-bound primary
jobs. As mentioned previously, only CPU-bound jobs
were run as low-priority jobs since one of our goals is
to increase the CPU utilization of the cluster. Except
where noted above, the sequences of applications were
chosen somewhat randomly. In some cases we
attempted to schedule the low-priority jobs so that they
would, when run concurrently with the primary jobs
later (in set 6), fill up as much of the unused CPU time
as possible. Additionally, the sequences we chose
were guided in at least a small way by the sequences of
job submissions seen on the production cluster of

which our test nodes were a subset. The experiments
in set 5 are:
s5e1: HAL1, (PAUP, PAUP, GAUSS, GAUSS),

[HAL1], [HAL1]
s5e2: (PAUP, PAUP, PAUP, PAUP), [HAL1],

([GAUSS], [GAUSS], [GAUSS], [GAUSS])
s5e3: MrBayes, WRF, HPL, [HAL1], ([PAUP],

[PAUP], [GAUSS], [GAUSS]), ([PAUP],
[PAUP], [GAUSS], [GAUSS])

s5e4: HPL, [HAL1], WRF, ([GAUSS], [PAUP],
[PAUP], [GAUSS]), [HAL1]

s5e5: WRF, ([GAUSS], [GAUSS], [GAUSS],
[GAUSS]), ([PAUP], [PAUP], [PAUP],
[PAUP]), HAL1

s5e6: [HAL1], ([PAUP] , [PAUP] , [PAUP] , [PAUP]),
MrBayes, HPL

s5e7: WRF, [HAL1], ([GAUSS], [GAUSS], [GAUSS],
[GAUSS])

s5e8: MrBayes, MrBayes, (PAUP, PAUP, PAUP,
PAUP), [HAL1], [HAL1]

The remaining experiment sets in group C (sets 6
and 7) use the same applications as those in set 5; the
difference is in how they are run. For these two sets,
low-priority jobs are allowed to run concurrently with
the primary jobs. For these experiments, if only low-
priority jobs are running and a primary job is submitted,
the primary job will immediately be allocated the
processors it needs. If other primary jobs are running
and there are not enough free processors, then the
newly submitted primary job will be queued.

Table 4. Experiment sets 6 and 7.

HAL1, (PAUP, PAUP, GAUSS, GAUSS) e1

[HAL1], [HAL1]

(PAUP, PAUP, PAUP, PAUP) e2
[HAL1], ([GAUSS], [GAUSS], [GAUSS],
[GAUSS])

MrBayes, WRF, HPL e3
[HAL1], ([PAUP], [PAUP], [GAUSS],
[GAUSS]), ([PAUP], [PAUP], [GAUSS],
[GAUSS])

HPL, WRF e4

[HAL1], ([GAUSS], [PAUP], [PAUP],
[GAUSS]), [HAL1]

WRF, HAL1 e5
([GAUSS], [GAUSS], [GAUSS], [GAUSS]),
([PAUP], [PAUP], [PAUP], [PAUP])

MrBayes, HPL e6
[HAL1], ([PAUP], [PAUP], [PAUP], [PAUP])

WRFe7
[HAL1], ([GAUSS], [GAUSS], [GAUSS],
[GAUSS])

MrBayes, MrBayes, (PAUP, PAUP, PAUP,
PAUP)

e8

[HAL1], [HAL1]

Table 4 shows the sequence of applications run for
experiment sets 6 and 7; applications in parentheses are
started simultaneously and applications in brackets are
only requesting a low level of service (i.e., they are
scheduled as “nice” in set 6 or as a “guest” in set 7).
Experiments e1 and e2 specifically start only CPU-
bound primary jobs. Experiments e3 and e4
specifically start only I/O-bound primary jobs. The
remaining experiments start a mixture of both CPU-
and I/O-bound primary jobs. The experiments are the
same as in set 5 but the order of execution was done as
if there were two queues that could use the same set of
processors simultaneously. The experiments are:

We measured the throughput of the cluster by
taking the number of jobs run (including both primary
and low-priority) and dividing it by the number of
hours (i.e., seconds/3600) required for all jobs to
complete (including both primary and low-priority).
The efficiency measurement in group C is a calculation
of how efficiently the set of jobs in a given experiment
used the set of processors assigned to it. For each
experiment, we considered its set of jobs to be the only
jobs queued. We summed the CPU usage of each
process (including all parallel processes); call this Tc.
We then noted the amount of wall clock time, Tw,
needed until the last job in the set completed. We
considered that each of the four processors was
available for use this entire time. Thus we calculated
the available processor time as 4Tw. We then
calculated the efficiency as Tc/(4Tw).

