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Abstract 

As multi/many core processors become prevalent, 
programming language is important in constructing 
efficient parallel applications. In this work, we build a 
multithreaded video mining application with Java, 
examine the thread profiling information and 
micro-architecture metrics to identify the factors limiting 
the scalability, and employ a number of ways to improve 
performance. Besides, we conduct some thread 
scheduling experiments. According to the experiments 
and detailed analysis, we conclude that for this video 
mining application: (1) Java is a good parallel language 
candidate for many core processors in terms of 
performance, scalability, and ease of programming; (2) 
Thread affinity mechanism is effective in improving data 
locality, but brings little benefit to multithreaded Java 
application due to its conservative memory model in JVM. 

1. Introduction 

As Java emerges as one of the major programming 
languages for software development and parallel Java 
applications are widely adopted as standard benchmarks 
for commercial multiprocessor server, characterizing and 
tuning Java parallel application on SMP machine 
becomes increasingly important. Besides, using built-in 
thread support in language specification to parallelize 
applications is of great interest, [1] illustrates the 
necessary of thread support in language design. Java, a 
popular programming language on various platforms, 
provides a high performance and scalable concurrent 
utility classes for creating concurrent applications with 
great convenience in latest JDK1.5.  

Rapid advances in the technology of media capture and 
storage has contributed to an amazing growth of digital 
video content. While content generation and 
dissemination grows explosively, how to help users 
efficiently search, browse and manage multimedia 
contents becomes more and more important, such as 

mining digital home photos and videos which will be 
huge volume in the near future. Both technology push 
(e.g., video analysis and data mining) and application pull 
(e.g., various digital library, video on-demand, interactive 
TV) have contributed to the proliferation of video mining, 
e.g., video shot detection, surveillance, and highlight 
event detection in real-time [2][3]. 

In this paper, we parallelize the shot boundary 
detection application in video mining system with Java 
concurrent programming, and perform characterization 
and performance tuning on SMP machine. Besides, we 
also investigate the effect of thread affinity mechanism in 
this study. 

2. Related work 

There are a lot of studies in behavior evaluation of 
single threaded Java application since its first introduction 
in 1995 [4]. Luo et al. evaluated the characterization of 
multithreaded Java server applications on Pentium III [5]. 
Karlsson et al. studied the memory system behavior of 
Java middleware applications on SMP system. Wei et al. 
characterized the performance of Java multithreaded 
applications on SMT processors [6]. Luiz et al. evaluated 
the memory system behavior of Database Management 
Systems running the TPC benchmarks [7].  

Most of the multithreaded workloads used in these 
work are developed in JDK below version 1.5, in which 
the Java platform provides a set of basic primitives for 
writing concurrent programs. However, the built-in 
primitives, such as synchronized blocks, Object.wait(), 
and Object.notify(), are insufficient to develop many 
sophisticated programming tasks, which in return lead 
developers to implement their own high-level 
synchronization facilities, but given the difficulty of 
concurrency issues, their implementations may not be 
correct, efficient, or high quality.  

In this paper, we extend previous work by examining 
the Java concurrent programming provided in latest Java 
2 Platform on SMP machine and evaluating the effect of 
thread affinity mechanism in multithreaded Java 
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application. The latest Java 2 Platform, Standard Edition 
release 5.0 (J2SE 5.0 or JDK1.5), which is also known as 
Tiger, provides a new multithreading method in Java 
programming language [8]. The original mechanisms for 
coordinating threads with wait() and notify() are now 
enhanced with new sophisticated mechanisms. It plays as 
a part of the java.util.concurrent package, which consists 
of thread-safe connections, semaphores, mutexes, thread 
pools, locks, and barriers.

