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1 Introduction
We present the first step towards combining the best parts

of the real-time verification methods based on timed au-
tomata (the use of regions and zones), and of the process-
algebraic approach of languages like LOTOS and µCRL.
This could provide with additional verification possibili-
ties for Real-Time systems, not available in existing timed-
automata-based tools like UPPAAL [14].

The language µCRL, see [12], offers a uniform frame-
work for the specification of data and processes. Data are
specified by equational specifications (cf. [5]): one can de-
clare sorts and functions working upon these sorts, and de-
scribe the meaning of these functions by equational ax-
ioms. Processes are described in process algebraic style,
where the particular process syntax stems from ACP [6, 3],
extended with data-parametric ingredients: there are con-
structs for conditional composition, and for data-parametric
choice and communication. As is common in process al-
gebra, infinite processes are specified by means of (finite
systems of) recursive equations. In µCRL such equations
can also be data-parametric.

Several timed extensions have been proposed for different
kinds of process algebras. For an overview of ACP exten-
sions with time we refer to [2]. According to [2], timed pro-
cess algebras can be categorized by three criteria: discrete
vs. continuous time; relative vs. absolute time; two-phase
vs. timed-stamped model. In [9], µCRL is extended with
time, and in [15] a sound and complete axiomatization of
timed µCRL is presented. Timed µCRL makes use of abso-
lute time, timed stamped model, and the time domain can be
defined by the user (both discrete and continuous domains
are possible).

In [16], we outlined a method to describe and analyze real-
time systems using timed µCRL. Most descriptions of such
systems contain operators such as parallel composition that
complicate analysis. As a first step towards the analysis
of such systems, we linearize the given description using
the algorithm from [18]. The result is a Timed Linear Pro-
cess Equation (TLPE) which is equivalent to the original
description and has a very simple structure. We also pre-
sented a transformation of a TLPE into an LPE, i.e., a linear
process equation without time. This transformation, called
time-free abstraction, has been used for non-recursive timed
µCRL processes in [15]. Crucial for this transformation
is that the TLPE is transformed into a well-timed TLPE.

Finally, all time-stamping is captured in the parameters of
atomic actions. The result is an LPE for which the machin-
ery of untimed µCRL can be put to use for further analysis
[12, 10]. These are based on symbolic analysis of the spec-
ifications, such as invariants, term rewriting and theorem
proving, or on explicit state space generation and model-
checking.

In the present paper, we use the existing results of [19] to
translate a timed automaton to a timed µCRL processes in
the form of a TLPE. This translation uses a very simple sort
Time to represent the real-time clock values. As a result
we obtain a semantically equivalent specification in timed
µCRL. The resulting timed µCRL process only uses a very
restricted subset of the full syntax of the language: it has
the form of a TLPE.

We aim to transfer the successful techniques of regions and
zones [1] as used for the analysis of timed automata to the
realm of timed µCRL. First, we aim at replacing all parame-
ters of sort Time occurring in the resulting process equation
by parameters of discrete sorts. To achieve this goal we ap-
ply process-algebraic transformations and abstraction tech-
niques to the given process equation. As a result we obtain
a process equation that is closely related to the given one in
the following sense. If we abstract from the fractional parts
of the time stamps in the actions, both of the equations will
be timed bisimilar.

2 Timed µCRL
In this section, we present those parts of timed µCRL that

are needed for a good understanding of the material that fol-
lows in subsequent sections. For a more complete treatment
we refer to [11, 12] for untimed µCRL and to [9, 15] for
timed µCRL.

Timed µCRL specifications contain algebraic specifica-
tions of several abstract data types. The only data types
that are required are booleans and time. The algebraic spec-
ifications of booleans are standard (see [8, Chapter IV]).

Time can be represented in many different ways. In timed
µCRL the time domain has to satisfy a set of properties. We
present these properties as an algebraic specification of sort
Time by defining its signature and the axioms. The signature
of sort Time consists of: a constant 0; functions ≤,=: Time×
Time → Bool; function if : Bool × Time × Time → Time;
and functions min,max : Time × Time→ Time.

The axioms of sort Time can be found in [18, Page 84].
They say that ≤ is a total order on the Time domain, and 0
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is the least element. Any other data type in µCRL is spec-
ified in a similar way by providing a signature and axioms
from which all other identities are derived. Other data sorts
have generally different axioms, and sometimes induction
principles (cf. [13]) are required to describe them.

The signature of timed µCRL consists of data sorts (or
‘data types’) including Bool and Time as defined above, and
a distinct sort Proc of processes. The process operations
used in this paper are the ones listed below:

• actions a :
−→
Da → Proc where a ∈ ActLab is an action

label and
−→
Da is a list of parameter types of a.