We also measured the average turnaround time of
the jobs in each experiment. The turnaround time for a
given job is the time that elapsed from when the job
was submitted to the queue (we assume that all jobs
were submitted at the same time (i.e., at time 0)) and
the time that it finished executing. The average
turnaround time for a given experiment is found by
summing the turnaround time of every job in the
experiment and dividing this sum by the number of
jobs in the experiment. Finally, as a measure of the
quality of service received by the primary jobs in each
experiment, we report the wall clock time needed for
all primary jobs to complete.

Figure 6 and Figure 7 compare the throughput
measurements from the set 5 experiments (primary
jobs only) to the measurements obtained for the set 6
experiments (primary jobs with low-priority jobs run
concurrently) and the set 7 experiments (primary jobs
with guest jobs run concurrently). These results show
that the throughput of the cluster-level scheduler can be
increased by running guest jobs concurrently with
primary jobs. The throughput improvements with
intelligent processor sharing (set 7) are very similar to
those achieved by running low-priority jobs
concurrently with the primary jobs (in set 6). As we

would expect, the increase in throughput is related to
the efficiency with which the set of primary jobs (in the
set 5 experiments) utilized the processor. Experiments
in set 5 with all CPU-bound jobs (such as e1 and e2)
obtained higher efficiency and thus there was little or
no room for improvement in throughput in set 7; thus
the gains are minimal or non-existent. On the other
hand, experiments e3 and e4 were I/O-bound, resulting
in lower efficiency when run alone (in set 5) and thus
resulting in bigger gains in throughput when run with
guest jobs in set 7. Obviously as throughput increases,
so does the efficiency of the cluster. Figure 8
compares the initial efficiency (set 5) with the
efficiency when running concurrently with low-priority
jobs (set 6) and guest jobs (set 7).

0

20

40

60

80

e1 e2 e3 e4 e5 e6 e7 e8

Experiment

T
h

ro
u

g
h

p
u

t
(j

o
b

s
/h

r)

s5 s6 s7

Figure 6. Throughput (s5) vs. throughput with
low-priority jobs (s6) and throughput with guest
jobs (s7).

0%

10%

20%

30%

e1 e2 e3 e4 e5 e6 e7 e8

Experiment

P
e
rc

e
n

t
In

c
re

a
s
e
 i

n

T
h

ro
u

g
h

p
u

t

s6 s7

Figure 7. Throughput improvement for low-priority
jobs (s6) and guest jobs (s7).

Figure 9 plots the average turnaround time (for all
applications) in group C. It demonstrates that we
achieve higher throughput while also lowering the
average turnaround time of the jobs for most
experiments. Clearly the amount that we can decrease
average turnaround time depends on how many of the
jobs can finish sooner than before. If we have CPU-
bound primary jobs (e.g., e1 and e2) there will not be
any CPU time available to run guest jobs. Since the
guest processes are run only when there are no
runnable primary processes (set 7), the guest jobs will

not take any CPU time away from the primary jobs.
Thus the guest jobs’ average turnaround time should
not change nor should the primary jobs’ average
turnaround time.

0%

20%

40%

60%

80%

100%

e1 e2 e3 e4 e5 e6 e7 e8

Experiment

E
ff

ic
ie

n
c
y
 o

f
C

lu
s
te

r

N
o

d
e
s

s5 s6 s7

Figure 8. Efficiency (initial (s5) vs. low-priority
jobs (s6) and guest jobs (s7)).

0

500

1000

1500

e1 e2 e3 e4 e5 e6 e7 e8

Experiments

A
v
e
ra

g
e
 T

u
rn

a
ro

u
n

d

T
im

e
 (

s
)

s5 s6 s7

Figure 9. Turnaround time.