3. Application construction 

3.1. Introduction to Java  

As an emerging language, there are many advantages 
of Java compared to the commonly used C/C++ language, 
such as automatic memory management, bound checking 
at compile time, and bytecode to enable porting across 
different platforms. With these advanced features and the 
well-known “write once run anywhere” property, Java has 
gained widespread popularity in many areas. In order to 
provide high performance for Java application, many 
researches are studied in literature to improve the 
efficiency of Java Virtual Machine and Just-In-Time (JIT) 
compiler. With the continuing improvement in JVM 
technology and JIT compiler, Java performance is now 
very competitive with that of C/C++. The JIT compilers, 
present in most JVMs, convert Java byte codes to native 
code with amazing efficiency, and in the latest generation 
(represented by Sun's HotSpot and IBM's JVM) they 
demonstrate the potential to start beating C/C++ 
performance for computation intensive applications [9]. 

By providing built-in threading language support, Java 
significantly eases concurrent programming. The 
java.util.concurrent package in JDK1.5 provides classes 
and interfaces aiming to simplify the development of 
concurrent applications by providing high quality 
implementations of common building blocks used in the 
concurrent applications and the parallel garbage collector 
keeps the overhead of automatic memory management 
within an acceptable level. Besides, the sufficient thread 
primitives provided in Java enable programmer to manage 
threads easier and more flexible than OpenMP, such as 
thread synchronization. Consider the common scenario in 
video/audio decoding: where two threads simultaneous 
decode frames from video and audio tracks, and they must 
wait for a universal synchronization event before moving 
on to process the next frame at a specified time interval. 
Following shows the code example.  

Thread A Thread B 

while (…) 
{

Wait for Event C; 
Execute TaskA; 

}

while (…) 
{

Wait for Event C; 
Execute TaskB; 

}

If we try to parallelize the above code in OpenMP, we 
can use the if-then-else structure or the sections directive 
of OpenMP to assign the two different jobs to two 
threads, but have the difficulty of synchronizing these two 
threads, besides, the program is hard to read and maintain. 
In contrast, we can create two threads responsible for 
executing these two tasks, and use the wait()/notify() or 
CyclicBarrier utility in Java to synchronize them. The 
parallel version in Java is shown as follows. 

Thread A Thread B 

Class A implements Runnable   
{

public void run() 
{

while (...) 

{
  Wait (); // Wait for Event C 

Execute TaskA; 

  } 
}

}

Class B implements Runnable   
{

public void run() 
{

while (…) 

{
Wait();//Wait for Event C 
Execute TaskB; 

    } 
}

}

3.2. Application construction 

The background of our research is a video mining 
project intending to extract the highlights from a sport 
video in an automated, real-time and accurate way. As the 
foundation for the other high level modules such as 
scene/store segmentation and video structural summary, 
the shot boundary detection system should meet the high 
performance and the scalability requirements. We 
construct the shot boundary detection system in Java 
translated from the C++ code shared by Tsinghua 
University, who achieves the best results in the 
competition of TRECVID 2004 and 2005. Fig 1 depicts 
the framework of shot boundary detection system.  

Figure 1. Overview of shot boundary detection 
system 

In this framework, Java Media Framework (JMF) [10] 
serves as the video decoder to decode video frames 
sequentially, where the Demultiplexer class is used to 
split the video stream into audio and video tracks and the 
Codec class decodes the input video into consecutive 
frames with specific input and output format from the 
video track. After that, the low-level features are extracted 
from the decoded frames. This process repeats until all 



frames are processed. In the end, all the features are fed 
into the shot detection module to output the final shots. 

There are two different working scenarios to apply this 
application, i.e., the online and offline mode, where the 
online mode will capture the video stream either from the 
TV or the web broadcasting, and the offline mode will 
operate on existing raw media files. 

3.3. Parallel study  

Apparently, the shot detection system can be 
partitioned into three phases, i.e., video decoding period, 
feature extraction upon all the decoded frames, and the 
final shot boundary detection. The execution time 
breakdown of these there modules indicates the former 
two modules are most time-consuming, which constitutes 
around 5%-25% (in video decoding) and 75%-95% (in 
feature extraction) of total time respectively depending on 
the features used. In current implementation, the decoding 
phase is about 8% and feature extraction is about 92%. 
The shot boundary detection module is extremely fast, 
which is not worth parallelization. 

There are many opportunities to exploit thread level 
parallelism at different granularities in shot detection 
application. In order to achieve the optimal speedup over 
its well-tuned sequential code on multiple processor 
system, we present our parallel considerations in this 
section. 

