
A Tool for Environment Deployment in Clusters and light Grids

Yiannis Georgiou, Julien Leduc, Brice Videau, Johann Peyrard and Olivier Richard
Laboratoire ID-IMAG (UMR5132) Grenoble {Firstname.Lastname}@imag.fr∗

Abstract

Focused around the field of the exploitation and the ad-
ministration of high performance large-scale parallel sys-
tems , this article describes the work carried out on the de-
ployment of environment on high computing clusters and
grids. We initally present the problems involved in the
installation of an environment (OS, middleware, libraries,
applications...) on a cluster or grid and how an effec-
tive deployment tool, Kadeploy2, can become a new form
of exploitation of this type of infrastructures. We present
the tool’s design choices, its architecture and we describe
the various stages of the deployment method, introduced
by Kadeploy2. Moreover, we propose methods on the one
hand, for the improvement of the deployment time of a new
environment; and in addition, for the support of various
operating systems. Finally, to validate our approach we
present tests and evaluations realized on various clusters
of the experimental grid Grid5000.

1 Introduction

The high performance computing clusters (HPCC), are
today well known considerably on the scientific scene
where they have become an indispensable tool, and they are
used for solving the most challenging and rigorous engi-
neering tasks facing the present era. Moreover, in order to
accumulate their computing power, there is an increasing
need to incorporate the resources of multiple clusters. In
this case we speak of Grid Computing.

Under this context, various challenging issues have ap-
peared, mainly in the procedures of exploitation and admin-
istration of these two types of infrastructures. In the case of
clusters, the need for automated installation and configura-
tion tools has been obvious ever since the first appearance
of networked clusters of workstations. In the case of grids
the problem the users have to confront, is a software hetero-
geneity among the interconnected clusters.

∗Supported by Grid5000, French Ministry of research, ACI Grid, ACI
Data Mass Incentives and RENATER the French National Research and
Education Network.

Furthermore, in the context of high performance com-
puting research, scientists seem to need various software
environments in order to perform their experiments. A soft-
ware environment contains all the software layers like the
operating system, the libraries, the middlewares and the ap-
plications (figure 1). According to their experiments na-
ture and the software layer they are investigating (protocols,
OS, ..), they often require specific OS. Hence, a tool with
a deep reconfiguration mechanism allowing researchers to
deploy, install, boot and run their specific software images,
is needed.

Kadeploy2 is a software environment deployment tool
which aims to solve the above issues providing automated
software installation and reconfiguration mechanisms on all
the layers of the software stack. Using kadeploy2, in a typi-
cal experiment sequence, a researcher reserves a partition
of the cluster or grid, deploys its software image (figure
2), reboots all the machines of the partition, runs the ex-
periment, collects results and finally relieves the machines.
This reconfiguration capability allows researchers to run
their experiments in the software environment that perfectly
matches their needs and provides to users, a software homo-
geneous grid.

In this article, we present the environment deployment
tool Kadeploy2 which introduces a new way of exploitation
of clusters and grids. We initially make a research for the
need of an environment deployment toolkit and present re-
lated works. In Section 3, we describe the architecture of
Kadeploy2 and present the deployment process. Section 4
presents optimizations of the default deployment procedure
and a global method to support deployment of various op-
erating systems. In section 5, we present deployment sce-
narios and evaluation results, acquired from tests conducted
on different clusters of the Grid5000 experimental platform
[13]. Finally, conclusion and perspectives are presented.

2 Motivations and related work

An HPC cluster uses a multiple-computer architecture
that features a parallel computing system consisting of one
or more master nodes and computing nodes, interconnected
in a private network system. The master node acts both as a
server and a gateway to the outside world.

1-4244-0054-6/06/$20.00 ©2006 IEEE

Applications

OS(Linux, FreeBSD,...)

Environment
Middleware

Hardware Network

SpecifiableToolsDistro

Configurable

Figure 1. Software environment.

at the batch scheduler

New experiment

Environment creation

1 2 3 4

4)Work finishes, nodes return to
the initial reference environment

3)Work on the environment

2)Environment deployment

1)Submission of requested nodes

Figure 2. Typical sequence of an environment
deployment.

In general, an HPC cluster provides a certain number of
central services concentrated on one or more servers: for
example a resource management system (also called Batch
Scheduler), (ex: OAR [12], PBS [5], SGE [7], ...), a Net-
work File System (NFS) and an authentification service
(LDAP, NIS, ...). The computing nodes provide the neces-
sary environment for the execution of the applications sub-
mitted by the users.

