
Performance Analysis of Java Concurrent Programming: A Case Study of Video

Mining System

Wenlong Li, Eric Li, Ran Meng, Tao Wang, Carole Dulong
Intel China Research Center

 Intel Corporation

{wenlong.li,eric.q.li,ran.meng, tao.wang,carole.dulong}@intel.com

Abstract

As multi/many core processors become prevalent,
programming language is important in constructing
efficient parallel applications. In this work, we build a
multithreaded video mining application with Java,
examine the thread profiling information and
micro-architecture metrics to identify the factors limiting
the scalability, and employ a number of ways to improve
performance. Besides, we conduct some thread
scheduling experiments. According to the experiments
and detailed analysis, we conclude that for this video
mining application: (1) Java is a good parallel language
candidate for many core processors in terms of
performance, scalability, and ease of programming; (2)
Thread affinity mechanism is effective in improving data
locality, but brings little benefit to multithreaded Java
application due to its conservative memory model in JVM.

1. Introduction

As Java emerges as one of the major programming
languages for software development and parallel Java
applications are widely adopted as standard benchmarks
for commercial multiprocessor server, characterizing and
tuning Java parallel application on SMP machine
becomes increasingly important. Besides, using built-in
thread support in language specification to parallelize
applications is of great interest, [1] illustrates the
necessary of thread support in language design. Java, a
popular programming language on various platforms,
provides a high performance and scalable concurrent
utility classes for creating concurrent applications with
great convenience in latest JDK1.5.

Rapid advances in the technology of media capture and
storage has contributed to an amazing growth of digital
video content. While content generation and
dissemination grows explosively, how to help users
efficiently search, browse and manage multimedia
contents becomes more and more important, such as

mining digital home photos and videos which will be
huge volume in the near future. Both technology push
(e.g., video analysis and data mining) and application pull
(e.g., various digital library, video on-demand, interactive
TV) have contributed to the proliferation of video mining,
e.g., video shot detection, surveillance, and highlight
event detection in real-time [2][3].

In this paper, we parallelize the shot boundary
detection application in video mining system with Java
concurrent programming, and perform characterization
and performance tuning on SMP machine. Besides, we
also investigate the effect of thread affinity mechanism in
this study.

2. Related work

There are a lot of studies in behavior evaluation of
single threaded Java application since its first introduction
in 1995 [4]. Luo et al. evaluated the characterization of
multithreaded Java server applications on Pentium III [5].
Karlsson et al. studied the memory system behavior of
Java middleware applications on SMP system. Wei et al.
characterized the performance of Java multithreaded
applications on SMT processors [6]. Luiz et al. evaluated
the memory system behavior of Database Management
Systems running the TPC benchmarks [7].

Most of the multithreaded workloads used in these
work are developed in JDK below version 1.5, in which
the Java platform provides a set of basic primitives for
writing concurrent programs. However, the built-in
primitives, such as synchronized blocks, Object.wait(),
and Object.notify(), are insufficient to develop many
sophisticated programming tasks, which in return lead
developers to implement their own high-level
synchronization facilities, but given the difficulty of
concurrency issues, their implementations may not be
correct, efficient, or high quality.

In this paper, we extend previous work by examining
the Java concurrent programming provided in latest Java
2 Platform on SMP machine and evaluating the effect of
thread affinity mechanism in multithreaded Java

1-4244-0054-6/06/$20.00 ©2006 IEEE

application. The latest Java 2 Platform, Standard Edition
release 5.0 (J2SE 5.0 or JDK1.5), which is also known as
Tiger, provides a new multithreading method in Java
programming language [8]. The original mechanisms for
coordinating threads with wait() and notify() are now
enhanced with new sophisticated mechanisms. It plays as
a part of the java.util.concurrent package, which consists
of thread-safe connections, semaphores, mutexes, thread
pools, locks, and barriers.