0

1000

2000

3000

4000

e1 e2 e3 e4 e5 e6 e7 e8

Experiment

R
u

n
 T

im
e
 (

s
)

s5 s6 s7

Figure 10. Primary application run time.

On the other hand, when the primary jobs are I/O-
bound (e.g., e3 and e4), the guest jobs are able to run
sooner while still having no impact on the primary jobs.
Thus, the guest jobs should realize a decrease in their
average turnaround time. Additionally, as the primary
jobs’ CPU utilization efficiency decreases, so does the
guest jobs’ average turnaround time. Since the guest
jobs should not impact the average turnaround time of
the primary jobs and since there is the possibility that
the guest jobs’ average turnaround time will decrease,
we expect to see the average turnaround time of the

jobs in each experiment in set 7 to either decrease or
stay the same relative to the baseline average
turnaround times (in set 5). Taking note of the
efficiency measurements presented in Figure 8, we can
see this behavior in Figure 9.

0%

10%

20%

30%

e1 e2 e3 e4 e5 e6 e7 e8

Experiment

P
e
rc

e
n

t
In

c
re

a
s
e
 i

n

R
u

n
 T

im
e

s6 s7

Figure 11. Impact on primary application quality
of service.

The exception to the above observation is
experiment e6. Even though s5e6 has an efficiency of
78%, we do not see the decrease in average turnaround
time that we expect in either set 6 or set 7. Experiment
e6 is different from the other experiments in that for set
5 (i.e., experiment s5e6), the jobs are executed so that
the low-priority jobs are run first followed by the
primary jobs. When the same jobs are run in sets 6 and
7 (i.e., experiments s6e6 and s7e6), the primary jobs
will be started immediately (i.e., at time 0). Since the
primary jobs have priority, the remaining jobs will all
see an increase in their average turnaround times. In
this case, the increase in the average turnaround time
for the five low-priority jobs was greater than the
decrease in the average turnaround time for the two
primary jobs thus resulting in an overall increase in the
average turnaround time of this set of jobs.

Figure 10 shows the run times for the primary
applications in group C, while Figure 11 shows these
data as a percent increase over the run times in set 5
(our quality of service measure). Notice that for the
intelligent processor sharing system we do not see any
significant increase in the run times of any of the
primary jobs (less than 1% increase). Compare this to
the low-priority job case, in which we see an increase
of at least 5% in the run times of the primary jobs with
some sets of primary jobs being affected by 20-25%.

6. Conclusions

The existing nice mechanisms in the 2.4 Linux
kernel can be used to increase the throughput and
efficiency of a cluster while also lowering the average
response time of the queued jobs. It does so, however,
at the expense of the quality of service of primary (high
priority) jobs. The guest process mechanism in the
intelligent processor sharing kernel (derived from the

Linger-Longer kernel) can maintain the quality of
service of primary jobs while also increasing the
throughput and efficiency of the cluster and lowering
the average response time of queued jobs. When
running low-priority or guest processes concurrently
with the primary jobs, we saw that the gains for the
throughput and efficiency of the cluster increased when
the efficiency of the primary jobs decreased. Under the
same conditions, the average turnaround time tended to
decrease as the efficiency of the primary jobs
decreased.

In our empirical results using production codes,
we found that using the kernel’s existing nice
mechanism to start low-priority jobs concurrently with
primary jobs enabled us to increase throughput by up
to 29%, increase efficiency by up to 32% and decrease
the average turnaround time by up to 20%.
Unfortunately, this came at the expense of impacting
the primary jobs’ quality of service by increasing their
run times anywhere from 5%-25%. Similarly, we
found that by using the intelligent processor sharing
kernel to run concurrent guest processes, we could
increase throughput by up to 21%, increase efficiency
by up to 33% and decrease the average turnaround time
by up to 18%. Additionally, the quality of service of
the primary jobs is maintained as run times are within
1% of their baselines.

