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Abstract
A dedicated cluster is often not fully utilized even when 

all of its processors are allocated to jobs.  This occurs 
any time that a running job does not use 100% of each 

of the processors allocated to it.  We increase the 

throughput and efficiency of the cluster by scheduling 
background jobs to run concurrently with the 

“primary” jobs originally scheduled on the cluster.  

We do this while maintaining the quality of service 
provided to the primary jobs.  Our results come from 

empirical measurements using production applications. 

1. Introduction 

In a cluster environment, where processors are 
only allocated to a single application at a time, some 
parallel applications do not fully utilize the processors 
to which they have been assigned.  For example, 
certain classes of applications, when parallelized, 
require a high amount of communication between 
individual parallel processes running on different 
processors.  Depending on the latency and bandwidth 
of the connection between the individual processors, 
the frequency and/or size of inter-process messages can 
cause these processes to underutilize the processors on 
which they are running.  This is particularly prevalent 
in dedicated clusters where a relatively high-overhead 
network, such as Ethernet, connects the processors. 

It is desirable to allow other “guest” processes to 
run in the background concurrently with these 
applications and benefit from the unused processor 
time.  This would help to increase the throughput and 
efficiency of the cluster.  We do not, however, want to 
interfere with the primary task being performed on a 
given processor.  To help avoid interference, we do not 
want to schedule other processes in the background 
that utilize the same resource that is the bottleneck for 
the primary task.  In addition, we must be able to 
control the guest processes’ resource usage to keep 
them from interfering with the primary task (i.e., we 
must maintain the primary task’s quality of service). 

We envision a two-tier cluster scheduling system, 
in which jobs are partitioned into two priority classes.  
High-priority jobs are scheduled in a traditional 
manner, consuming resources as they are allocated to 
processors for execution.  Low-priority jobs (also 
called guest jobs) are scheduled on the same processing 
nodes as the high-priority jobs; however, the 
underlying OS scheduler is asked to ensure that the 

low-priority jobs only consume otherwise underutilized 
resources (i.e., the priority is strict). 

This paper presents empirical results that quantify 
the impact of allowing guest processes to co-exist with 
primary processes on a dedicated compute cluster.  We 
refer to this as intelligent processor sharing.  The goal 
is to minimize the impact of the guest processes on the 
execution of the primary processes (which we define as 
maintaining the primary processes’ quality of service) 
while allowing the guest processes to use otherwise 
unused compute cycles on the system.  We evaluate a 
modification to the Linux kernel’s process scheduler 
that supports the control of guest processes’ resource 
usage.  The modification was developed as part of the 
Linger-Longer system [1,2,3] to provide fine-grained 
cycle stealing in a network of workstations.  In this 
work, we apply the concept to a dedicated cluster. 

Using a set of production applications from the 
Linux cluster installed at the University of Missouri – 
St. Louis (UMSL), we quantify the impact on overall 
system throughput, efficiency, and response time as 
well as quality of service for primary processes using 
two mechanisms that support varying the service 
priority for jobs.  The first mechanism is the traditional 
‘nice’ facilities built into the standard Linux scheduler, 
and the second mechanism is the kernel modifications 
provided by the Linger-Longer system. 

We found that using the existing nice mechanism 
significantly improves the throughput, efficiency and 
average turnaround time of the cluster but only at the 
expense of the quality of service of the primary jobs 
(primary job run times increased 5-25%).  On the other 
hand, when using intelligent processor sharing we get 
similar improvements in throughput, efficiency and 
average turnaround time while not significantly 
impacting the quality of service of the primary jobs 
(primary job run times changed less than 1%).   

2. Related Work 

A goal of this work is to increase the throughput 
and efficiency of a dedicated cluster by exploiting its 
available idle time.  At the same time, we would like to 
maintain the average turnaround time and the quality of 
service of the primary jobs.  Condor [4], LSF [5], 
NOW [6], and Linger-Longer [1,2,3,7] all present ways 
to exploit the available idle time in a network of non-
dedicated workstations while taking steps to limit the 
impact on the owner of the workstation. 
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Condor, LSF and NOW attempt to limit the impact 
on the user by removing guest processes whenever 
CPU activity is generated by the primary processes (i.e., 
the processes that the workstation owner has started).  
This makes these techniques ineffective in a dedicated 
cluster environment. 