• deadlock δ :→ Proc. The constant δ models inaction,
or the inability to perform actions.
• alternative composition + : Proc × Proc → Proc. The

process p + q behaves like p or like q, depending on
which of the two performs the first action.
• sequential composition · : Proc × Proc → Proc. The

process p · q first performs the actions of p, until p
terminates, and then continues as q.
• conditional operator � � : Proc × Bool × Proc →

Proc. The process term p � b � q behaves like p if b is
equal to t, and if b is equal to f it behaves like q.
• alternative quantification

∑
d:D : Proc → Proc, for

each data variable d of sort D. The process
∑

d p be-
haves like p[d1/d]+ p[d2/d]+ · · · , i.e., as the possibly
infinite alternative composition of processes p[di/d]
for any data term di of sort D.
• at-operator ↪ : Proc × Time → Proc. The process p ↪ t

behaves as p, with the restriction that the first action of
p must start at time t. The process p ↪ t can delay till at
most time t. If p consists of several alternatives, then
only those with the first actions starting at time t will
remain in p ↪ t. The alternatives that start earlier than
t will express that p ↪ t can delay till that earlier time.
The alternatives that start later than t will express that
p ↪ t can wait till time t (but not till that later time).

Most notably we omitted parallel composition from the
above list.

A key feature of timed µCRL is that it can be expressed
that a process can delay till a certain time. The process
p+δ ↪ t can certainly delay till time t, but can possibly delay
longer, depending on p. Consequently, the process δ↪0 can
neither delay nor perform actions, and the process δ can
delay for an arbitrary long time, but cannot perform any
action. We follow the intuition that a process that can delay
till time t can also delay till an earlier moment, and a process
that can perform a first action at time t can also delay till
time t.

To prove identities in timed µCRL we use a combined
many-sorted calculus, which for the sort of processes has
the rules of binding-equational calculus [17], for the sorts
of booleans and time has the rules of equational calcu-
lus, while other data sorts may include induction principles
which could be used to derive process identities as well. We
note that the derivation rules of binding-equational calculus
do not allow to substitute terms containing free variables if
they become bound.

We consider systems of process equations with the right

hand sides being timed µCRL process terms extended with
parameterized recursive calls of the form Y(�t) for process
name Y with parameters �t. A timed µCRL process equation
is in TLPE if it is of the form displayed below (where I and
J are disjoint).

X(
−−→
d:D)

=
∑

i∈I

∑

−−−→
ei:Ei

ai(
−→
fi (
−−→
d, ei)) ↪ ti(

−−→
d, ei) · X(−→gi(

−−→
d, ei))

� ci(
−−→
d, ei) � δ↪0

+
∑

j∈J

∑

−−−−→
e j:E j

a j(
−→
f j(
−−−→
d, e j)) ↪ t j(

−−−→
d, e j) � c j(

−−−→
d, e j) � δ↪0

+
∑

−−−−→
eδ:Eδ

δ ↪ tδ(
−−−→
d, eδ) � cδ(

−−−→
d, eδ) � δ↪0

The equation is explained as follows. The process X, be-
ing in a state vector

−→
d , can for any −→ei , that satisfy the

condition ci(
−−→
d, ei), perform an action ai parameterized by−→

fi (
−−→
d, ei) at the absolute time ti(

−−→
d, ei), and then proceed to

the state −→gi(
−−→
d, ei). Moreover, it can for any −→e j, that satisfy

the condition c j(
−−−→
d, e j), perform an action a j parameterized

by
−→
f j(
−−−→
d, e j), and then terminate successfully. The last sum-

mand indicates that for any
−−−−→
eδ:Eδ, that satisfies cδ(

−−−→
d, eδ), the

process can wait till the absolute time tδ(
−−−→
d, eδ).

3 Representing Timed Automata in Timed
µCRL

Timed automata [1, 4] can be represented in timed µCRL
by associating a recursion variable with each location of the
automaton as follows (see [19] for the initial idea).

Definition 3.1 (Timed Automaton). A timed automaton is
a tuple A = 〈L, l0,Σ,C, i, E〉, where L is a finite set of lo-
cations, l0 ∈ L is the initial location, Σ is a finite set of
transition labels, C is a finite set of clocks, i is a map-
ping that assigns to each location an invariant, and E is
a set of transitions (edges). A transition is a quintuple
(l, ae, φe, λe, le) with l and le ∈ L the start and end location
of the transition, ae ∈ Σ the label of the transition, φe the
guard associated with the transition, and λe ⊆ C the set of
clocks that are to be reset by the transition. All φ(e) and
i(l) are clock constraint formulas with the following syntax:
c ≡ n | c1 − c2 ≡ n | φ1 ∧ φ2, where ≡∈ {<,≤,=,≥, >} and
n ∈ Nat.

The operational semantics of a timed automaton is defined
as a transition system where a state consists of the current
location and the current values of the clocks. There are two
types of transitions between states. The automaton may ei-
ther delay for some time (a delay transition), or follow an
enabled transition (an action transition).

Definition 3.2 (Operational Semantics of Timed Au-
tomata). Given a finite set of clocks C, a clock valuation is



a function from C to non-negative real numbers R+. A clock
valuation v satisfies a clock constraint φ (notation v ∈ φ) if
φ[�c := v(�c)] is equal to true. For any d ∈ R+, the clock
valuation v + d is defined as (v + d)(ci) = v(ci) + d. For any
λ ⊆ C the clock valuation vλ is defined as vλ(ci) = if (ci ∈
λ, 0, v(ci)).

The semantics of a timed automaton A = 〈L, l0,Σ,C, i, E〉
is a relative time two-phased transition system where states
are pairs (l, v) for location l ∈ L and a clock valuation v; and
transitions are defined by the rules:

• for any d ∈ R+, (l, v)
d→ (l, v + d) if v ∈ i(l) and v + d ∈

i(l);
• for any (l, ae, φe, λe, le) ∈ E, (l, v)

ae→ (le, vλe ) if v ∈ φe
and vλe ∈ i(le).