While not yet providing a complete toolset for
system managers, this work points explicitly to
opportunities for improved utility of dedicated cluster
systems by sharing underutilized resources in the
cluster. The results presented here concentrate on the
CPU as the performance critical resource. The original
Linger-Longer system has since been expanded to
consider both memory and I/O capability as potential
performance critical resources. We anticipate that the
expanded Linger-Longer system can be used to support
generalized intelligent resource sharing in clusters as
well.

Acknowledgements

The authors would like to thank the University of
Missouri – St. Louis for access to its production Linux
cluster; the providers of the applications: Simon
Malcomber and Mark Beilstein of the UMSL Biology
Department’s Kellogg Lab (for MrBayes, PAUP),
Clinton Greene of the UMSL Economics Department
(for GAUSS), James Campbell of the UMSL College
of Business Administration (for HAL1), and Eric
Lenning of the National Weather Service (for help with
WRF); and the original developer of the Linger-Longer
system, Kyung Dong Ryu, for his kernel modifications.
This work was partially supported by NSF grants CNS-
0313203 and CCF-0427794.

References

[1] Ryu, K. D. and Hollingsworth, J. K., “Linger-Longer:
Fine-Grain Cycle Stealing for Networks of
Workstations,” SC’98. Nov. 1998.

[2] Ryu, K. D. and Hollingsworth, J. K., “Exploiting Fine-
Grained Idle Periods in Networks of Workstations,”
IEEE Trans. on Parallel and Distributed Systems, 11(7).
July 2000.

[3] Ryu, K. D. and Hollingsworth, J. K., “Unobtrusiveness
and Efficiency in Idle Cycle Stealing for PC Grids,” in
Proc. 18th Int’l Parallel and Distributed Processing

Symposium. April 2004.
[4] Litzkow, M., Livny, M., Mutka, M., “Condor – A

Hunter of Idle Workstations,” Proc. Int’l Conf. on

Distributed Computing Systems. June 1988, pp. 104-111.
[5] Zhou S., Zheng, X., Wang, J., Delisle, P., “Utopia: a

Load Sharing Facility for Large, Heterogeneous
Distributed Computer Systems,” SPE, 23(12). 1993, pp.
1305-1336.

[6] Arpaci, R. H., et al., “The Interaction of Parallel and
Sequential Workloads on a Network of Workstations,”
SIGMETRICS. May 1995, pp. 267-278.

[7] Ryu, K. D., et al., “Efficient Network and I/O Throttling
for Fine-Grained Cycle Stealing,” SC’01. Nov. 2001.

[8] “OpenPBS Administration Guide.” http://www.open
pbs.org/docs.html.

[9] “Sun Grid Engine Reference Guide.” http://gridengine.

sunsource.net/project/gridengine/documentation.html.

[10] Gropp, W. et al., MPICH Implementation. http://www-
unix.mcs.anl.gov/mpi/mpich/

[11] GAUSS Mathematical and Statistical System. Aptech
Systems, Inc. http://www.aptech.com/.

[12] Campbell, J. F., et al., “Solving Hub Arc Location
Problems on a Cluster of Workstations,” Parallel

Computing, 29(5):555-574, May 2003.
[13] Petitet, A. et al., “HPL - A Portable Implementation of

the High-Performance Linpack Benchmark for
Distributed-Memory Computer,” Innovative Computing
Laboratory, University of Tennessee.

http://www.netlib.org/benchmark/hpl/.
[14] Huelsenbeck, J. and Ronquist, F., “MrBayes: Bayesian

Inference of Phylogeny,” http://morphbank.ebc.uu.
se/mrbayes/info.php.

[15] “Weather Research and Forecast (WRF) Modeling
System,” National Center for Atmospheric Research,
University Corporation for Atmospheric Research.

http://www.wrf-model.org/ Welcome.html.
[16] Swafford, D., “PAUP*: Phylogenetic Analysis Using

Parsimony (and Other Methods),” http://paup.csit.
fsu.edu/index.html.

[17] Stiehr, G. “Using Fine-Grained Cycle Stealing to
Improve Throughput, Efficiency and Response Time on
a Dedicated Cluster while Maintaining Quality of
Service,” MS Thesis, CSE Dept., Washington Univ.,
St. Louis, Missouri, Dec. 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