Linger-Longer is based on Linux kernel 
modifications that allow the guest processes to persist 
on the owner’s workstation despite CPU activity from 
the primary processes.  The kernel modifications keep 
the guest processes from being scheduled on the CPU 
when primary processes are runnable.  Once the 
primary processes’ CPU activity subsides, the Linger-
Longer system will allow the guest processes to 
proceed. The Linger-Longer system has been evaluated 
using benchmarks, models and simulations.  In [1], 
benchmarks were run as host processes and guest 
processes.  The effect on the run time of the host 
processes was measured.  In [2] and [3], the efficiency 
with which idle cycles were used by guest jobs as well 
as the change in the throughput of guest jobs was 
evaluated using simulation.  In [7], the impact of I/O 
and network resources is considered, which is beyond 
the scope of the present work. 

We are not proposing modifications to the cluster-
level scheduler.  The node scheduler modifications 
would be made on each of the computers comprising 
the dedicated cluster.  Any cluster-level scheduler, 
such as those found in Condor, LSF, PBS [8] and Sun 
GridEngine [9], can be used to allocate processors to 
the primary jobs.  Additionally, any cluster-level 
scheduler can then be used to fill the CPU time not 
being used by the primary jobs by scheduling guest 
jobs with complimentary resource requirements to run 
concurrently. 

3. Experimental Environment and 

Applications 

The production Linux cluster mentioned above 
consists of thirty-two dual processor servers.  Of the 
sixty-four available processors, thirty-four are 1.4 GHz 
Pentium IIIs and thirty are 1 GHz Pentium IIIs.  All of 
the nodes are on the same 100 Mb/s Ethernet network.  
That is, each node has one full-duplex 100 Mb/s 
Ethernet connection to a network switch.  Each node 
has 1 GB of 133 MHz SDRAM and an 18 GB Ultra3 
SCSI (160 MB/s) 10,000 RPM hard drive.  Each node 
runs an SMP Linux kernel (2.4.x).  The resource 
management software used on the cluster is OpenPBS 
[8], commonly referred to as PBS.  Parallel processes 
may be started via the PBS API or via other methods, 
such as MPICH [10]. 

For our experiments, we used four nodes from the 
production cluster.  To reduce the degrees of freedom 
in our experiments, we chose to boot each of these 

nodes with a 2.4.20 uniprocessor Linux kernel.  This 
effectively made the nodes single-processor servers.  
As a result, each parallel application we ran used a 
maximum of four processors each on a different node. 
This means that each processor had exclusive access to 
the entire 1 GB of memory in the node. 

A number of applications were used for this 
investigation.  As shown in Table 1, these applications 
are either CPU-bound or I/O-bound and consist of 
either one sequential process or four parallel processes 
(i.e., their degree of parallelism is either one or four).  
The I/O-bound applications vary in their level of CPU 
usage.  With the exception of HPL, these applications 
are in use by the cluster’s users to do production runs 
for research purposes. 

Table 1.  Application properties. 

Name CPU-

bound 

I/O-

bound 

Degree of 

Parallelism 

GAUSS X  1 

HAL1 X  4 

HPL  X 4 

MrBayes  X 4 

WRF  X 4 

PAUP X  1 

GAUSS is a mathematical and statistical package 
that provides a matrix programming language [11].  It 
is used by a research group in the UMSL Economics 
Department.  HAL1 was developed in the UMSL 
College of Business Administration and uses an 
intelligent enumeration algorithm to analyze possible 
locations for hub arcs in a logistics network [12].  It is 
parallelized using MPICH.  HPL is a software package 
that solves a (random) dense linear system of equations. 
It is a freely available implementation of the High 
Performance Computing Linpack Benchmark [ 13 ].  
HPL is used as a benchmark code on the cluster and is 
an MPI program.  MrBayes is a program for the 
Bayesian estimation of phylogeny [14].  It is used by 
the UMSL Biology Department.  WRF is a flexible, 
state-of-the-art atmospheric simulation system that is 
suitable for use in a broad range of applications across 
scales ranging from meters to thousands of kilometers 
[15].  Finally, PAUP (Phylogenetic Analysis Using 
Parsimony) is a package for inference of evolutionary 
trees [16].  It is used by researchers in the UMSL 
Biology Department.  Additional details on the cluster, 
the individual applications, and the experimental setup 
and data gathering methodology can be found in [17]. 