In general, multimedia application tends to use data 
rather than functional parallelism to fully take advantage 
of its natural data independencies. In the shot detection 
system, both video decoder and the feature extraction 
module have abundant data parallel opportunities. In 
video decoder, the straightforward way is to exploit the 
parallelism at the Group of Picture (GOP) or slice level 
[11], while for feature extraction, the decoded frames are 
independent with each other, and hereby, can be 
processed simultaneously. In contrast, though functional 
level parallelism is also interesting, e.g., different 
functions, like IDCT, MC, VLD etc. in video decoding, 
and different features working as the basic data 
processing unit, it suffers a lot from the load imbalance 
among different threads and cannot provide enough 
scaling performance with a large processor number.  

3.3.1. Data splitting scheme 

As aforementioned, it is much easier to parallelize shot 
detection through data level parallelism. Naturally, 
splitting the input raw video data into a number of smaller 
chucks is a straightforward way to express this data level 
parallelism. In this scheme, each thread uses the same 
routine as the serial version, decodes one chuck of data, 
and extracts features upon the decoded frames without 
little interference with each other. Since the raw data 

stream is split manually and each thread has to find the 
new semantic picture start code, we must pay attention to 
the neighbor threads to guarantee the consistence of 
decoded frames. 

Generally, we set the segmented data file number to 
the amount of processors in the multiprocessor system, to 
follow a simple static assignment policy. For example, if 
there are totally four threads and the video file time length 
is ten minutes, each thread will be assigned with a 2.5 
minutes data stream respectively. Though introducing 
more small data files may solve the load imbalance in the 
static scheme, it suffers a lot from the additional video 
stream parsing overhead, and more synchronizations 
incurred with smaller task granularity.  

Apparently, this scheme can only be applicable in the 
offline mode, which assumes the raw video data is already 
obtained, and can be accessed from any position of the 
file. Therefore, the online real-time mode will get 
definitely no benefit through this parallelization scheme, 
which motivates us to find some appropriate schemes to 
handle both the online as well as the offline mode, and 
keep the equivalent scaling performance. 

3.3.2. Task level parallelism 

In contrast to the direct data splitting scheme, we look 
into the modules of the shot detection system and analyze 
the working pattern among the two modules. The video 
decoder works very similar to a task producer, generating 
a sequence of video frames, while feature extraction, on 
the other hand, reads in the decoded frames and looks like 
a task consumer, and the frames are considered to be a 
number of tasks accordingly. Obviously, it complies well 
with the well-known producer-consumer threading model. 
The master thread puts the decoded video frames into a 
shared buffer, and the feature extraction worker thread 
fetches the decoded frame from this buffer and extracts 
necessary features for the following shot boundary 
detection module. When the frame buffer is full, the 
master thread is suspended, and will be waked up when 
there are available free slots in the shared buffer. 
Typically, the worker threads will be set equal to the 
number of processors to avoid the under-utilizing the 
computing power, and overcome the potential load 
imbalance between the decoder thread and worker 
threads. 

In our Java implementation, we use a taskQ model to 
parallelize the shot detection application. Video decoding 
is processed in a master thread and the feature extraction 
of each decoded frame is encapsulated in a task and 
pushed back into the taskQ. These tasks are dynamically 
executed concurrently in worker threads. In this work, we 
use the utilities in Java.util.concurrent package to 
implement this scheme, where task is defined as a class 
that implements the Runnable interface, and 



LinkedBlockingQueue is used as the taskQ to hold all the 
tasks. The access to taskQ is protected by the “lock” 
primitive. Fig 2 illustrates this execution model, where 
one thread executes the taskQ block in single-thread 
manner, conceptually enqueuing each task it encounters, 
while all worker threads dequeue the tasks and execute 
them from this queue. The task/taskQ model in Java is 
very like taskQ OpenMP extensions provided by Intel 
library [12], but encapsulated in the language support, 
which brings a lot of convenience for the parallel 
application development.  