3. Application construction

3.1. Introduction to Java

As an emerging language, there are many advantages
of Java compared to the commonly used C/C++ language,
such as automatic memory management, bound checking
at compile time, and bytecode to enable porting across
different platforms. With these advanced features and the
well-known “write once run anywhere” property, Java has
gained widespread popularity in many areas. In order to
provide high performance for Java application, many
researches are studied in literature to improve the
efficiency of Java Virtual Machine and Just-In-Time (JIT)
compiler. With the continuing improvement in JVM
technology and JIT compiler, Java performance is now
very competitive with that of C/C++. The JIT compilers,
present in most JVMs, convert Java byte codes to native
code with amazing efficiency, and in the latest generation
(represented by Sun's HotSpot and IBM's JVM) they
demonstrate the potential to start beating C/C++
performance for computation intensive applications [9].

By providing built-in threading language support, Java
significantly eases concurrent programming. The
java.util.concurrent package in JDK1.5 provides classes
and interfaces aiming to simplify the development of
concurrent applications by providing high quality
implementations of common building blocks used in the
concurrent applications and the parallel garbage collector
keeps the overhead of automatic memory management
within an acceptable level. Besides, the sufficient thread
primitives provided in Java enable programmer to manage
threads easier and more flexible than OpenMP, such as
thread synchronization. Consider the common scenario in
video/audio decoding: where two threads simultaneous
decode frames from video and audio tracks, and they must
wait for a universal synchronization event before moving
on to process the next frame at a specified time interval.
Following shows the code example.

Thread A Thread B

while (…)
{

Wait for Event C;
Execute TaskA;

}

while (…)
{

Wait for Event C;
Execute TaskB;

}

If we try to parallelize the above code in OpenMP, we
can use the if-then-else structure or the sections directive
of OpenMP to assign the two different jobs to two
threads, but have the difficulty of synchronizing these two
threads, besides, the program is hard to read and maintain.
In contrast, we can create two threads responsible for
executing these two tasks, and use the wait()/notify() or
CyclicBarrier utility in Java to synchronize them. The
parallel version in Java is shown as follows.

Thread A Thread B

Class A implements Runnable
{

public void run()
{

while (...)

{
 Wait (); // Wait for Event C

Execute TaskA;

 }
}

}

Class B implements Runnable
{

public void run()
{

while (…)

{
Wait();//Wait for Event C
Execute TaskB;

 }
}

}

3.2. Application construction

The background of our research is a video mining
project intending to extract the highlights from a sport
video in an automated, real-time and accurate way. As the
foundation for the other high level modules such as
scene/store segmentation and video structural summary,
the shot boundary detection system should meet the high
performance and the scalability requirements. We
construct the shot boundary detection system in Java
translated from the C++ code shared by Tsinghua
University, who achieves the best results in the
competition of TRECVID 2004 and 2005. Fig 1 depicts
the framework of shot boundary detection system.

Figure 1. Overview of shot boundary detection
system

In this framework, Java Media Framework (JMF) [10]
serves as the video decoder to decode video frames
sequentially, where the Demultiplexer class is used to
split the video stream into audio and video tracks and the
Codec class decodes the input video into consecutive
frames with specific input and output format from the
video track. After that, the low-level features are extracted
from the decoded frames. This process repeats until all

frames are processed. In the end, all the features are fed
into the shot detection module to output the final shots.

There are two different working scenarios to apply this
application, i.e., the online and offline mode, where the
online mode will capture the video stream either from the
TV or the web broadcasting, and the offline mode will
operate on existing raw media files.

3.3. Parallel study

Apparently, the shot detection system can be
partitioned into three phases, i.e., video decoding period,
feature extraction upon all the decoded frames, and the
final shot boundary detection. The execution time
breakdown of these there modules indicates the former
two modules are most time-consuming, which constitutes
around 5%-25% (in video decoding) and 75%-95% (in
feature extraction) of total time respectively depending on
the features used. In current implementation, the decoding
phase is about 8% and feature extraction is about 92%.
The shot boundary detection module is extremely fast,
which is not worth parallelization.