The empirical results come from 7 sets of 
experiments that are grouped into 3 categories.  
Group A (sets 1 and 2) provide baseline data on each 
application when run in isolation.  Group B (sets 3 
and 4) measure the impact on the quality of service 
provided to primary jobs when other jobs are executed 



concurrently.  Group C (sets 5, 6, and 7) measure the 
overall impact of processor sharing in the cluster.  The 
naming convention for experiments is sXeY, where X

identifies the set and Y identifies the individual 
experiment within the set. 

4. Scheduler Modifications 

The 2.4 Linux kernel was updated so that if a 
process is given the lowest nice value of 19, it will be 
considered a guest process.  In the modified kernel, if a 
normal process is runnable, it will always be chosen to 
run over a guest process.  Any statistics normally 
gathered by the kernel, such as the “goodness” value, 
are ignored for guest processes when being compared 
to a normal process.  When deciding between multiple 
guest processes, however, the normal CPU scheduling 
mechanisms are used including any statistics kept for 
these processes. 

next = DUMMY_PROCESS; 
weight = -1000; 
Foreach runnable process p do { 
  process_weight = calculate_weight(p); 
  If ( process_weight > weight ) 
    weight = process_weight; 
    next = p; 
}
schedule_on_CPU(next);

(a) original scheduler 

next = DUMMY_PROCESS; 
weight = -1000; 
Foreach runnable process p do { 
  process_weight = calculate_weight(p); 
  if ((p == guest process) XOR 
      (next == guest process)) { 
    if (( p is not a guest process) || 
        (weight < 0) 
      weight = process_weight; 
      next = p; } 
  else { 
/* both are primary OR guest processes */ 
    if ( process_weight > weight ) 
       weight = process_weight; 
       next = p; } 
}
schedule_on_cpu(next);

(b) modified scheduler

Figure 1.  Modified Linux 2.4 CPU scheduler.

As provided from its developers, the Linger-
Longer kernel modifications were for the 2.0.x and 
2.2.x Linux kernels.  In those kernels, the nice value 
assigned to a process was its priority.  In the 2.4.x 
Linux kernel, the nice value is just one of the quantities 
used to calculate the priority of a process at any given 
time.  Over time, the priority of a given process in the 
2.4 kernel will change.  At each call to the CPU 
scheduler, the weight or “goodness” value for a process 

is calculated.  The runnable process with the highest 
weight is selected to run.  When a primary process is 
runnable, a guest process will never be run even if it 
has a higher weight according to the kernel’s normal 
scheme.  However, if there are no runnable primary 
processes, but one or more guest processes, the guest 
process with the highest weight will run (i.e., the 
normal kernel scheduling algorithm is applied).  As 
provided, the Linger-Longer kernel code relied on the 
priority being set to the nice value.  It considered a 
process with a priority of 19 (the lowest nice value 
inside the kernel) to be a guest process.  This worked 
with the static priorities of the 2.0.x and 2.2.x kernels.  
However, we cannot use this method to classify guest 
processes in the 2.4 kernel since the priority changes 
over time.  We instead looked explicitly at the nice 
value of the process to determine if it was a guest 
process.  Pseudocode for the core of the original 2.4 
Linux kernel CPU scheduler and our modified CPU 
scheduler is shown in Figure 1. 

5. Experiments and Results 

Baseline Application Performance (Group A) 

The initial group of experiments is intended to 
establish the baseline performance for each of the 
applications used.  Group A consists of two experiment 
sets.  Set 1 consists of each application being executed 
in isolation using an unaltered kernel.  Set 2 consists of 
each application being executed on the modified kernel.  
Throughout the paper, presented performance results 
represent the mean of three independent executions of 
the same experiment.  The variation across these 
independent executions was quite small.  Further 
details are available in [17].  Figure 2 and Figure 3 
show the run (wall clock) time and processor efficiency 
for the group A experiment sets.  Table 2 shows the 
applications used in experiments e1 through e6 of sets 
s1 and s2 as referenced in Figure 2 and Figure 3. 