In the case of a computing grid, it is generally necessary
to associate an additional middleware, allowing the logical
interconnection of the various clusters which do not have
necessarily the same services. For that reason, the environ-
ment present on the computing nodes is generally different
from the one cluster to the other.

The principal solution currently suggested is that of the
Globus [14] project which gathers a complete set of services
and middlewares making it possible to incorporate various
clusters. Initially this approach finds a certain ”heaviness”
in its installation and maintenance and in addition it does
not solve the problem of the environment heterogeneity of
the calculation nodes between clusters.

Another solution in the aggregation of cluster, is pro-
posed by the light grids. In these infrastructures the step is
to simplify the general problem of the grids. This simplifi-
cation generally goes through a certain homogeneity of ser-
vices and administration procedures: for example by adopt-
ing the same services and configurations on all clusters.

In our research, we have examined a number of config-
uration technologies, illustrating a range of different ap-
proaches dealing with large-scale configuration manage-
ment. The Gridweaver [3] and the Datagrid [1] projects
reviewed some management tools and techniques, currently
available for Large Scale Configuration.

Tools like Rocks [24], LCFG [10], Quattor [21] and Os-
car [22] are frameworks for managing large scale comput-
ing fabrics. They are systems that provide automated instal-

lation, configuration and management of large-scale paral-
lel systems. Most of those systems are based on standard
node specific installation setup tools like Kickstart [25] or
SIS [8]. SIS is a collection of software packages designed
to automate the installation and configuration of networked
workstations.

The SIS tool suite is composed of three packages: Sys-
temInstaller, that generates on the frontend the image with
the operating system to install into nodes, SystemImager,
that is responsible to copy the image into nodes and Sys-
temConfigurator, that performs a post-install configuration
of the nodes once the images have been installed. SIS uses
a database to store the information about the cluster nodes
from which it obtains the cluster configuration information.

Moreover, tools like Partimage [4], g4u [2] , Partition
Repositories [20] and Frisbee [11] are technologies that fo-
cus on disk and partition imaging of single machines on a
cluster environment. Among the techniques Frisbee uses
are an appropriately-adapted method of filesystem-aware
compression, where Frisbee currently handles BSD FFS,
Linux ext2fs and Windows NTFS filesystems. If a parti-
tion is recognized, a filesystem-specific module is invoked
to scan the filesystem free list and build up a list of free
blocks in the partition. If a partition is not recognized, it
treats all blocks as allocated.

On the other hand, alternative design approaches for
large scale configuration based on virtualization and simi-
lar techniques are proposed by technologies like VMPlants
[19], XenoServer [18], Dynamic Virtual Environments [17]
and Condor GliedIn mechanism [15].

Finally, projects like Stateless Linux [6] deal with in-
teresting issues on the field. Applications run locally, tak-
ing advantage of the processing power that already is well-
distributed across most computers. Linux can be configured
to work without a local hard drive. In that case the root
filesystem is mounted readonly over NFS, shared among
multiple computers and the user home directories for this
system are also NFS-mounted. This diskless deployment is
the simplest example of a stateless Linux configuration. In
this prototype approach no state exists on single computers;
all state is centralized.

There are currently many tools designed for the exploita-
tion and administration of large-scale parallel systems but
all of them use the environment deployment operation only
during the startup phases or the programmed phases of
maintenance. In addition the solutions provided seem not
robust enough.

3 Deployment tool Kadeploy2

3.1 A new way of exploitation based on
the deployment operation

To solve the central problem of software environment
homogeneity among the computing nodes of a cluster or a

light grid, our proposal is to extend the capacities of the de-
ployment operation. A software environment, contains all
the software layers like the operating system, the libraries,
the middlewares and the applications. Currently, the de-
ployment operations on a cluster take place only at the time
of the startup phase or the programmed phases of a cluster
maintenances. Our proposal deals on how any user may use
this operation when the environment provided on the clus-
ter, is not the appropriate. Thus, any user accustomed to
an environment may consequently use this environment on
another cluster as long as it has the same type of processor.

As a matter of fact, this approach introduces a new way
of cluster and grid exploitation. The user will not have to
make modifications in every computing node of a cluster
or a grid. Simply deploys the environment on every single
node and thus proceed with the experiment computations.