There are many opportunities to exploit thread level
parallelism at different granularities in shot detection
application. In order to achieve the optimal speedup over
its well-tuned sequential code on multiple processor
system, we present our parallel considerations in this
section.

In general, multimedia application tends to use data
rather than functional parallelism to fully take advantage
of its natural data independencies. In the shot detection
system, both video decoder and the feature extraction
module have abundant data parallel opportunities. In
video decoder, the straightforward way is to exploit the
parallelism at the Group of Picture (GOP) or slice level
[11], while for feature extraction, the decoded frames are
independent with each other, and hereby, can be
processed simultaneously. In contrast, though functional
level parallelism is also interesting, e.g., different
functions, like IDCT, MC, VLD etc. in video decoding,
and different features working as the basic data
processing unit, it suffers a lot from the load imbalance
among different threads and cannot provide enough
scaling performance with a large processor number.

3.3.1. Data splitting scheme

As aforementioned, it is much easier to parallelize shot
detection through data level parallelism. Naturally,
splitting the input raw video data into a number of smaller
chucks is a straightforward way to express this data level
parallelism. In this scheme, each thread uses the same
routine as the serial version, decodes one chuck of data,
and extracts features upon the decoded frames without
little interference with each other. Since the raw data

stream is split manually and each thread has to find the
new semantic picture start code, we must pay attention to
the neighbor threads to guarantee the consistence of
decoded frames.

Generally, we set the segmented data file number to
the amount of processors in the multiprocessor system, to
follow a simple static assignment policy. For example, if
there are totally four threads and the video file time length
is ten minutes, each thread will be assigned with a 2.5
minutes data stream respectively. Though introducing
more small data files may solve the load imbalance in the
static scheme, it suffers a lot from the additional video
stream parsing overhead, and more synchronizations
incurred with smaller task granularity.

Apparently, this scheme can only be applicable in the
offline mode, which assumes the raw video data is already
obtained, and can be accessed from any position of the
file. Therefore, the online real-time mode will get
definitely no benefit through this parallelization scheme,
which motivates us to find some appropriate schemes to
handle both the online as well as the offline mode, and
keep the equivalent scaling performance.

3.3.2. Task level parallelism

In contrast to the direct data splitting scheme, we look
into the modules of the shot detection system and analyze
the working pattern among the two modules. The video
decoder works very similar to a task producer, generating
a sequence of video frames, while feature extraction, on
the other hand, reads in the decoded frames and looks like
a task consumer, and the frames are considered to be a
number of tasks accordingly. Obviously, it complies well
with the well-known producer-consumer threading model.
The master thread puts the decoded video frames into a
shared buffer, and the feature extraction worker thread
fetches the decoded frame from this buffer and extracts
necessary features for the following shot boundary
detection module. When the frame buffer is full, the
master thread is suspended, and will be waked up when
there are available free slots in the shared buffer.
Typically, the worker threads will be set equal to the
number of processors to avoid the under-utilizing the
computing power, and overcome the potential load
imbalance between the decoder thread and worker
threads.

In our Java implementation, we use a taskQ model to
parallelize the shot detection application. Video decoding
is processed in a master thread and the feature extraction
of each decoded frame is encapsulated in a task and
pushed back into the taskQ. These tasks are dynamically
executed concurrently in worker threads. In this work, we
use the utilities in Java.util.concurrent package to
implement this scheme, where task is defined as a class
that implements the Runnable interface, and

LinkedBlockingQueue is used as the taskQ to hold all the
tasks. The access to taskQ is protected by the “lock”
primitive. Fig 2 illustrates this execution model, where
one thread executes the taskQ block in single-thread
manner, conceptually enqueuing each task it encounters,
while all worker threads dequeue the tasks and execute
them from this queue. The task/taskQ model in Java is
very like taskQ OpenMP extensions provided by Intel
library [12], but encapsulated in the language support,
which brings a lot of convenience for the parallel
application development.