Table 2.  Applications used in sets s1 and s2. 

Experiment  Application Name 

e1 GAUSS 

e2 HAL1 

e3 HPL 

e4 MrBayes 

e5 WRF 

e6 PAUP 

This data helps us to confirm the claims in Table 1 
about the properties of the applications.  The high 
efficiency measured for GAUSS, HAL1, and PAUP 
demonstrate that they are CPU-bound.  Likewise, we 
can see that HPL, MrBayes and WRF are not CPU-
bound in our experiments (the properties of the cluster 
interconnect network slowed these applications down). 
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Figure 2.  Application run time. 

0%

20%

40%

60%

80%

100%

e1 e2 e3 e4 e5 e6

Experiment

A
v
e
ra

g
e
 E

ff
ic

ie
n

c
y

s1 s2

Figure 3.  Application efficiency. 

Impact on Quality of Service for Primary Applications 

(Group B) 
The next group of experiments is used to explore 

the impact that low-priority processes have on the 
quality of service of primary processes.  Group B 
consists of two experiment sets.  Set 3 uses the 
unaltered kernel and its built-in nice mechanism, and 
set 4 uses the modified kernel that supports intelligent 
processor sharing.  Table 3 shows the group B 
experiments; applications in parentheses are started 
simultaneously and applications in the third column are 
only requesting a low level of service (i.e., they are 
scheduled as “nice” or as a “guest”).   

Table 3.  Group B experiments. 

Experiment Primary 

Application

“Nice” or “Guest” 

Applications

e1 GAUSS GAUSS 

e2 MrBayes (GAUSS, GAUSS, 
GAUSS, GAUSS) 

e3 HAL1 PAUP 

e4 WRF PAUP, PAUP 

e5 WRF HAL1 

e6 HAL1 PAUP 

e7 HAL1 PAUP, PAUP, 
PAUP, PAUP 

e8 HAL1 PAUP, PAUP, 
PAUP

We tested four of the applications: HAL1, WRF, 
MrBayes and GAUSS.  These particular applications 
were chosen so that we would have half I/O-bound 
applications (WRF, MrBayes) and half CPU-bound 
applications (HAL1, GAUSS).  The low-priority jobs 
were CPU-bound applications chosen at random except 
as follows.  In experiment e6, the single guest PAUP 
process was run concurrently with one HAL1 slave 
process; in experiment e7, the four PAUP processes 
were run currently with all HAL1 processes; and in 
experiment e8, the three PAUP processes were run 
concurrently with the three HAL1 slave processes. 

Figure 4 shows the wall clock times for the 
primary applications, and Figure 5 shows the percent 
change from the baseline wall clock times for the 
primary applications (our measure of quality of 
service).  The wall clock time is the time elapsed 
between when the primary application’s first process 
started and when its last process exited.  The figures 
show that running a low-priority job concurrently with 
a primary job using the unaltered kernel consistently 
impacts the quality of service of the primary job.  For 
an I/O-bound job, we would expect that the impact 
would be less since it does not generally use the full 
processor and thus is not giving up as much CPU time 
as a CPU-bound job.  This intuition is supported by the 
data presented.  The two I/O-bound jobs, MrBayes and 
WRF, have the lowest percent increase in run time. 
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Figure 4.  Primary application run time. 

While experiment set 3 used the unmodified kernel, 
experiment set 4 shows how the run times of the 
primary jobs have been affected by running a guest job 
concurrently using the intelligent processor sharing 
kernel.  We see here that the kernel modifications have 
had the desired effect.  That is, the run times of the 
primary jobs have not changed significantly from the 
baseline run times found in the set 2 experiments.  
Note that the largest percent increase from set 4 shown 



in Figure 5 is well under 1%, making it difficult to see 
in the figure.  We can see that the kernel modifications 
have virtually eliminated the impact on the primary 
jobs that is seen when using the kernel’s existing 
“nice” mechanism to enable low-priority processes.  
Since we use the run time as our measure of the quality 
of service received by the primary jobs, we can say that 
running guest jobs concurrently with the primary jobs 
does not impact the quality of service that the primary 
jobs receive when using the intelligent processor 
sharing kernel. 
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Figure 5.  Impact on primary application quality of 
service. 