To allow this approach work, it is necessary to introduce
a tool for fast and robust deployment, having an access con-
trol to the operations of deployment and a sufficiently sim-
ple method of environment creation.

3.2 Architecture and Principles

This tool uses the traditional protocols for network boot-
ing: PXE, TFTP, DHCP. As we can see on figure 3, ar-
chitecture of Kadeploy2 is designed around a database and
a set of specialized operating components. The database
is used to store all necessary information for the deploy-
ment process, the computing nodes and the environments.
At the same time, the code is written in Perl, which is per-
fectly suited for system tasks. In addition uses a fast mech-
anism of environment diffusion which depends slightly on
the number of nodes. This mechanism is based on a pipeline
approach (chain of TCP connections between nodes) [23].
This enables operations of deployment on large clusters
(1000 nodes).

Figure 4, shows a concurrent deployment of two com-
puting environments on a cluster. The deployment process
will write a complete environment, on a partition of the disk
of each computing node, which will be followed by a re-
boot on this partition. The process ensures that the partition
of the disk where the reference environment of the node is
installed, remains intact during diffusion. To guarantee a
greater function reliability, Kadeploy2 tool directs clusters
to be coupled with remote mechanisms of hardware reboot.
Thus, if a particular problem occurs on one or more nodes
during a deployment, a restarting on the reference partition
is ordered automatically, on defected nodes.

An environment is created very simply by making an
archive of the root partition in compressed tar format. To
ensure a high level of portability and to permit that an en-
vironment is usable on various clusters of similar processor
architectures , the environment should not contain informa-

Client

Scheduler

Users

Server

Diffusion
Mechanism

Database

Batch
Environment
Repository

Computing Nodes

Network booting protocols

Hardware reboot mechanism

Kadeploy2

Submision

Figure 3. Kadeploy2 Architecture

Node Node

Node Node Node

Available Partitions

Protected Partitions

 Server

Environment Image 2

Environment Image 1

Figure 4. Concurrent deployment of two
Computing environments on a cluster using
the kadeploy2 toolkit

tion corresponding to the initial cluster. That is possible
because the majority of the services have autoconfiguration
mechanism (ex: protocol DHCP for the network) and the
majority of the operating systems have hardware autodetec-
tion mechanisms making it possible to adapt to the minor
differences (network cards, disks...). For the services that
lack autoconfiguration procedure during the deployment, a
procedure known as post-installation process supplements
the parameter setting.

Finally, a permissions control authorizes the user to use
the deployment operations only on the nodes which were
allocated to the user by the resource management system
(batch scheduler). This control is achieved by the intercon-
nection of the deployment tool and the batch scheduler.

3.3 Deployment Process

The steps of the deployment procedure along with the
different states of a computing node, during the process, are
featured on figure 5.

The first step of the deployment procedure, is the user
submission of the request to the batch scheduler for a spe-
cific number of computing nodes with the option of deploy-
ment. This is followed by writing appropriate information
on the database. The third step, consists of all the permis-
sion controls for the computing nodes and their partitions
just before the issue of the first reboot on the nodes. On this
point, it has to be noted that the user has permission to de-
ploy on certain partitions excluding the reference partition
where the reference environment is installed.

Minimal system. On the following step, the deployment
process uses the traditional protocols for network booting:
PXE, TFTP, DHCP and issues a boot of a previously pre-

 1) Submission

 2) Attribution / Session opening

 3) Deployment Permission controls

 5) Preinstallation

 6) Environment propagation + Decompression on the partition

 7) Postinstallation

 8) Order of Reboot

 10) Work on the environment

 11) Session end indication

 12) Deployment permission rights withdrawal / End of session

 13) Order of Reboot

 14) Boot on the reference environment

 4) Boot deployment minimal−system

 9) Boot on the new environment

 User Environment

Minimal−system

Reference
Environment

reboot

reboot

reboot

computing node

1, 2, 3

 4

 5, 6, 7, 8 14

 9

10, 11, 12, 13

Figure 5. Default deployment procedure us-
ing kadeploy2 toolkit

pared Linux minimal-system (initrd/mini kernel) mounted
on RAM, on each computing node under deployment. This
minimal-system is appropriately equipped with all that is
needed (diffusion mechanism software, pipes, ...) in order
to make all the necessary disk modifications, copy the new
environment on a partition and configure it for deployment.