Definition 3.3 (Representation of TA in timed µCRL). The
following timed µCRL process equation for Al is a trans-
lation of a location l ∈ L of a timed automaton A =
〈L, l0,Σ,C, i, E〉:
Al(ta:Time, v:ClVals) =∑

e∈El

∑

tr :Time

ae ↪ (ta + tr) · Ale (t
a + tr, (v + tr)λe )

� sat invl(v) ∧ sat invl(v + tr)∧
sat condφe (v + tr) ∧ sat invle ((v + tr)λe ) � δ↪0

+
∑

tr :Time

δ ↪ (ta+tr) � sat invl(v) ∧ sat invl(v+tr) � δ↪0

where
• El ⊆ E is the set of outgoing transitions from location

l with the elements of the form e = (l, ae, φe, λe, le);
• sat invl : ClVals → Bool is, for l ∈ L, defined as

sat invl(v) = i(l)[�c := v(�c)];
• sat condφe : ClVals → Bool is, for e ∈ E, defined as

sat condφe (v) = φe[�c := v(�c)].

The process theory of timed µCRL uses absolute time in-
stead of the relative time clocks of timed automata. As a
consequence the above process equation is parameterized
by a variable ta representing the current absolute time. The
parameter v:ClVals ⊆ C → Time represents the current val-
ues of the clocks (in relative time). We assume that the time
domain Time is represented by R+.
The conditions sat invl(v) and sat invl(v + tr) express that

the invariant of location l has to hold in the start state of the
transition and in the state just before the transition is taken.
Condition sat condφe (v + tr) expresses that the guard φe of
transition e has to be satisfied at the moment transition e
is taken, and condition sat invle ((v + tr)λe ) means that the
invariant i(le) of the end location le of transition e has to be
satisfied (after clock resets λe have been applied).

Proposition 3.4. The syntax of the conditions is v(c) ≡ n |
v(c1) − v(c2) ≡ n | v(c) + tr ≡ n | φ1 ∧ φ2, where ≡∈ {<,≤
,=,≥, >} and n ∈ Nat 1

The operational semantics of timed µCRL processes is de-
fined in [15]. In our concrete case the semantics of the sys-
tem of equations for Al corresponding to timed automaton

1Or a condition can be equal to t (in this case it disappears) or f.

A in the absolute time-stamped transition model is defined
as follows:

Definition 3.5 (Operational semantics of the timed µCRL
representations of TAs). Let Al be as defined before.
• for any tr:Time and any (l, ae, φe, λe, le) ∈ El,

Al(ta, v)
ae→ta+tr Ale (t

a + tr, (v + tr)λe ) if sat invl(v) ∧
sat invl(v+ tr)∧ sat condφe (v+ tr)∧ sat invle ((v+ tr)λe ),

where transition relation p
a→t p′ expresses that the

process p evolves into process p′ by performing action
a at time t;
• for any tr:Time, Uta+tr (Al(ta, v)) if sat invl(v) ∧

sat invl(v + tr), where the delay relation Ut(p) ex-
presses that process p can idle until time t at least.

Our timed µCRL representation corresponds to the stan-
dard semantics of timed automata [1, 4] in the following
respect.

Theorem 3.6 (Correspondence between the operational se-
mantics). Let timed automaton A and its representation in
timed µCRL Al be as defined before. Then
• for any l, l′ ∈ L, t, t′ ∈ Time and v, v′ ∈ ClVals such

that Al(t, v)
a→t+t′ Al′ (t + t′, v′) the transition system of

A contains the transitions (l, v)
t′′→ (l, v + t′′) for any t′′

such that 0 ≤ t′′ ≤ t′ and (l, v + t′)
a→ (l′, v′).

• for any l ∈ L, t, t′ ∈ Time and v ∈ ClVals such that
Ut+t′ (Al(t, v)) the transition system of A contains the

transition (l, v)
t′′→ (l, v + t′′) for any t′′ such that 0 ≤

t′′ ≤ t′

• for any l, l′ ∈ L and v, v′ ∈ ClVals such that (l, v)
a→

(l′, v′) the transition system of Al contains the transi-
tion: Al(u, v)

a→u Al′ (u, v′) for any u ∈ Time.
• for any l, l′ ∈ L and v, v′ ∈ ClVals such that (l, v)

t→
(l, v + t) and (l, v + t)

a→ (l′, v′) the transition system of
Al contains the transition: Al(u, v)

a→u+t Al′ (u + t, v′)
for any u ∈ Time.
• for any l ∈ L, t ∈ Time and v ∈ ClVals such that

(l, v)
t→ (l, v + t) the transition system of Al contains

the predicate: Uu+u′ (Al(u, v)) for any u, u′ ∈ Time such
that 0 ≤ u′ ≤ t.