Throughput, Efficiency, and Response Time (Group C) 

The final group of experiments is used to assess 
the effect of intelligent processor sharing on 
throughput, efficiency, and response time in the cluster.  
Group C consists of three experiment sets.  Set 5 is 
shown below.  Applications in parentheses are started 
simultaneously and applications in brackets are only 
requesting a low level of service (i.e., they could be 
scheduled as “nice” or as a “guest”).  Experiments s5e1 
and s5e2 specifically start only CPU-bound primary 
jobs.  Experiments s5e3 and s5e4 specifically start only 
I/O-bound primary jobs.  The remaining experiments 
start a mixture of both CPU- and I/O-bound primary 
jobs.  As mentioned previously, only CPU-bound jobs 
were run as low-priority jobs since one of our goals is 
to increase the CPU utilization of the cluster.  Except 
where noted above, the sequences of applications were 
chosen somewhat randomly.  In some cases we 
attempted to schedule the low-priority jobs so that they 
would, when run concurrently with the primary jobs 
later (in set 6), fill up as much of the unused CPU time 
as possible.  Additionally, the sequences we chose 
were guided in at least a small way by the sequences of 
job submissions seen on the production cluster of 

which our test nodes were a subset.  The experiments 
in set 5 are: 
s5e1: HAL1, (PAUP, PAUP, GAUSS, GAUSS), 

[HAL1], [HAL1] 
s5e2: (PAUP, PAUP, PAUP, PAUP), [HAL1], 

([GAUSS], [GAUSS], [GAUSS], [GAUSS]) 
s5e3: MrBayes, WRF, HPL, [HAL1], ([PAUP], 

[PAUP], [GAUSS], [GAUSS]), ([PAUP], 
[PAUP], [GAUSS], [GAUSS]) 

s5e4: HPL, [HAL1], WRF, ([GAUSS], [PAUP], 
[PAUP], [GAUSS]), [HAL1] 

s5e5: WRF, ([GAUSS], [GAUSS], [GAUSS], 
[GAUSS]), ([PAUP], [PAUP], [PAUP], 
[PAUP]), HAL1 

s5e6: [HAL1], ([PAUP] , [PAUP] , [PAUP] , [PAUP]), 
MrBayes, HPL 

s5e7: WRF, [HAL1], ([GAUSS], [GAUSS], [GAUSS], 
[GAUSS]) 

s5e8: MrBayes, MrBayes, (PAUP, PAUP, PAUP, 
PAUP), [HAL1], [HAL1] 

The remaining experiment sets in group C (sets 6 
and 7) use the same applications as those in set 5; the 
difference is in how they are run.  For these two sets, 
low-priority jobs are allowed to run concurrently with 
the primary jobs.  For these experiments, if only low-
priority jobs are running and a primary job is submitted, 
the primary job will immediately be allocated the 
processors it needs.  If other primary jobs are running 
and there are not enough free processors, then the 
newly submitted primary job will be queued.   

Table 4.  Experiment sets 6 and 7. 

HAL1, (PAUP, PAUP, GAUSS, GAUSS) e1

[HAL1], [HAL1] 

(PAUP, PAUP, PAUP, PAUP) e2
[HAL1], ([GAUSS], [GAUSS], [GAUSS], 
[GAUSS]) 

MrBayes, WRF, HPL e3
[HAL1], ([PAUP], [PAUP], [GAUSS], 
[GAUSS]), ([PAUP], [PAUP], [GAUSS], 
[GAUSS]) 

HPL, WRF e4

[HAL1], ([GAUSS], [PAUP], [PAUP], 
[GAUSS]), [HAL1] 

WRF, HAL1 e5
([GAUSS], [GAUSS], [GAUSS], [GAUSS]), 
([PAUP], [PAUP], [PAUP], [PAUP]) 

MrBayes, HPL e6
[HAL1], ([PAUP], [PAUP], [PAUP], [PAUP]) 

WRFe7
[HAL1], ([GAUSS], [GAUSS], [GAUSS], 
[GAUSS]) 

MrBayes, MrBayes, (PAUP, PAUP, PAUP, 
PAUP)

e8

[HAL1], [HAL1] 