Preinstallation. The fifth step, consists of the preinstal-
lation phase. In more detail, the deployment process with
the help of the minimal-system of each node sends the pre-
installation scripts that have to be executed on each node, by
using the diffusion mechanism described. The execution of
each script is then launched, by using the parallel launcher
[23]. The scripts executed, make some necessary controls
and partition the disk.

Environment Transfer+Installation. On the next step,
the deployment process prepares the partition that is going
to be deployed, propagates the image of the environment on
every node by using the diffusion mechanism and uncom-
presses it on the already prepared partition.

Postinstallation. For the services that do not have a pro-
cedure of autoconfiguration (ssh keys, ldap, ...), the phase of
postinstallation is issued on the seventh step. In more detail,
just like the preinstallation phase, the deployment process
with the help of the minimal-system of each node and using
the diffusion mechanism, sends the postinstallation scripts
and files that have to be executed or copied on each node.
The execution of each script is then launched by using the
parallel launcher.

On the eighth step, the process prepares the reboot on the
partition where the new environment is installed by generat-
ing the relevant grub image, which is responsible for load-
ing and transferring control to the operating system kernel
software. On the next step, by using the network booting
protocols (PXE, TFTP, DHCP) the process reboots on the
modified partition where the new desired environment is in-
stalled.

After working on the environment, the user indicates the
end of the session where the relevant information is written
on the database, the deployment permissions on the nodes
are dropped and the order of reboot on the reference parti-

Memory
Memory

Environment
Reference reboot reboot User

EnvironmentMinimal−system

Memory

reboot

Disk Disk Disk

PartitionsPartitions Partitions

Under preparation for deployment

Current root file system

Figure 6. Different states of a computing
node of a cluster during the default deploy-
ment procedure with kadeploy2 toolkit.

tion is ordered. For those last steps, the deployment process
cooperates with the batch scheduler. Finally, all the com-
puting nodes reboot on the reference partition where the de-
fault computing environment of the cluster remains intact.
Figure 6 shows an analytical view of the different states of
a computing node during the default deployment procedure
using the kadeploy2 toolkit.

Robustness. The deployment procedure mechanism in-
troduced by Kadeploy2 toolkit is robust and concrete. To
achieve this, from the hardware side, Kadeploy2 directs
clusters to be coupled with remote mechanisms of hardware
reboot. By this, it is guaranteed that no matter what soft-
ware failure might arise the process will always be capable
of rebooting the node and return the machine on its initial
condition.

On the software implementation side, Kadeploy2 is
equipped by timeout loops that permit the process to con-
trol the node’s transitions of states. In more detail, every
parallel launch of a command on a cluster is equipped with
a timeout beyond which the node is excluded of the deploy-
ment and the procedure continues with the rest of the nodes.

3.4 Deployment process optimizations

A fast deployment execution time is very important for
the viability of this approach. The study conducted on [16]
proposes optimizations for the default deployment proce-
dure method. The proposal is to minimize the deployment
process execution time by eliminating the reboot phases of
the procedure.

Based on results of experiments, we realized that steps
4,9 and 14, of the deployment procedure steps, spend a dis-
proportionally execution time. Those are the 3 reboots that
take place in the deployment procedure. Another step that
seems slow on execution time, but not as slow as the reboot
stages, is the 6th step of image environment propagation and
decompression. As was already mentioned on the previous
section, the deployment process uses the diffusion mecha-
nism to propagate the image among the cluster nodes. The
diffusion mechanism that is used is very fast and it slightly

depends on the number of nodes. Hence, this step needs no
further optimization for execution time improvement.

We have considered to add 2 different methods as an op-
tion to the default method of the Kadeploy2 deployment
procedure. Nomini method eliminates the 1st reboot and
pivot eliminates all 3 reboots. The user has the opportu-
nity to choose the preferable method according the experi-
ment needs. Nevertheless, the optimizations are appropri-
ately equipped to guarantee robustness.

Concepts and Implementation. Studying the design
concepts of Kadeploy2 tool and its default deployment pro-
cedure as presented on previous section we understand the
reasons of using a deployment minimal system which is
mounted on memory: To prepare the disk and the parti-
tions for the new environment to be installed. Hence, it can
be possible to generate a deployment without booting a de-
ployment minimal system. For this, we have to sufficiently
equip the reference environment to play the role of minimal
system. This means that the reference environment must be
able to prepare the new partition, transfer and decompress
the image of the new environment on this partition and con-
figure the new environment for deployment. We can then
eliminate the 1st reboot and proceed directly to the 2nd re-
boot on the newly installed environment. Figure 7, enumer-
ates the steps and shows the different states of a computing
node, during the nomini optimized deployment procedure.