Figure 2. Execution model of TaskQ scheme 

In addition to the master-slave threading model, 
another interesting scheme - pipeline based parallel 
scheme is also discussed here. In this scheme, all the 
working threads are treated equally without distinguishing 
the decoding and feature extraction threads explicitly. 
They all follow the same executing pattern, where each 
thread will be responsible for one frame video decoding 
and feature extraction, and strictly observe the timing 
dependency, e.g., as displayed in Fig 3, thread k has to 
wait until previous thread k-1 finishes one frame 
decoding, and initializes its own decoding procedure to 
get the next frame sequentially.  

When comparing these two task level parallel schemes, 
we find they almost exhibit the same performance, though 
their underlying parallel mechanisms are quite different. 
They both have to keep some shared resources, and must 
respect the video decoder timing dependencies. Finally, 
we choose the taskQ model, to fully utilize the new 
parallel primitives provided by JDK 1.5. 

Figure 3. Execution model of pipeline based scheme 

After analyzing the possible parallel schemes, we 
would like to study their scalability performance. In 

theory, due to the two schemes highly depend on the 
video decoder, which essentially runs in the critical path 
during the whole parallel period. Therefore, the 
theoretical speedup depends on the time ratio of feature 
extraction and video decoding module, e.g., the ratio for 
the MPEG-1 video stream is 98:12, indicating that the 
maximal speedup is 8.17 according to Amdahl’s law. 
However, since the scaling data is estimated upon the 
serial video decoder, accelerating the video decoder will 
directly solve this problem. As discussed earlier, slice 
level parallelism can balance the granularity and the 
parallel efficiency, and provide enough parallelism to the 
shot detection system [13]. 

4. Experimental results 

4.1. Experimental setup 

We use latest JDK1.5 and JMF2.1 provided by Sun 
Corp. to construct the shot detection application. All 
experiments are conducted on a 4-way 2.8G Intel Xeon 
Hyper-Threading enabled shared memory system. Each 
processor is equipped with 8KB L1 data cache, 12KB 
trace cache, 512KB L2 unified cache, and 2MB L3 
unified cache. The operating system is Windows 2003 
Server Data Center, and the JVM is the Sun Java 

Runtime Environment (JRE) 1.5.0_04 enabled with 
server runtime compiler. The input data are all MPEG-1 
video stream from the TRECVID data suite [14]. 

In order to compare the performance of Java and C++ 
for this video mining application, we also implement a 
C++ shot detection application, where we use IPP [15], a 
highly optimized routine for video and audio processing, 
to construct this system. Experimental result shows Java 
achieves a comparable performance as C++ in this 
application. 

For performance characterization and thread profiling, 
we use Intel VTune performance analyzer [16]  to 
measure different micro-architectural metrics and 
JProfiler to monitor the thread running and interaction 
[17], respectively. 

4.2. Detailed characterization 

4.2.1. Impact of multithreading 

Java is a multithreaded application (Besides the 
application thread running on top of JVM, there are some 
helper threads existing inside JVM, such as garbage 

collection thread responsible for recycling the un-used 
heap space), we vary the number of application threads 
through adjusting the number of worker threads to study 
the impact of multithreading on application performance 
and cache system performance. Fig 4 shows the speedup 
with increased number of application threads to qualify 



the application’s scalability performance. All the scaling 
data are normalized with respect to the serial application 
running on the same system. The “Base” column in gray 
represents the parallel implementation without any 
performance tuning.  
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Figure 4. Speedup with increased number of 
application threads 

It can be easily observed that, with the increase of 
application threads, the performance first goes up and 
saturates at 5 threads, where all the threads work 
concurrently to fully utilize the system resource with very 
little contention. Particularly, in the case of 5 threads, the 
CPU utilization rate achieves near 100%, which indicates 
most of the execution time is consumed by the 
application. However, when the thread number exceeds 5, 
we can notice a steady performance degradation, which is 
caused by the increased overhead in thread 
synchronization and scheduling. Fig 5 depicts the 
execution time breakdown between system and user 
activities, all the data are normalized to the baseline - 2 
application threads. The behavior is consistent with the 
speedup performance, where the application spent the 
lowest OS time on 5 threads. 
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Figure 5. the Execution time breakdown with 
increased number of application threads 