In the future we would like to abstract from the precise
distribution of the conditions, and just use the following
two abstracted ones. The predicate is enablede(v, tr) is an
abstraction that says that the transition e is enabled. To sim-
ulate the timed automata setting we can define this predi-
cate as is enablede(v, tr) = sat invl(v) ∧ sat invl(v + tr) ∧
sat condφe (v + tr) ∧ sat invle ((v + tr)λe ). Another predi-
cate can waitl(v, tr) has to do with the second set of sum-
mands of the process Al. If we define it as can waitl(v, tr) =
sat invl(v)∧sat invl(v+tr) we are back in the world of timed



automata. The resulting process Xl will look as follows:

Xl(ta:Time, v:ClVals) =∑

e∈El

∑

tr :Time

ae ↪ (ta + tr) · Xle (t
a + tr, (v + tr)λe )

� is enablede(v, tr) � δ↪0

+
∑

tr :Time

δ ↪ (ta + tr) � can waitl(v, tr) � δ↪0

4 Splitting into the Integral and Fractional
Parts

4.1 Splitting Sums and Parameters
As the first step we shift the bound variable tr with fr(ta)

backwards in time to avoid the summing up of two frac-
tional values ta and tr in the process description (namely
at time stamps and at the new value of parameter ta). We
name the resulting bound variable u. Thus we perform
a coordinate transformation where the old variable tr and
the new variable u are related according to the equation
u = fr(ta) + tr. As the result we get the following equa-
tion for X′l , where fl(x) represents the “floor” function that
returns the biggest integer less than or equal to x, and fr(x)
represents the “fraction” function that returns x − fl(x):

X′l(t
a:Time, v:ClVals) =∑

e∈El

∑

u:Time

ae ↪ (fl(ta)+u) · X′le (fl(ta)+u, (v+(u−fr(ta)))λe )

� fr(ta) ≤ u ∧ is enablede(v, u−fr(ta)) � δ↪0

+
∑

u:Time

δ ↪ (fl(ta)+u)
� fr(ta) ≤ u ∧ can waitl(v, u−fr(ta)) � δ↪0

The additional condition fr(ta) ≤ u is a result of applying the
above coordinate transformation to the implicit condition
0 ≤ tr.

Theorem 4.1. For any ta:Time and v:ClVals:

Xl(ta, v) = X′l(t
a, v).

From the previous proposition on the syntax of the con-
ditions in Xl and the above coordinate transformation it is
easy to see that the following also holds.

Proposition 4.2. The syntax of the conditions is v(c) ≡ n |
v(c1) − v(c2) ≡ n | v(c) + (u − fr(ta)) ≡ n | φ1 ∧ φ2, where
≡∈ {<,≤,=,≥, >} and n ∈ Nat.

As a second step, we split the parameters ta and v and the
bound variable u in two parts: integral and fractional. This
is done to abstract from the fractional parts, and show that
only the order relations on them, but not the exact values,
are important for the behavior of X′l . An obvious thing to
do would be to split each of these variables into its integral
and fractional parts using the floor and fraction functions.
We do it for ta and u, namely ta = ta

i + ta
f for ta

i ∈ Nat and
ta

f ∈ [0, 1) and u = ui + u f for ui ∈ Nat and u f ∈ [0, 1). In
this way, the new value of the parameter ta of X′l will have

the form fl(ta)+u = fl(ta
i +ta

f )+(ui+u f ) = (ta
i +ui)+u f , which

gives us the new value of the parameters ta
i that depends on

the integral parameters only, and ta
f that is in [0, 1).

Given the choice of the other parameters, we would also
like that the parameter v is split into a discrete vi and a
fractional v f in a way that the new value of vi depends
on the discrete parameters only, and the new value of v f
does not. It is clear that the obvious split would not do:
the new value of v in X′l is defined as (v + (u − fr(ta)))λe =
(vi + v f + (ui +u f − ta

f ))λe = ((vi +ui)+ (v f +u f − ta
f ))λe . This

cannot be easily split into an integral and fractional parts
because v f + u f − ta

f may be ≥ 1, or ≤ 0. So, to achieve our
goal, we need something else.

Let us consider the absolute time when a clock c was reset
for the last time. It can be expressed as ta − v(c) (abusing
the notation we shall call it lr(c)), so instead of keeping the
(relative time) clock values v we could keep the (absolute
time) values of the last clock resets lr. The nice thing about
this is that if we split lr into lri and lrf we get the desired
property: the new value of lr(c) (according to X′l) is (fl(ta)+
u) − (v(c) + (u − fr(ta)))λe which in case c � λe is equal
to fl(ta) − v(c) + fr(ta) = ta − v(c) = lr (the last reset time
does not change in this case), and in case c ∈ λe is equal to
(fl(ta) + u) (the last reset time becomes the current time). In
both cases the result can be easily split into an integral and
a fractional part.

However, using the parameter lri has a disadvantage be-
cause in this case we keep two absolute (discrete) time val-
ues, namely ta

i and lri . To improve the situation we keep
the difference ta

i − lri (abusing the notation, let us call it vi)
instead of lri . So the values of the new parameters vi and
lrf can be computed in the following way: lrf = fr(lr) =
fr(ta − v) and vi = ta

i − lri = fl(ta) − fl(ta − v) = if (fr(ta) ≥
fr(v), fl(v), fl(v) + 1) = fl(v) + if (fr(ta) ≥ fr(v), 0, 1).

If we formulate the above coordinate transformation from
the other direction we get:

ta = ta
i + ta

f ta
i ∈ Nat ta

f ∈ [0, 1)
v = vi + ta

f − lrf 0 ≤ lrf < 1,
u = ui + u f ui ∈ Nat u f ∈ [0, 1).