Figure 2. Execution model of TaskQ scheme

In addition to the master-slave threading model,
another interesting scheme - pipeline based parallel
scheme is also discussed here. In this scheme, all the
working threads are treated equally without distinguishing
the decoding and feature extraction threads explicitly.
They all follow the same executing pattern, where each
thread will be responsible for one frame video decoding
and feature extraction, and strictly observe the timing
dependency, e.g., as displayed in Fig 3, thread k has to
wait until previous thread k-1 finishes one frame
decoding, and initializes its own decoding procedure to
get the next frame sequentially.

When comparing these two task level parallel schemes,
we find they almost exhibit the same performance, though
their underlying parallel mechanisms are quite different.
They both have to keep some shared resources, and must
respect the video decoder timing dependencies. Finally,
we choose the taskQ model, to fully utilize the new
parallel primitives provided by JDK 1.5.

Figure 3. Execution model of pipeline based scheme

After analyzing the possible parallel schemes, we
would like to study their scalability performance. In

theory, due to the two schemes highly depend on the
video decoder, which essentially runs in the critical path
during the whole parallel period. Therefore, the
theoretical speedup depends on the time ratio of feature
extraction and video decoding module, e.g., the ratio for
the MPEG-1 video stream is 98:12, indicating that the
maximal speedup is 8.17 according to Amdahl’s law.
However, since the scaling data is estimated upon the
serial video decoder, accelerating the video decoder will
directly solve this problem. As discussed earlier, slice
level parallelism can balance the granularity and the
parallel efficiency, and provide enough parallelism to the
shot detection system [13].

4. Experimental results

4.1. Experimental setup

We use latest JDK1.5 and JMF2.1 provided by Sun
Corp. to construct the shot detection application. All
experiments are conducted on a 4-way 2.8G Intel Xeon
Hyper-Threading enabled shared memory system. Each
processor is equipped with 8KB L1 data cache, 12KB
trace cache, 512KB L2 unified cache, and 2MB L3
unified cache. The operating system is Windows 2003
Server Data Center, and the JVM is the Sun Java

Runtime Environment (JRE) 1.5.0_04 enabled with
server runtime compiler. The input data are all MPEG-1
video stream from the TRECVID data suite [14].

In order to compare the performance of Java and C++
for this video mining application, we also implement a
C++ shot detection application, where we use IPP [15], a
highly optimized routine for video and audio processing,
to construct this system. Experimental result shows Java
achieves a comparable performance as C++ in this
application.

For performance characterization and thread profiling,
we use Intel VTune performance analyzer [16] to
measure different micro-architectural metrics and
JProfiler to monitor the thread running and interaction
[17], respectively.

4.2. Detailed characterization

4.2.1. Impact of multithreading

Java is a multithreaded application (Besides the
application thread running on top of JVM, there are some
helper threads existing inside JVM, such as garbage

collection thread responsible for recycling the un-used
heap space), we vary the number of application threads
through adjusting the number of worker threads to study
the impact of multithreading on application performance
and cache system performance. Fig 4 shows the speedup
with increased number of application threads to qualify

the application’s scalability performance. All the scaling
data are normalized with respect to the serial application
running on the same system. The “Base” column in gray
represents the parallel implementation without any
performance tuning.

0

1

2

3

4

2 3 4 5 6 8 10 12

Number of Application Threads

S
p
e
e
d
u
p

Base

Base+DB

Figure 4. Speedup with increased number of
application threads

It can be easily observed that, with the increase of
application threads, the performance first goes up and
saturates at 5 threads, where all the threads work
concurrently to fully utilize the system resource with very
little contention. Particularly, in the case of 5 threads, the
CPU utilization rate achieves near 100%, which indicates
most of the execution time is consumed by the
application. However, when the thread number exceeds 5,
we can notice a steady performance degradation, which is
caused by the increased overhead in thread
synchronization and scheduling. Fig 5 depicts the
execution time breakdown between system and user
activities, all the data are normalized to the baseline - 2
application threads. The behavior is consistent with the
speedup performance, where the application spent the
lowest OS time on 5 threads.