Besides the scaling performance, we also study the 
cache behavior on 4-way SMP system. Fig 6 presents the 
L1 cache misses with different processors, where all the 
data are normalized to 2 application threads. L1 cache 
misses increase a little with the thread number, while L2 

and L3 cache misses remain flat, revealing that the 
application is not very sensitive to the thread number due 
to the regular data access pattern and the relative large 
capacity the L2 and L3 cache. 
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Figure 6. Changes of first level data cache miss with 
increased number of application threads 

When we further investigate how the L3 miss is 
distributed, we find a large majority of the cache misses 
come from the feature extraction module. It works on 
different sets of image and therefore, the data cannot fully 
fit in the LLC cache and violate the premise of locality of 
reference. We use data blocking to improve the cache 
locality by segmenting the whole image into a sequence 
of strips. Each subset of the large data is processed before 
moving on to the next one. Upon the completion of the 
feature extraction of these strips, the final results will be 
merged together. Fig 4 shows the performance 
comparison between the shot detection with and without 
using the data blocking technique, generally we achieve 
around 5~10% performance improvement over the 
non-data blocking version. Particularly, we notice the 
parallel application gets even more benefit with the 
increase of processor number. The reason can be 
contributed to the alleviation of the memory bandwidth 
contention through reducing the LLC cache misses. In the 
rest of the paper, we will only use the data blocking 
enabled application for further study and analysis. 

The previous analysis on the application performance 
and memory system indicates that the number of threads 
affects the scalability of the system, processor resources 
utilization, and memory system performance. Besides 
this, we also study the impact of multithreading on 
instruction cache and branch prediction performance. Due 
to contention from multiple threads, instruction cache 
miss rate increases as increasing application threads, but 
its effect to performance is insignificant. L1 instruction 
miss is smaller, below 2 trace cache misses per 1,000 
instructions. We also collect Instruction TLB (ITLB) 
misses for this multithreaded application. ITLB is 
responsible for translating instruction address into 
physical address to access L2 cache when the trace cache 
miss occurs. The ITLB misses are very small, about 0.07 
per 1,000 instructions. For branch prediction 



performance, the mispredicted branches per 1,000 
instructions are 1.01, which is not a dominant factor to 
performance. 

4.2.2. Scalability analysis 

To understand the scalability limiting factors, we 
characterize the parallel performance from the high level 
general parallel overheads, e.g., synchronizations 
penalties, load imbalance, and sequential area, to the 
detailed memory hierarchy behavior, e.g., cache miss 
rates and FSB (front side bus) bandwidth. 

JProfiler [17] is a useful tool to analyze the Java 
performance bottlenecks by providing the thread 
intervention information in timeline, where the critical 
path of the application and all the threads status can be 
visualized through its GUI interface. We use JProfiler to 
collect some general parallel factors, such as the time 
spent in the sequential area, load imbalance among the 
working threads, to roughly capture the application’s 
scaling performance. Fig 7 shows the sample of thread 
historical view with 5 application threads. The sequential 
portion and load imbalance are relatively small; however, 
we can noticeably observe the thread synchronization and 
scheduling overhead (marked as waiting state). According 
to the statistical data, the percentage of parallel, sequential 
and thread synchronization/scheduling region are 86%, 
3% and 11% respectively. Therefore, the theoretical 
maximum speedup is expected to be 3.9 according to 
Amdahl’s law [18]. 

Figure 7. Thread running history view with 5 
application threads 

However, due to the thread synchronization and 
scheduling overhead, the real speedup we obtain is 3.62. 
These overhead is expected to possibly increase when 
available threads increase, especially when thread number 
is more than available processor count. Fig 8 shows the 
speedup of our parallel system in different number of 
processors. Our parallel implementation achieves a near 
linear speedup.  