Table 4 shows the sequence of applications run for 
experiment sets 6 and 7; applications in parentheses are 
started simultaneously and applications in brackets are 
only requesting a low level of service (i.e., they are 
scheduled as “nice” in set 6 or as a “guest” in set 7).  
Experiments e1 and e2 specifically start only CPU-
bound primary jobs.  Experiments e3 and e4 
specifically start only I/O-bound primary jobs.  The 
remaining experiments start a mixture of both CPU- 
and I/O-bound primary jobs.  The experiments are the 
same as in set 5 but the order of execution was done as 
if there were two queues that could use the same set of 
processors simultaneously.  The experiments are: 

We measured the throughput of the cluster by 
taking the number of jobs run (including both primary 
and low-priority) and dividing it by the number of 
hours (i.e., seconds/3600) required for all jobs to 
complete (including both primary and low-priority). 
The efficiency measurement in group C is a calculation 
of how efficiently the set of jobs in a given experiment 
used the set of processors assigned to it.  For each 
experiment, we considered its set of jobs to be the only 
jobs queued.  We summed the CPU usage of each 
process (including all parallel processes); call this Tc.
We then noted the amount of wall clock time, Tw,
needed until the last job in the set completed.  We 
considered that each of the four processors was 
available for use this entire time.  Thus we calculated 
the available processor time as 4Tw.  We then 
calculated the efficiency as Tc/(4Tw).   

We also measured the average turnaround time of 
the jobs in each experiment.  The turnaround time for a 
given job is the time that elapsed from when the job 
was submitted to the queue (we assume that all jobs 
were submitted at the same time (i.e., at time 0)) and 
the time that it finished executing.  The average 
turnaround time for a given experiment is found by 
summing the turnaround time of every job in the 
experiment and dividing this sum by the number of 
jobs in the experiment.  Finally, as a measure of the 
quality of service received by the primary jobs in each 
experiment, we report the wall clock time needed for 
all primary jobs to complete. 

Figure 6 and Figure 7 compare the throughput 
measurements from the set 5 experiments (primary 
jobs only) to the measurements obtained for the set 6 
experiments (primary jobs with low-priority jobs run 
concurrently) and the set 7 experiments (primary jobs 
with guest jobs run concurrently).  These results show 
that the throughput of the cluster-level scheduler can be 
increased by running guest jobs concurrently with 
primary jobs.  The throughput improvements with 
intelligent processor sharing (set 7) are very similar to 
those achieved by running low-priority jobs 
concurrently with the primary jobs (in set 6).  As we 

would expect, the increase in throughput is related to 
the efficiency with which the set of primary jobs (in the 
set 5 experiments) utilized the processor.  Experiments 
in set 5 with all CPU-bound jobs (such as e1 and e2) 
obtained higher efficiency and thus there was little or 
no room for improvement in throughput in set 7; thus 
the gains are minimal or non-existent.  On the other 
hand, experiments e3 and e4 were I/O-bound, resulting 
in lower efficiency when run alone (in set 5) and thus 
resulting in bigger gains in throughput when run with 
guest jobs in set 7.  Obviously as throughput increases, 
so does the efficiency of the cluster.  Figure 8 
compares the initial efficiency (set 5) with the 
efficiency when running concurrently with low-priority 
jobs (set 6) and guest jobs (set 7). 
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Figure 6.  Throughput (s5) vs. throughput with 
low-priority jobs (s6) and throughput with guest 
jobs (s7). 
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Figure 7.  Throughput improvement for low-priority 
jobs (s6) and guest jobs (s7). 

Figure 9 plots the average turnaround time (for all 
applications) in group C.  It demonstrates that we 
achieve higher throughput while also lowering the 
average turnaround time of the jobs for most 
experiments.  Clearly the amount that we can decrease 
average turnaround time depends on how many of the 
jobs can finish sooner than before.  If we have CPU-
bound primary jobs (e.g., e1 and e2) there will not be 
any CPU time available to run guest jobs.  Since the 
guest processes are run only when there are no 
runnable primary processes (set 7), the guest jobs will 



not take any CPU time away from the primary jobs.  
Thus the guest jobs’ average turnaround time should 
not change nor should the primary jobs’ average 
turnaround time.   
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Figure 8.  Efficiency (initial (s5) vs. low-priority 
jobs (s6) and guest jobs (s7)). 
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Figure 9.  Turnaround time. 
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Figure 10.  Primary application run time. 