0

20

40

60

80

100

2 3 4 5 6 8 10 12

Number of Application Threads

B
re

a
k
d
o
w

n
 o

f
E

x
e
c
u

ti
o
n
 T

im
e

USER OS

Figure 5. the Execution time breakdown with
increased number of application threads

Besides the scaling performance, we also study the
cache behavior on 4-way SMP system. Fig 6 presents the
L1 cache misses with different processors, where all the
data are normalized to 2 application threads. L1 cache
misses increase a little with the thread number, while L2

and L3 cache misses remain flat, revealing that the
application is not very sensitive to the thread number due
to the regular data access pattern and the relative large
capacity the L2 and L3 cache.

0

20

40

60

80

100

120

2 3 4 5 6 8 10 12

Number of Application Threads

B
re

a
k
d

o
w

n
 o

f
L

1
 C

a
c
h

e
 M

is
s

USER OS

Figure 6. Changes of first level data cache miss with
increased number of application threads

When we further investigate how the L3 miss is
distributed, we find a large majority of the cache misses
come from the feature extraction module. It works on
different sets of image and therefore, the data cannot fully
fit in the LLC cache and violate the premise of locality of
reference. We use data blocking to improve the cache
locality by segmenting the whole image into a sequence
of strips. Each subset of the large data is processed before
moving on to the next one. Upon the completion of the
feature extraction of these strips, the final results will be
merged together. Fig 4 shows the performance
comparison between the shot detection with and without
using the data blocking technique, generally we achieve
around 5~10% performance improvement over the
non-data blocking version. Particularly, we notice the
parallel application gets even more benefit with the
increase of processor number. The reason can be
contributed to the alleviation of the memory bandwidth
contention through reducing the LLC cache misses. In the
rest of the paper, we will only use the data blocking
enabled application for further study and analysis.

The previous analysis on the application performance
and memory system indicates that the number of threads
affects the scalability of the system, processor resources
utilization, and memory system performance. Besides
this, we also study the impact of multithreading on
instruction cache and branch prediction performance. Due
to contention from multiple threads, instruction cache
miss rate increases as increasing application threads, but
its effect to performance is insignificant. L1 instruction
miss is smaller, below 2 trace cache misses per 1,000
instructions. We also collect Instruction TLB (ITLB)
misses for this multithreaded application. ITLB is
responsible for translating instruction address into
physical address to access L2 cache when the trace cache
miss occurs. The ITLB misses are very small, about 0.07
per 1,000 instructions. For branch prediction

performance, the mispredicted branches per 1,000
instructions are 1.01, which is not a dominant factor to
performance.

4.2.2. Scalability analysis

To understand the scalability limiting factors, we
characterize the parallel performance from the high level
general parallel overheads, e.g., synchronizations
penalties, load imbalance, and sequential area, to the
detailed memory hierarchy behavior, e.g., cache miss
rates and FSB (front side bus) bandwidth.

JProfiler [17] is a useful tool to analyze the Java
performance bottlenecks by providing the thread
intervention information in timeline, where the critical
path of the application and all the threads status can be
visualized through its GUI interface. We use JProfiler to
collect some general parallel factors, such as the time
spent in the sequential area, load imbalance among the
working threads, to roughly capture the application’s
scaling performance. Fig 7 shows the sample of thread
historical view with 5 application threads. The sequential
portion and load imbalance are relatively small; however,
we can noticeably observe the thread synchronization and
scheduling overhead (marked as waiting state). According
to the statistical data, the percentage of parallel, sequential
and thread synchronization/scheduling region are 86%,
3% and 11% respectively. Therefore, the theoretical
maximum speedup is expected to be 3.9 according to
Amdahl’s law [18].

Figure 7. Thread running history view with 5
application threads

However, due to the thread synchronization and
scheduling overhead, the real speedup we obtain is 3.62.
These overhead is expected to possibly increase when
available threads increase, especially when thread number
is more than available processor count. Fig 8 shows the
speedup of our parallel system in different number of
processors. Our parallel implementation achieves a near
linear speedup.