Besides the general scalability performance factors, 
memory subsystem also plays an important role in 
identifying the scaling performance bottlenecks. We 
profile the application with VTune, and performance 
metrics are chosen to be different level cache misses and 
system memory bandwidth. Fig 9 shows the L1 cache 
misses, L2 cache misses, and L3 cache misses per 1,000 

instructions, respectively. It is interesting to see that the 
cache miss rates vary little with the number of processors. 
Though data structures in our system are large in size, not 
to fit in L3 cache, data blocking optimization, together 
with the regular data access pattern deliver very good 
cache performance in our application.  
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Generally speaking, memory bandwidth is also a key 
factor which may potentially limit the speedup on shared 
memory system. However, due to the intrinsic data 
independencies among the worker threads as well as very 
low data sharing between the master thread and worker 
threads, the cache coherency traffics are tremendously 
reduced; coupled with the high cache locality 
performance on the L2 and L3 cache, it has a much lower 
memory bandwidth requirement. Fig 10 shows how the 
bus bandwidth utilization varies with the number of 



processors. For all data inputs, the bus bandwidth 
increases linearly with the number of processors, but far 
from the saturation (3.2GB/s) even with 4 processors. 

4.2.3. Thread scheduling 

Since Java itself is a multithreaded application, thread 
scheduling, an essential component in JVM, plays an 
important role in driving the application to a high 
performance [19]. There are already a lot of studies on 
thread scheduling, for instance, Robert [19] gives a 
comprehensive study on different scheduling techniques 
and concludes that OS decision has a significant impact 
on the performance with a relatively large processor 
count. 

On a multiprocessor system, when threads migrate 
from one processor to another, it will incur thread context 
switch penalty, data cache coherency traffic, and even 
false sharing where one cache line appears to be shared by 
multiple processors. In this work, we use thread affinity 
mechanism by binding threads on the same processor to 
take advantage of the cache locality. However, 
experiment shows this application benefits from this 
scheduling technique by less than 1%.  

The inefficiency of hardware thread affinity in Java 
lies in one possible reason. In order to port applications in 
various platforms, Java assumes a conservative memory 
model [20]. When synchronizing on a monitor (lock), the 
JMM requires that the cache of current processor be 
invalidated immediately after the lock is acquired, and 
flushed (writing any modified memory locations back to 
main memory) before it is released. Although the number 
of synchronization requests in our application is small, the 
cache flushing to memory triggered by JVM counteracts 
the improved data locality benefit from thread affinity. To 
overcome the limitation, several proposals have been 
presented to support as many possible memory models to 
accommodate practical architectures [21]. 

0

400

800

1200

1600

1P 2P 3P 4P 4P-HT

C
o
n

te
x
t 
S

w
itc

h
e
s
 /
 S

e
c

No-Af finity Aff inity Enabled

Figure 11. Context switches per seconds 

On the other hand, as displayed in Fig 11, we find 
thread context switching increases significantly with the 
number of active threads. With binding the active 
application threads to the ideal physical processor, the 

thread context switches decrease steadily by preventing 
thread migration among different processors. Moreover, 
the Hyper-Threading enabled system can also benefit 
from thread affinity, not only reduce the number of thread 
context switches, but also avoid overlapping two active 
working threads on two logical processors residing on 
same physical processor.  

To summarize, thread affinity can not only improve 
the data locality by reducing thread migration, but also 
reduce resources contention on Hyper-Threading enabled 
multiprocessor system by binding threads to different 
physical processors to avoid the overlap of threads on the 
same physical processor. 

5. Conclusion 

This study uses a video mining case to examine the 
performance of Java concurrent programming on Intel 
4-way shared memory multiprocessor system , study the 
impact of multithreading on performance and memory 
system behavior, and investigate the performance of 
thread affinity mechanism. Our research on these aspects 
draws some similar conclusions as previous ones, and 
reveals some new observations: (1) it is easy to develop 
multithreaded application with Java concurrent 
programming; (2) The multithreaded Java application 
scales well; (3) thread synchronization and scheduling 
overhead is the dominant factor to prevent Java from 
achieving perfect scalability; (4) thread affinity 
mechanism is a good candidate for improving data 
locality by reducing thread migration and resources 
contention on memory hierarchy.  

For future work, enhancement to thread scheduling in 
JVM and operating system are expected to mitigate the 
thread synchronization and scheduling overhead. 
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