The second optimization method pivot (figure 8), goes
further and tries to ”gain” all 3 reboots of the deployment
process, by changing the root file system. Initially, it de-
pends on the first deployment optimization.

In more detail, pivot method starts just after the execu-
tion of the postinstallation phase on the nomini optimization
method. At this exact point the 2nd optimization method
continues by changing the root file system without making
a reboot. For this the system command pivot root [9] is
used, which is a UNIX system command that moves the cur-
rent root file system to the directory for the old file system
and makes the new root file system the current root. More-
over since the procedure is reversible we can easily return to
the initial reference environment without making a reboot,
hence eliminating the 3d reboot of the default deployment
procedure.

Robustness and Constraints. On the issue of robust-
ness, we want to assure that the new optimization methods
are reliable and concrete. To guarantee that, we follow the
guidelines of the default deployment procedure. Thus, the
method is coupled with timeouts on every parallel command
launch.

On the other hand, there are many constraints, especially
in the 2nd optimization method pivot. The most impor-
tant constraint that both optimization methods have, is the
fact that the reference environment has to be equipped with
the diffusion mechanism for the image propagation on the

 1) Submission

 3) Deployment Permission controls

 5) Preinstallation

 7) Postinstallation
 8) Order of Reboot
 9) Boot on the new environment

 10) Work on the environment
 11) Session end indication

 13) Order of Reboot

computing node

Reference
Environment

reboot

 User Environment

reboot

 14) Boot on the reference environment

1, 2, 3

 4, 5, 6, 7, 8

10, 11, 12, 13

 9 14

 4) Reference environment preparation

 12) Deployment permission rights withdrawal/End of session

 6) Environment propagation+Decompression on the partition

 2) Attribution/Session opening

Figure 7. Nomini optimized deployment pro-
cedure using kadeploy2 toolkit.

 1) Submission

 3) Deployment Permission controls

 5) Preinstallation

 7) Postinstallation
8) Reference environment preparation

 10) Work on the environment
 11) Session end indication

Reference
Environment

computing node

 User Environment

pivot un−pivot

 13) Change the root file system(reference environment)
 + services launching

1, 2, 3
 4, 5, 6, 7, 8

10, 11, 12

 9 13

 4) Reference environment preparation

 9) Change the root file system(user environment)+services launching

 6) Environment propagation+Decompression on the partition

 12) Deployment permission rights withdrawal/End of session

 2) Attribution/Session opening

Figure 8. Pivot optimized deployment proce-
dure using kadeploy2 toolkit.

nodes. Another constraint arises because the optimized de-
ployment methods are unable to make a deployment on the
same partition, where the environment is installed. More-
over, the 2nd optimization method introduces an additional
important constraint, that the desired environment has to
function with the same kernel and the same kernel parame-
ters as the reference environment. This issue is very impor-
tant and crucial and limits the method to be used on limited
occasions only.

4 Performance Evaluations

The experiments and the performance measures which
are presented in this section have been effectuated upon the
Grid5000 experimental grid [13]. In more detail we have
used two different clusters of the infrastructure: the IBM
cluster (AMD Opteron biprocessor 2GHz, 2G de RAM,
Myrinet/Gigabit Ethernet) and the GDX cluster (AMD
Opteron biprocessor 2GHz, 2G de RAM, Gigabit Ethernet).

We conducted two different experiments to evaluate
kadeploy2 toolkit. The first experiment measures the de-
ployment procedure using only one cluster of the Grid5000
platform and the second measures the deployment proce-
dure on the grid level. For that reason we used 2 different
clusters of the Grid5000 platform.

4.1 Measures of the deployment proce-
dure on cluster level

The objective of this experiment is to measure the de-
ployment procedure execution time considering the steps
from the beginning of the deployment session until the boot
on the new desired environment. The deployment proce-
dure execution time depends not only on the performance

of Kadeploy but also on the environment to be booted (envi-
ronments can have different configurations and run different
set of services). In this case we used a simple environment
without complex services.

In more detail, the experiment measures the 5 most
”time-consuming” steps of the deployment procedure and
presents results for the default method and the two opti-
mization methods proposed. The figures that follow present
the deployment procedure execution time according to the
number of nodes, for a simple kernel without service and a
cluster of 180 nodes (GDX).