So we found a way to split all parameters so that the dis-
crete and fractional parts are independent (may be there is
another way but we don’t investigate it here). Let us con-
fider the resulting equation and have a look at the conditions
we get (may be we can split them nicely as well?).

Application of the above data transformation on the pro-
cess equation for X′l results in the following process equa-
tion for X′′l .

X′′l (ta
i :Nat, ta

f :Time, vi:ClValsN, lrf :ClVals) =
∑

e∈El

∑

ui:Nat

∑

u f :Time

ae ↪(ta
i +ui+u f )·

X′′le (t
a
i +ui, u f , (vi+ui)λe , l

r
f
′)

� u f < 1 ∧ (u f ≥ ta
f ∨ ui > 0)∧

is enabled′e(vi, ta
f , l

r
f , ui, u f ) � δ↪0



+
∑

ui:Nat

∑

u f :Time

δ ↪ (ta
i +ui+u f )

� u f < 1 ∧ (u f ≥ ta
f ∨ ui > 0)∧

can wait′l(vi, ta
f , l

r
f , ui, u f ) � δ↪0

where
• lrf

′(c) = if (c ∈ λe, u f , lrf (c)) represents the new frac-
tional values of the times the clocks were last reset (in
case the clock is reset lrf

′(c) becomes equal to the frac-
tional value of the (new) current time, and it remains
unchanged otherwise);
• the new conditions is enabled′e(v, ta

f , l
r
f , ui, u f ) and

can wait′l(v, t
a
f , l

r
f , ui, u f ) are respectively obtained

from the X′l conditions is enablede(v, u − fr(ta)) and
can waitl(v, u − fr(ta)) by replacing the X′l parameters
fl(ta), v and u by their representations with the param-
eters of X′′l .

The following theorem states that the coordinate transfor-
mation described in this section is correct.

Theorem 4.3 (Correctness of splitting). For any ta:Time
and v:ClVals

X′l(t
a, v) = X′′l (fl(ta), fr(ta),

fl(v)+if (fr(ta)≥ fr(v), 0, 1), fr(ta−v))

Proposition 4.4. The syntax of conditions is enabled′e and
can wait′l is
φ ::= if (χ1 ≡ χ2, ψ1, ψ2) | (χ1 = χ2) ∧ ψ | φ1 ∧ φ2;
χ ::= ta

f | u f | lrf (c);
ψ ::= vi(c) ≡ n | vi(c1) − vi(c2) ≡ n | vi(c) + ui ≡ n,

where ≡∈ {<,≤,=,≥, >} and n ∈ Nat.

Proof. Given the specific syntax of the conditions in X′l we
can consider the following cases:
• for the case of v(c) < n constraint we get vi(c) + ta

f −
lrf (c) < n, which is equivalent to vi(c) < n ∨ (vi(c) =
n ∧ ta

f < lrf (c)), which is in turn equivalent to if (ta
f <

lrf (c), vi(c) ≤ n, vi(c) < n);
• for the case of v(c) ≤ n constraint we get vi(c) + ta

f −
lrf (c) ≤ n which is equivalent to vi(c) < n ∨ (vi(c) =
n ∧ ta

f ≤ lrf (c)), which is in turn equivalent to if (ta
f ≤

lrf (c), vi(c) ≤ n, vi(c) < n);
• for the case v(c) = n we get vi(c) + ta

f − lrf (c) = n ≈
vi(c) = n ∧ ta

f = lrf (c);
• similarly for v(c) ≥ n and v(c) > n we get the needed

form;
• for the case of v(c1) − v(c2) < n constraint we get

(vi(c1) + ta
f − lrf (c1)) − (vi(c2) + ta

f − lrf (c2)) < n which
is equivalent to (vi(c1)− vi(c2))− lrf (c1)+ lrf (c2) < n, or
equivalently (vi(c1) − vi(c2)) < n ∨ ((vi(c1) − vi(c2)) =
n) ∧ lrf (c1) > lrf (c2)), which is in turn equivalent to
if (lrf (c2) < lrf (c1), vi(c1)−vi(c2) ≤ n, vi(c1)−vi(c2) < n).
• similarly for the other v(c1) − v(c2) ≡ n cases we get

the right forms;
• for the case of v(c) + (u − fr(ta)) < n constraint we

get (vi(c) + ta
f − lrf (c)) + (ui + u f − ta

f ) < n, which is

equivalent to (vi(c)+ui)−lrf (c)+u f < n, or equivalently
(vi(c) + ui) < n ∨ (vi(c) + ui = n ∧ u f < lrf (c)), or
if (u f < lrf (c), vi(c) + ui ≤ n, vi(c) + ui < n);
• similarly for the other v(c) + (u − fr(ta)) ≡ n cases we

get the right forms. �

4.2 Splitting Conditions

It is visible from the syntax of the conditions that the ac-
tual values of the real-valued parameters (ta

f and lrf ) and the
bound variable u f are not important, but the relations be-
tween pairs of them may be. Therefore we introduce an
abstraction of these parameters and use this abstraction in-
stead of the real-valued parameters in the conditions. This
corresponds to the use of regions in timed automata ([1]).