Besides the general scalability performance factors,
memory subsystem also plays an important role in
identifying the scaling performance bottlenecks. We
profile the application with VTune, and performance
metrics are chosen to be different level cache misses and
system memory bandwidth. Fig 9 shows the L1 cache
misses, L2 cache misses, and L3 cache misses per 1,000

instructions, respectively. It is interesting to see that the
cache miss rates vary little with the number of processors.
Though data structures in our system are large in size, not
to fit in L3 cache, data blocking optimization, together
with the regular data access pattern deliver very good
cache performance in our application.

0

1

2

3

4

1 2 3 4

Number of Processors

S
p
e
e
d
u
p

Figure 8. Speedup

0

4

8

12

16

1 2 3 4

Number of Processors

C
a
c
h
e
 M

is
s
e
s
 p

e
r

1
K

 I
n
s
tr

u
c
tio

n
s L1 L2 L3

Figure 9. Cache misses per 1,000 instructions

0

200

400

600

800

1000

1 2 3 4
Number of Processors

M
B

/s

FSB Bandwidth

Figure 10. FSB bandwidth

Generally speaking, memory bandwidth is also a key
factor which may potentially limit the speedup on shared
memory system. However, due to the intrinsic data
independencies among the worker threads as well as very
low data sharing between the master thread and worker
threads, the cache coherency traffics are tremendously
reduced; coupled with the high cache locality
performance on the L2 and L3 cache, it has a much lower
memory bandwidth requirement. Fig 10 shows how the
bus bandwidth utilization varies with the number of

processors. For all data inputs, the bus bandwidth
increases linearly with the number of processors, but far
from the saturation (3.2GB/s) even with 4 processors.

4.2.3. Thread scheduling

Since Java itself is a multithreaded application, thread
scheduling, an essential component in JVM, plays an
important role in driving the application to a high
performance [19]. There are already a lot of studies on
thread scheduling, for instance, Robert [19] gives a
comprehensive study on different scheduling techniques
and concludes that OS decision has a significant impact
on the performance with a relatively large processor
count.

On a multiprocessor system, when threads migrate
from one processor to another, it will incur thread context
switch penalty, data cache coherency traffic, and even
false sharing where one cache line appears to be shared by
multiple processors. In this work, we use thread affinity
mechanism by binding threads on the same processor to
take advantage of the cache locality. However,
experiment shows this application benefits from this
scheduling technique by less than 1%.

The inefficiency of hardware thread affinity in Java
lies in one possible reason. In order to port applications in
various platforms, Java assumes a conservative memory
model [20]. When synchronizing on a monitor (lock), the
JMM requires that the cache of current processor be
invalidated immediately after the lock is acquired, and
flushed (writing any modified memory locations back to
main memory) before it is released. Although the number
of synchronization requests in our application is small, the
cache flushing to memory triggered by JVM counteracts
the improved data locality benefit from thread affinity. To
overcome the limitation, several proposals have been
presented to support as many possible memory models to
accommodate practical architectures [21].

0

400

800

1200

1600

1P 2P 3P 4P 4P-HT

C
o
n

te
x
t
S

w
itc

h
e
s
 /
 S

e
c

No-Af finity Aff inity Enabled

Figure 11. Context switches per seconds

On the other hand, as displayed in Fig 11, we find
thread context switching increases significantly with the
number of active threads. With binding the active
application threads to the ideal physical processor, the

thread context switches decrease steadily by preventing
thread migration among different processors. Moreover,
the Hyper-Threading enabled system can also benefit
from thread affinity, not only reduce the number of thread
context switches, but also avoid overlapping two active
working threads on two logical processors residing on
same physical processor.

To summarize, thread affinity can not only improve
the data locality by reducing thread migration, but also
reduce resources contention on Hyper-Threading enabled
multiprocessor system by binding threads to different
physical processors to avoid the overlap of threads on the
same physical processor.