On the other hand, when the primary jobs are I/O-
bound (e.g., e3 and e4), the guest jobs are able to run 
sooner while still having no impact on the primary jobs.  
Thus, the guest jobs should realize a decrease in their 
average turnaround time.  Additionally, as the primary 
jobs’ CPU utilization efficiency decreases, so does the 
guest jobs’ average turnaround time.  Since the guest 
jobs should not impact the average turnaround time of 
the primary jobs and since there is the possibility that 
the guest jobs’ average turnaround time will decrease, 
we expect to see the average turnaround time of the 

jobs in each experiment in set 7 to either decrease or 
stay the same relative to the baseline average 
turnaround times (in set 5).  Taking note of the 
efficiency measurements presented in Figure 8, we can 
see this behavior in Figure 9. 
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Figure 11.  Impact on primary application quality 
of service. 

The exception to the above observation is 
experiment e6.  Even though s5e6 has an efficiency of 
78%, we do not see the decrease in average turnaround 
time that we expect in either set 6 or set 7.  Experiment 
e6 is different from the other experiments in that for set 
5 (i.e., experiment s5e6), the jobs are executed so that 
the low-priority jobs are run first followed by the 
primary jobs.  When the same jobs are run in sets 6 and 
7 (i.e., experiments s6e6 and s7e6), the primary jobs 
will be started immediately (i.e., at time 0).  Since the 
primary jobs have priority, the remaining jobs will all 
see an increase in their average turnaround times.  In 
this case, the increase in the average turnaround time 
for the five low-priority jobs was greater than the 
decrease in the average turnaround time for the two 
primary jobs thus resulting in an overall increase in the 
average turnaround time of this set of jobs. 

Figure 10 shows the run times for the primary 
applications in group C, while Figure 11 shows these 
data as a percent increase over the run times in set 5 
(our quality of service measure).  Notice that for the 
intelligent processor sharing system we do not see any 
significant increase in the run times of any of the 
primary jobs (less than 1% increase).  Compare this to 
the low-priority job case, in which we see an increase 
of at least 5% in the run times of the primary jobs with 
some sets of primary jobs being affected by 20-25%. 

6. Conclusions

The existing nice mechanisms in the 2.4 Linux 
kernel can be used to increase the throughput and 
efficiency of a cluster while also lowering the average 
response time of the queued jobs.  It does so, however, 
at the expense of the quality of service of primary (high 
priority) jobs.  The guest process mechanism in the 
intelligent processor sharing kernel (derived from the 



Linger-Longer kernel) can maintain the quality of 
service of primary jobs while also increasing the 
throughput and efficiency of the cluster and lowering 
the average response time of queued jobs.  When 
running low-priority or guest processes concurrently 
with the primary jobs, we saw that the gains for the 
throughput and efficiency of the cluster increased when 
the efficiency of the primary jobs decreased.  Under the 
same conditions, the average turnaround time tended to 
decrease as the efficiency of the primary jobs 
decreased. 

In our empirical results using production codes, 
we found that using the kernel’s existing nice 
mechanism to start low-priority jobs concurrently with 
primary jobs enabled us to increase throughput by up 
to 29%, increase efficiency by up to 32% and decrease 
the average turnaround time by up to 20%.  
Unfortunately, this came at the expense of impacting 
the primary jobs’ quality of service by increasing their 
run times anywhere from 5%-25%.  Similarly, we 
found that by using the intelligent processor sharing 
kernel to run concurrent guest processes, we could 
increase throughput by up to 21%, increase efficiency 
by up to 33% and decrease the average turnaround time 
by up to 18%.  Additionally, the quality of service of 
the primary jobs is maintained as run times are within 
1% of their baselines. 

While not yet providing a complete toolset for 
system managers, this work points explicitly to 
opportunities for improved utility of dedicated cluster 
systems by sharing underutilized resources in the 
cluster.  The results presented here concentrate on the 
CPU as the performance critical resource.  The original 
Linger-Longer system has since been expanded to 
consider both memory and I/O capability as potential 
performance critical resources.  We anticipate that the 
expanded Linger-Longer system can be used to support 
generalized intelligent resource sharing in clusters as 
well.
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