Let c0 be a new clock name (c0 � C) and let C0 be C∪{c0}.
Let us extend the vector lrf to c0 and set lrf (c0) := ta

f . We use
the domain Ord and the predicate is leq : Ord ×C0 ×C0 →
Bool to represent the ordering on the values of the lrf el-
ement (and ta

f being represented by lrf (c0)) with respect to
their equality and the ≤ relation. We want is leq(ord, c1, c2)
to represent the fact that according to the ordering ord it
holds that lrf (c1) ≤ lrf (c2). This domain can be imple-
mented as a subset of functions from C0 → {0, . . . , |C|}, and
is leq(ord, c1, c2) can be implemented as ord(c1) ≤ ord(c2).
The other conditions is cond can be defined from is leq in
the usual way.

We also use the domain Pos to represent a position in
the ordering, which can be a position of an element or a
position in-between two consecutive element in the order-
ing, as well as before the first and after the last elements.
The functions is pos leq : Ord × Pos × C0 → Bool and
is pos eq : Ord × C0 × Pos → Bool are defined in a
way that is pos leq(ord, pos, c) represents that, according
to the ordering ord and a position pos in it, u f ≤ lrf (c)
holds, and is pos eq(ord, c, pos) represents that lrf (c) = u f

holds. This domain can be implemented as a subset of
{0, . . . , |C| + 1} × Bool, where in position (p, b) the element
p represents a position in the ordering and the element b
says if (p, b) is at the position p (by t) or just before it. The
function is pos leq(ord, (p, b), c) could be implemented as
p ≤ ord(c) and is pos eq(ord, c, (p, b)) as ¬b ∧ p = ord(c).
The other conditions is pos cond can be defined from the
above two in the usual way.

We also use the predicates confirm ord(ord, ta
f , l

r
f ) and

confirm pos(ord, pos, ta
f , l

r
f , u f ) to respectively represent the

facts that the ordering ord preserves the actual relations on
ta

f and lrf , and the fact that u f conforms to its position pos in
the ordering ord. They can be defined in the following way
(remembering that lrf (c0) is defined as ta

f ):

confirm ord(ord, ta
f , l

r
f ) :=

∀c1,c2∈C0 lrf (c1) ≤ lrf (c2) → is leq(ord, c1, c2)



and

confirm pos(ord, pos, ta
f , l

r
f , u f ) :=

∀c∈C0 (u f ≤ lrf (c)→ is pos leq(ord, pos, c))∧
(u f = lrf (c)→ is pos eq(ord, pos, c))

The resulting process X′′′l will look as described in Table 1,
where
• upd ord(ord, pos, λe) gives the new ordering based on

the old one, the position of u f and the clock resets. The
order of the clocks that are not reset do not change; the
new position of ta

f and the clocks that are reset will be
the position of u f .
• the conditions of X′′′l is enabled′′e (vi, ui, ord, pos) and

can wait′′l (vi, ui, ord, pos) are respectively obtained
from the X′′l conditions is enabled′e(v, ta

f , l
r
f , ui, u f ) and

can wait′l(v, t
a
f , l

r
f , ui, u f ) by replacing the relations

lrf (ci) cond lrf (c j) with is cond(ord, ci, c j); the relation
ta

f cond lrf (c j) with is cond(ord, c0, c j); and the rela-
tion u f cond lrf (c j) with is pos cond(ord, pos, c j).

Obviously, the following proposition will hold.

Proposition 4.5. The syntax of the conditions is

φ ::= φ1 ∧ φ2 | if (is cond(ord, c1, c2), ψ1, ψ2)
| if (is pos cond(ord, pos, c), ψ1, ψ2)
| is eq(ord, c1, c2) ∧ ψ | is pos eq(ord, pos, c) ∧ ψ,

ψ ::= vi(c) ≡ n | vi(c1) − vi(c2) ≡ n | vi(c) + ui ≡ n

where ≡∈ {<,≤,=,≥, >} and n ∈ Nat.

Theorem 4.6. Suppose that upd ord(ord, pos, λe) is defined
in such a way that for all ord:Ord, ta

f :Time and lrf :ClVals
such that conform ord(ord, ta

f , l
r
f ) and for all pos:Pos and

u f :Time such that u f < 1 ∧ conform pos(ord, pos, ta
f , l

r
f , u f )

and for all λe ∈ C we have

conform ord(upd ord(ord, pos, λe), u f , lrf
′).

Then X′′l (ta
i , t

a
f , vi, lrf ) = X′′′l (ta

i , vi, ord, ta
f , l

r
f ) for all

parameters ord:Ord, ta
f :Time and lrf :ClVals such that

conform ord(ord, ta
f , l

r
f ).

5 Abstraction from the Fractional Parts
Suppose we are not interested in the fractional parts of

the action and the deadlock time stamps. E.g. we replace
ae ↪ (ta

i + ui + u f ) by ae ↪ (ta
i + ui) in X′′′l . The resulting pro-

cess variable we call Yl. For this process we prove that the
exact values of the parameters ta

f and lrf do not influence the
behavior of Yl.