Initially, in the experiment we extracted the average exe-
cution time of 10 continuous repetitions of a deployment,
for the same number of nodes. As it was expected, the
results were figures that had great ”imbalances” in their
curves. This is a result of the sensitivity, the complexity and
the number of the different protocols used in the deploy-
ment procedure along with the security precautions taken
by kadeploy2 tool, which makes the process sensitive to al-
terations.

Hence, in order to demonstrate our approach validation,
we present the figures acquired by extracting the medium
value of the execution time of 10 continuous repetitions of
a deployment, for the same number of nodes.

Figures 9, 10 and 11 represent the experiment effectu-
ated on GDX cluster of 180 nodes for each deployment
method respectively: default, 1st optimization nomini and
2nd optimization pivot. The figures decompose the deploy-
ment procedure execution time in 5 steps:

1. the time to boot the minimal system for the environ-
ment preparation or time for the first check for ready
nodes (vertical line),

2. the time to prepare the disk partitions before the instal-
lation of the user environment (inclined cross),

3. the time to propagate and copy the user environment
archive (star),

4. the time for the postinstallation procedure (empty
square),

5. the time to boot the new user environment or the time
change the root file system on the new user environ-
ment and launch the services (filled black square).

The figures show valuable results. First of all, the boot
time depends on the number of nodes. This is because the
boot time is different for all machines and we consider only
the slowest one. In contrast, the disk preparation, the envi-
ronment transfer and the postinstallation procedure increase
negligibly with the number of nodes. On the other hand, the
curves show that the mechanisms of the optimization meth-
ods are working according to our expectations.

Figure 12, shows the total execution time of the kade-
ploy2 deployment procedure according to the number of
nodes, for the default method and the 2 optimization meth-
ods, on the GDX cluster. The featured chart validates our
expectations for both optimization methods proposed, and

show us that all deployment procedure methods introduce
a very good scalability according to the number of nodes.
As expected the pivot optimization method is the fastest
with a difference of about 160 seconds from the default
method. The nomini optimization method has a difference
that ranges from 70 to 100 seconds from the default de-
ployment procedure method which is a very good result,
considering the simplicity of its constraints according to the
default method. On figure 12 we can also observe that the
optimization benefits does not grow proportionally to the
system scale. This is a result of the ”first check” delay as
we can see on figures 10 and 11. This problem is going to
be addressed on a following version of the tool.

 0

 100

 200

 300

 400

 500

 0 50 100 150 200
tim

e
(s

ec
)

#nodes

Kadeploy2 default deployment method on GDX cluster

reboot,first check
preinstall

environment propagation+copy
postinstall

reboot,last check

Figure 9. Kadeploy2 default deployment
method

 0

 100

 200

 300

 400

 500

 0 50 100 150 200

tim
e

(s
ec

)

#nodes

Kadeploy2 nomini deployment method on GDX cluster

first check
preparation,preinstall

environment propagation+copy
postinstall

reboot,last check

Figure 10. Kadeploy2 nomini deployment
method

 0

 100

 200

 300

 400

 500

 0 50 100 150 200

tim
e

(s
ec

)

#nodes

Kadeploy2 pivot deployment method on GDX cluster

first check
preparation,preinstall

environment propagation+copy
postinstall
last check

Figure 11. Kadeploy2 pivot deployment
method

 0

 100

 200

 300

 400

 500

 0 50 100 150 200

tim
e

(s
ec

)

#nodes

Kadeploy2 deployment procedure (Methods)

default
nomini

pivot

Figure 12. Comparison of the 3 kadeploy2
tool’s deployment methods

4.2 Measures of the deployment proce-
dure on grid level

Figure 13, presents the time diagram of a deployment
and reboot phase involving 2 Grid’5000 sites for a total
of 260 nodes (180 nodes in site 1 (GDX) and 80 nodes in
site 2 (IBM)). The vertical axis corresponds to the number
of nodes in deployment and reboot state. At t=0s, all the
nodes are running an environment. At t=30s, a deployment
sequence is issued. At t=50s, all nodes are rebooting the
deployment kernel. At t=160s all nodes have rebooted and
are preparing the user partition. The clusters start the sec-
ond reboot at t=200s for site 2 and t=340s for site 1. Site 2
nodes are rebooted with the user’s environment at t=320s.
All nodes are rebooted with the user’s environment (includ-
ing Site 1) at t=450s. At t=800s, the user experiment is
completed and a reboot order is issued making all nodes re-
booting default environment. This figure demonstrates that
the current ”boot-to-boot” time at the Grid level (450 sec-
onds) is well below a 10 minutes mark.