5. Conclusion

This study uses a video mining case to examine the
performance of Java concurrent programming on Intel
4-way shared memory multiprocessor system , study the
impact of multithreading on performance and memory
system behavior, and investigate the performance of
thread affinity mechanism. Our research on these aspects
draws some similar conclusions as previous ones, and
reveals some new observations: (1) it is easy to develop
multithreaded application with Java concurrent
programming; (2) The multithreaded Java application
scales well; (3) thread synchronization and scheduling
overhead is the dominant factor to prevent Java from
achieving perfect scalability; (4) thread affinity
mechanism is a good candidate for improving data
locality by reducing thread migration and resources
contention on memory hierarchy.

For future work, enhancement to thread scheduling in
JVM and operating system are expected to mitigate the
thread synchronization and scheduling overhead.

6. References

[1] H.J. Boehm, Threads cannot be implemented as a
library. In ACM SIGPLAN conference on
programming language design and implementation
(PLDI), 2005

[2] C.W. Ngo, H.J. Zhang, T.C. Pong, Recent advances
in content-based video analysis. International Journal
of Image and Graphics, vol.1(3), pp. 445-468, 2001.

[3] S.W. Smoliar, H. Zhang, Content-based video
indexing and retrieval, IEEE Multimedia, vol.1(2),
pp.62-2,1994.

[4] B. Rychlik, J.P. Shen, Characterization of value
locality in Java programs. In Proceedings of the 3th
workshop on workload characterization, Austin, TX,
2000

[5] L. Yue, J.K. Lizy, Workload characterization of
multithreded Java servers. In Proceedings of 2001
IEEE international symposium on performance

analysis of systems and software, Tucson, Arizona,
2001

[6] W. Huang, J. Lin, Z. Zhang, J.M. Chang,
Performance characterization of Java applications on
SMT processors. In Proceedings of 2005 EEE
international symposium on performance analysis of
systems and software, Austin, Texas, 2005

[7] L.A. Barroso, K. Gharachorloo, E. Bugnion,
Memory system characterization of commercial
workloads. In Proceedings of the 25th annual
international symposium on computer architecture
(ISCA), 1998

[8] Sun Corp,. Concurrent programming with with
J2SE5.0.
http://java.sun.com/developer/technicalArticles/J2SE
/concurrency/

[9] Sun Corp, Performance enhancement.
http://java.sun.com/j2se/1.5.0/docs/guide/performanc
e/

[10] Sun Corporation, Java Media Framework API
(JMF). http://Java.sun.com/products/Java-media/jmf/

[11] A. Bilas, J. Fritts, J.P. Singh, Real-time parallel
MPEG-2 decoding in software. In Proceedings of the
11th international symposium on parallel processing,
1997

[12] E. Su, X.M. Tian, M. Girkar, et, Compiler support of
the workqueuing execution model for Intel SMP
architectures. In the fourth european workshop on
OpenMP (EWOMP), 2002

[13] M.J. Holliman, E Li, Y.K. Chen, MPEG decoding
workload characterization, in CAECW 2003

[14] J.H. Yuan, W.J. Zheng, L. Chen, et, Tsinghua
University a TRECVID 2004: shot boundary
detection and high-level feature extraction, 2004.

[15] Intel Corp, Intel® Integrated Performance
Primitives,
http://www.intel.com/software/products/ipp

[16] Intel Corp, VTune performance analyzer.
http://www.intel.com/software/products/vtune

[17] ej-technologies GmbH. Java Profiler – JProfiler.
http://www.ej-technologies.com/products/jprofiler/o
verview.html

[18] Y. Shi, Reevaluating Amdahl's law and Gustafson's
law.
http://www.cis.temple.edu/~shi/docs/amdahl/amdahl.
html

[19] R.C. Kunz. PhD dissertation, performance
bottlenecks on large-scale shared-memory
multiprocessor. 2004

[20] IBM Corp, Technology article. Synchronization is
not the enemy.
http://www-128.ibm.com/developerworks/Java/librar
y/j-threads1.html

[21] IBM Corp, Technology article. Java theory and
practice: fixing the Java memory model.
http://www-128.ibm.com/developerworks/library/j-jt
p02244.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