Lemma 5.1. For any ord:Ord, ta
f
1, ta

f
2:Time and

lrf
1, lrf

2:ClVals such that conform ord(ord, ta
f
1, lrf

1) and
conform ord(ord, ta

f
2, lrf

2) we have that for any ta
i :Nat and

vi:ClValsN

Yl(ta
i , vi, ord, ta

f
1, lrf

1) = Yl(ta
i , vi, ord, ta

f
2, lrf

2)

Proof. We use the fact that in this case for any u f :Time

conform pos(ord, pos, ta
f
1, lrf

1, u f ) =

conform pos(ord, pos, ta
f
2, lrf

2, u f )

and the fact that ta
f does not occur anywhere else, and lrf may

only occur in the new value of itself. �

Now we apply sum elimination (cf. [12]) to Yl in or-
der to get rid of the summation with u f and the condi-
tion conform pos. As a result we obtain the process equa-
tion for Y′l in Table 1 where get trf (ord, pos, ta

f , l
r
f ) < 1

is any such value that conform pos(ord, pos, ta
f , l

r
f , get trf );

and lrf
′′(c) = if (c ∈ λe, get trf , lrf (c)).

Theorem 5.2. For any ord:Ord, ta
f :Time and lrf :ClVals

such that conform ord(ord, ta
f , l

r
f ) and for any ta

i :Nat and
vi:ClValsN

Y′l(t
a
i , vi, ord, ta

f , l
r
f ) = Yl(ta

i , vi, ord, ta
f , l

r
f )

Proof. For this we use the fact that the Time domain is
dense and for every tr

i , pos, ord such that (ui > 0 ∨
is pos geq(ord, pos, c0)) and for every ta

f and lrf such that
conform ord(ord, ta

f , l
r
f ), there exists a u f < 1 such that

conform pos(ord, pos, u f ), and say get trf (ord, pos, ta
f , l

r
f ) is

such a u f . �

Finally, we apply parameter elimination (cf. [10]) to the
last two parameters. As a result we get the process equation
for Y′′l .

Theorem 5.3. For any ord:Ord, ta
f :Time and lrf :ClVals

such that conform ord(ord, ta
f , l

r
f ) and for any ta

i :Nat and
vi:ClValsN

Y′′l (ta
i , vi, ord) = Y′l(t

a
i , vi, ord, ta

f , l
r
f ).

6 Making the state space finite
In this section we use the fact that the clocks and clock

differences are only compared to constants. By taking
the maximal such constant we can limit the natural-valued
variables from above. For each clock ci we define maxi
to be the maximal constant this clock is compared to
in is enabled′′e (vi, ui, ord, pos) or can wait′′l (vi, ui, ord, pos),
incremented by 1 (0 if the clock is never compared to a con-
stant). For each pair of clocks ci and c j we define maxi j
to be the maximal constant the difference of ci and c j (or
c j and ci) is compared to, incremented by 1 (0 if the clock
difference is never compared to a constant). We write vmax
for the vector of maxi and Mmax for the symmetric matrix
of maxi j. Without loss of generality we assume that all con-
ditions of the form ci − c j < 0 have been replaced with
c j− ci > 0, all conditions ci− c j ≤ 0 with c j− ci ≥ 0, and all
conditions of the form ci−c j = 0 with ci−c j ≥ 0∧c j−ci ≥ 0.
This allows us to use 0 instead of the negative values of
clock differences.



Table 1. Equation for X′′′l , Y′l , Y′′′l , Zl, and Tl. The equations for Yl, Yl, and T′l can be obtained by
removing the boxed parts.

X′′′l (ta
i :Nat, vi:ClValsN, ord:Ord, ta

f :Time, lrf :ClVals) =
∑

e∈El

∑

ui:Nat

∑

pos:Pos

(
∑

u f :Time

ae ↪ (ta
i + ui +u f ) · X′′′le (ta

i + ui, (vi + ui)λe , upd ord(ord, pos, λe), u f , lrf
′)

� u f < 1 ∧ conform pos(ord, pos, ta
f , l

r
f , u f ) � δ↪0 )

� (ui > 0 ∨ is pos geq(ord, pos, c0)) ∧ is enabled′′e (vi, ui, ord, pos) � δ↪0

+
∑

ui:Nat

∑

pos:Pos

(
∑

u f :Time

δ ↪ (ta
i + ui +u f ) � u f < 1 ∧ conform pos(ord, pos, ta

f , l
r
f , u f ) � δ↪0 )

� (ui > 0 ∨ is pos geq(ord, pos, c0)) ∧ can wait′′l (vi, ui, ord, pos) � δ↪0

Y′l(t
a
i :Nat, vi:ClValsN, ord:Ord , ta

f :Time, lrf :ClVals ) =
∑

e∈El

∑

ui:Nat

∑

pos:Pos

ae ↪ (ta
i + ui) · Y′le (ta

i + ui, (vi + ui)λe , upd ord(ord, pos, λe) , get trf , lrf
′′ )

� (ui > 0 ∨ is pos geq(ord, pos, c0)) ∧ is enabled′′e (vi, ui, ord, pos) � δ↪0

+
∑

ui:Nat

∑

pos:Pos

δ ↪ (ta
i + ui) � (ui > 0 ∨ is pos geq(ord, pos, c0)) ∧ can wait′′l (vi, ui, ord, pos) � δ↪0

Y′′′l (ta:Nat, v:ClValsN,M:ClValsNN, ord:Ord) =∑

e∈El

∑

u:Nat

∑

pos:Pos

ae ↪ (ta + u) · Y′′′le (ta + u,min(v′, vmax),min(M′,Mmax), upd ord(ord, pos, λe))