5 Work in Progress

5.1 Support of various operating systems

Currently, Kadeploy2 is implemented to support the de-
ployment of environments that use a GNU/Linux operating
system and ext2 file system. The toolkit’s aim is to intro-
duce a new way of exploitation of clusters and grids by
making possible to the users to deploy and use the envi-
ronment of their choice. Thus, Kadeploy2 should be im-
plemented to support various operating systems (FreeBSD,
Windows, Solaris, Mac OS X, etc) and different filesystems
(UFS, HFS, ZFS, etc).

Any operating system which Linux supports creation
of, read/write access to and cohabitation on the same
disk(different partitions), their filesystem should be able to
be supported by Kadeploy2 in some manner.

The first fact that we consider is the partition scheme of
each node, where the reference partition has a Linux oper-

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000 1200

no

de
s

time (sec)

deploying
deployed

deploying_site1

deployed_site1
deploying_site2
deployed_site2

Figure 13. Time diagram for the deployment
and reboot of a user environment on 2 sites.

ating system and an ext2 filesystem environment installed.
This reference Linux environment has to be kept untouched.

Thus to integrate non-Linux operating systems (and non-
ext2 filesystems) upon Kadeploy2 toolkit, the deployment
procedure has to appropriately construct a partition scheme
that will keep the reference partition without changes and
can bear a new operating system (and filesystem) on a dif-
ferent partition.

Partition imaging procedure has to be unaware of the
filesystem that it compresses, thus making the method
widely applicable and scalable. For this, the Unix dd com-
mand can be used which works on disk-device level where
there is no restriction on the data layout of a disk and every-
thing can be replicated.

Furthermore, this new extended deployment procedure,
has to propose a method of environment construction for
this operating system that is going to support. Finally, since
Kadeploy2 uses grub, as the network bootloader, for the de-
ployment procedure, the filesystem of the operating system
to be installed, must be supported by grub.

Hence, we concluded to a flexible global method ap-
proach that can be applied for FreeBSD and Solaris, which
are two widely used operating systems on high performance
parallel systems. The deployment procedure of this global
method can be summarized by the following stages:

1. Boot on the deployment minimal system.
2. Write in the start of a large (20G) primary partition a

minimal system of the OS that it is going to be de-
ployed, using the dd command .

3. Boot on the new OS minimal deployment system.
4. Do the appropriate changes on the disk partitions ac-

cording the needs of the new filesystem and write the
normal deployment environment.

5. Reboot on the new OS environment.

This method will be the base for various operating sys-
tems integration on kadeploy2 toolkit.

6 Conclusion

Nowadays, Cluster and Grid Computing have become
widely used infrastructures, that gain an ever increasing
world recognition. As computer hardware has become
more powerful, cheaper and smaller, the number of individ-
ual nodes that comprise such infrastructures, is increasing
rapidly.

This new era of computing technologies has generated
numerous challenging issues, specially in the procedures of
exploitation and administration. In the automated installa-
tion and configuration of those infrastructures, a number of
important tools solve critical problems and propose innova-
tive ideas.

In this article, we presented Kadeploy2 environment de-
ployment toolkit which provides automated software instal-
lation and reconfiguration mechanisms. The main contribu-
tion of kadeploy2 toolkit is the introduction of a prototype
idea, aiming to be a new way of cluster and grid exploita-
tion. That is to let the users concurrently deploy computing
environments exactly fitted to their experiment needs, on
different sets of nodes.

This article presented the architecture, the mechanisms
and the deployment procedure steps of kadeploy2. Since
the deployment execution time is a very important aspect
for the viability of this approach, the main work effectu-
ated was to propose optimization methods for the deploy-
ment procedure and measure the performance of the toolkit.
Multiple performance measurements were conducted. They
validated our approach, achieved our expectations and gen-
erated ideas for deeper optimizations.

In addition, a first preliminary study upon the aspect of
multiple OS integration on kadeploy2 toolkit, indicates to
consider further research of that issue. We also found that
there are areas that need to be more thoroughly examined.
One such area is the ”quality of service” of the approach.
Since the tools’ objective is to provide flexibility and ease
of use, a more delicate way of environment creation and
update method is needed.