� (u > 0 ∨ is pos geq(ord, pos, c0)) ∧ is enabled′′′e (v,M, u, ord, pos) � δ↪0

+
∑

u:Nat

∑

pos:Pos

δ ↪ (ta + u) � (u > 0 ∨ is pos geq(ord, pos, c0)) ∧ can wait′′′l (v,M, u, ord, pos) � δ↪0

Zl(ta:Nat, v:ClValsN,M:ClValsNN, ord:Ord) =∑

e∈El

∑

u:Nat

∑

pos:Pos

ae ↪ (ta + min(u, cmax)) · Zle (t
a + u,min(v′, vmax),min(M′,Mmax), upd ord(ord, pos, λe))

� (u > 0 ∨ is pos geq(ord, pos, c0)) ∧ is enabled′′′e (v,M, u, ord, pos) � δ↪0
+δ � max d(v,M, ord) = cmax � δ↪0
+δ ↪ (ta + max d(v,M, ord, pos)) � 0 < max d(v,M, ord) < cmax � δ↪0

Tl( ta:Nat, v:ClValsN,M:ClValsNN, ord:Ord) =
∑

e∈El

∑

u:Nat

∑

pos:Pos

ae(min(u, cmax)) · Tle ( ta + u, min(v′, vmax),min(M′,Mmax), upd ord(ord, pos, λe))

� (u > 0 ∨ is pos geq(ord, pos, c0)) ∧ is enabled′′′e (v,M, u, ord, pos) � δ
+∆ � max d(v,M, ord) = cmax � δ
+∆(max d(v,M, ord, pos)) � 0 < max d(v,M, ord) < cmax � δ

We use vmax and Mmax to limit the values of ui and vi.
In the first step we just limit vi because this preserves the
process equivalence. We shall drop the i index from ta

i , vi
and ui because no fractional parts are present any more.

The result is Y′′′l as described in Table 1, where M′i, j is
defined as if (ci ∈ λe, 0,Mi, j + if (c j ∈ λe, u, 0)); and the
conditions is enabled′′′e and can wait′′′l are defined from

is enabled′′e and can wait′′l , respectively, by replacing ev-
ery condition v(ci) − v(c j) ≡ n with Mi, j ≡ n.

Theorem 6.1. Let the matrix M be defined as Mi, j :=
min(max(0, v(ci) − v(c j)),maxi, j).
Then for any ta:Nat, v:ClValsN and ord:Ord

Y′′′l (ta,min(v, vmax),M, ord) = Y′′l (ta, v, ord).



In order to limit the values of u we need to drop more tim-
ing information from the actions (because u occurs there).
We shall also drop the absolute time of the action ta because
it may grow unbounded, and its exact value cannot be de-
termined if we limit the value of u. Let cmax be defined as
the maximal value of the elements in vmax.

For the δ summands we have to apply a different proce-
dure. First we note that the process always can idle till the
current time ta. Moreover, if it can idle till ta + cmax, then
it can idle forever. If not, then it may idle till some time
ta + max d with max d ranging from 0 to cmax − 1. The
exact value of max d can be defined as

max d(v,M, ord) := max({u ∈ Nat |
∃pos:Pos can wait′′′l (v,M, u, ord, pos)} ∪ {cmax})

Given the boundedness of the maximum operator and the
quantifiers, this formula can be expressed in the data syntax
of µCRL. In case max d = 0 we do not need a δ summand at
all, and in case max d = cmax, the process can wait forever,
which is covered by a separate case.

Staring from the process Y′′′l we obtain the process Zl by
limiting the values of u, and from this process we get Tl by
performing a relativization step. This step allows us to go
from an absolute-time timed µCRL process to its relativiza-
tion in untimed µCRL, preserving the process equivalence
relations.

In the process Tl (Table 1) we get rid of the last unbounded
parameter ta and call the resulting process T′l . They are re-
lated in the following way.

Theorem 6.2. For any ta:Nat, v:ClValsN, M:ClValsNN,
and ord:Ord

T′l(v,M, ord) = Tl(ta, v,M, ord).

Proof. By eliminating the first parameter in Tl. �

This equation T′l always has a finite number of reachable
states. It corresponds to the region automaton of the initial
time automaton.

7 Conclusions and Future Work
In this paper we transformed a timed µCRL process equa-

tion representing a timed automaton into a closely related
timed µCRL process equation with finite discrete parame-
ters and bound variables only. This could enable simulation
and verification via enumeration of reachable states. As a
result, some of the existing untimed analysis tools in the
µCRL Toolset [7] could become applicable to the analysis
of real-time systems.

As the next step we would like to factorize the remaining
time-related parameters to be able to deal with them like
with zones. Zones, as well as the operations on them could
be specified as an abstract data type in µCRL, either as a set
of clock constraints or using difference-bound matrices.

Another direction for future work is an adaptation of
the presented technique to various extensions of timed au-
tomata available in UPPAAL [14], like networks of timed

automata, shared variables, urgent transitions and commit-
ted locations. This could enable a possibility to analyze
UPPAAL specifications with the µCRL Toolset.

Going further, one could analyze where exactly the fact
that we are dealing with timed automata has been used and
try to extend some of the results to a more general setting,
perhaps lifting some restrictions on the clock constrains, or
moving into the direction of hybrid automata.
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