References

[1] DataGrid Report on Current Technology.
https://edms.cern.ch/file/332371/1/datagrid-04-d4.1-
0101-3 0.pdf.

[2] g4u - Harddisk Image Cloning for PCs.
http://www.feyrer.de/g4u/.

[3] GridWeaver Project. http://www.gridweaver.org/.
[4] Partition Image for Linux. http://www.partimage.org/.
[5] Portable Batch System. http://www.openpbs.org/.
[6] Stateless Linux. http://people.redhat.com/ hp/stateless/

StatelessLinux.pdf.
[7] Sun Grid Engine. http://gridengine.sunsource.net/.
[8] System Installation Suite. http://sisuite.org.

[9] W. Almesberger. Booting linux: The history and the future.
Ottawa Linux Symposium 2000, July 2000.

[10] P. Anderson and A. Scobie. LCFG - the Next Generation. In
UKUUG Winter Conference. UKUUG, 2002.

[11] C. Barb, J. Lepreau, L. Stoller, M. Hibler, and R. Ricci. Fast,
scalable disk imaging with frisbee, June 14 2003.

[12] N. Capit, G. D. Costa, Y. Georgiou, G. Huard, C. Martin,
G. Mouni, P. Neyron, and O. Richard. A batch scheduler
with high level components. In Cluster computing and Grid
2005 (CCGrid05), 2005.

[13] F. Cappello, F. Desprez, M. Dayde, E. Jeannot, Y. Jegou,
S. Lanteri, N. Melab, R. Namyst, P. Primet, O. Richard,
E. Caron, J. Leduc, and G. Mornet. Grid’5000: A large
scale, reconfigurable, controlable and monitorable grid plat-
form. In Grid2005 6th IEEE/ACM International Workshop
on Grid Computing, 2005.

[14] I. Foster and C. Kesselman. Globus: A meta-
computing infrastructure toolkit. International
Journal of Supercomputer Applications and High
Performance Computing, 11(2):115–128, 1997.
ftp://ftp.globus.org/pub/globus/papers/globus.pdf.

[15] J. Frey, T. Tannenbaum, M. Livny, I. T. Foster, and
S. Tuecke. Condor-G: A computation management agent
for multi-institutional grids. In HPDC, page 55, 2001.

[16] Y. Georgiou. Environment deployment for high performance
cluster computing. Report of master in ”mathematics, com-
puter science”, University Joseph Fourier, September 2005.

[17] K. Keahey, K. Doering, and I. T. Foster. From sandbox to
playground: Dynamic virtual environments in the grid. In
GRID, pages 34–42, 2004.

[18] E. Kotsovinos, I. Pratt, S. H, and T. Harris. Controlling the
xenoserver open platform, Apr. 20 2003.

[19] I. V. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and
R. J. Figueiredo. VMPlants: Providing and managing vir-
tual machine execution environments for grid computing.
In SC’2004 Conference CD, Pittsburgh, PA, Nov. 2004.
IEEE/ACM SIGARCH. (ACIS) Lab, University of Florida.

[20] C. Kurmann, F. Rauch, T. Hochschule, and T. M. Stricker.
Partition repositories for partition cloning - OS independent
software maintenance in large clusters of PCs. Technical
report, Dec. 08 2000.

[21] R. G. Leiva, M. B. López, G. C. Meliá, B. C. Marco,
L. Cons, P. Poznański, A. Washbrook, E. Ferro, and A. Holt.
Quattor: Tools and techniques for the configuration, installa-
tion and management of large-scale Grid computing fabrics.
Journal of Grid Computing, 2(4):313–322, Dec. 2004.

[22] D. Ligneris, N. Gorsuch, S. Scott, and T. Naughton. Open
source cluster application resources (OSCAR) : design, im-
plementation, June 28 2003.

[23] C. Martin and O. Richard. Parallel launcher for clusters of
pc, parallel compting. In Parco’01 (Parallel Computing),
Naples, 2001.

[24] P. M. Papadopoulos, M. J. Katz, and G. Bruno. NPACI
Rocks: tools and techniques for easily deploying manage-
able Linux clusters. Concurrency and Computation: Prac-
tice and Experience, 15(7–8):707–725, June/July 2003.

[25] B. Schwarz. Hacking Red Hat Kickstart. Linux Journal,
108:??–??, Apr. 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

