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Abstract

We present a SAT-based approach to the task and mes-
sage allocation problem of distributed real-time systems
with hierarchical architectures. In contrast to the heuris-
tic approaches usually applied to this problem, our ap-
proach is guaranteed to find an optimal allocation for real-
istic task systems running on complex target architectures.
Our method is based on the transformation of such schedul-
ing problems into nonlinear integer optimization problems.
The core of the numerical optimization procedure we use to
discharge those problems is a solver for arbitrary Boolean
combinations of integer constraints. Optimal solutions are
obtained by imposing a binary search scheme on top of that
solver. Experiments show the applicability of our approach
to industrial-size task systems, which are mapped to hetero-
geneous hierarchical hardware architectures.

1 Introduction

Embedded systems typically have to satisfy strict timing
requirements on using distributed architectures. In general,
the task allocation problem is known to be NP-hard[1], and
therefore assignments should be done automatically, guar-
anteeing the predictability with respect to real-time. Tem-
poral predictability entails both the scheduling of tasks on
ECUs (Embedded Control Units) as well as the transmis-
sion of messages over communication networks.

Predictable real-time behavior of task systems can be
achieved through schedulability analysis, which has been
investigated intensively in the past. [2] gives a survey on
this topic. Accurate time prediction for the communica-
tion of messages on lifelike bus systems was shown akin
to schedulability analysis of tasks in [3]. We will use these
results providing a rich task model that enables the applica-
tion of our method to real-world problems.

∗This work was partly supported by the German Research Founda-
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In the area of task allocation there are several approaches
of mostly heuristic type for finding a mapping of tasks to
ECUs and messages to networks. To simplify matters, sev-
eral approaches restrict the architecture to a fixed specified
interconnection of ECUs. For example in [4] the task allo-
cation problem is investigated on architectures with a grid
interconnection. Graph based heuristics are used to cluster
tasks that are closely related in order to minimize commu-
nications. Unfortunately, neither exact timing predictions
for the runtime of tasks, nor exact communication latencies
are considered. Less stringent architectural restrictions are
taken in [5], where a set of uniform ECUs is connected by a
realistic bus system. Based on the results of [3], the alloca-
tion problem is attacked by a simulated annealing approach.
Treatment of certain additional placement restrictions, like
forbidden placements and memory consumption, is incor-
porated. However, this approach is not able to deal with
hierarchical architectures (networks of ECUs with hierar-
chical topologies). The authors of [6] propose a combined
branch & bound and list-scheduling approach to allocate
tasks and messages of time-triggered and event-triggered
task sets to ECUs with a time-triggered, TDMA-based bus
system. Again, only very simple topologies are supported.
In the area of synthesis for HW/SW co-design, some ap-
proaches include the task allocation problem, but usually
use only very rough prediction of run-times and message la-
tencies. As an example, the reader is referred to [7], where
evolutionary algorithms perform an allocation of tasks to
hardware or ECUs, thereby using a static schedule without
preemption.

In contrast to such incomplete and suboptimal heuristic
approaches we propose an optimal strategy to assign tasks
and messages to ECUs and network busses in complex ar-
chitectures. This is done by modeling timing and resource
restrictions as a set of integer formulae. Adding a cost func-
tion reflecting the run-time overheads of a certain task al-
location, we are able to determine the assignment of tasks
with minimal cost. Optimal assignments are generated by a
sequence of calls to an appropriate propositional SAT (Sat-
isfiability) checker[8], after transformation of the integer
formulae into propositional formulae over the booleans.
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Optimal approaches for the task allocation problem were
already proposed in [9] and [10]. In [9], mixed integer lin-
ear programming is used to synthesize a static schedule of
tasks on an ECU in a HW/SW co-synthesis environment.
Due to the restrictions of the co-synthesis domain, the task
model is quite simple: all tasks have the same period and
are non-preemptive and, therefore, do not suffice task mod-
els we aim. Furthermore communication overheads are not
modeled exactly and are used only for simple direct links
between ECUs. [10] presents an optimal branch and bound
algorithm for the task allocation problem on a richer task
model that allows non-uniform periods for tasks, but is re-
stricted to non-preemptive scheduling, too. Again, the com-
munication model is approximate.

Contrary to the last two approaches, we aim at static
priority-driven preemptive schedules for tasks. Further-
more, our approach provides exact analysis of message de-
livery cost on different bus systems, like bus systems driven
by time division multiple access (TDMA) or event-driven
bus systems, like CAN. Additionally, we consider cost for
messages arising while crossing gateway nodes.

The paper is organized in 7 sections. Section 2 describes
the architectural and task model and derives safe predictions
of computation times for tasks as well as for messages in
a distributed architecture. Section 3 presents the transfor-
mation of the task allocation problem into a set of integer-
arithmetic formulae and section 4 extends this encoding in
order to deal with hierarchical architectures. Our optimiza-
tion algorithm for integer formulae is shown in section 5.
Evaluations in section 6 demonstrate the applicability of the
approach and, finally, section 7 concludes the paper.

2 Basic model

In order to formalize the system behavior of a real-time
system within the time domain, an abstract model has to be
created which defines on one hand the system architecture
and on the other hand a task model which describes the ap-
plication running on that architecture, plus the timing con-
straints the application must fulfill. A system architecture
consists of a number of ECUs and a number of communica-
tion media the ECUs are connected to. Thus the architecture
is described by a tuple A = (P , K, κ), where P is the set
of ECUs, and K ⊆ 2P is the set of communication media,
where a communication medium k = {p1, . . . , pj} ∈ K
connects all ECUs p1 to pj . Finally, κ defines the typical
parameters of each medium (like frame sizes, access meth-
ods, transfer rates, etc.).
In order to perform the task allocation and the schedulability
analysis some assumption about the underlying scheduling
strategy must be made. In this paper tasks are scheduled by
a preemptive, fixed priority algorithm[5].

A task may send messages at the end of each computa-

tion to one or more other tasks. The arrival of a messages
on an ECU may activate the receiving task. The timing con-
strains exist for each task and each message. The task model
is defined by a set T of tuples τi = (ti, ci, γi, πi, δi, di) de-
scribing the individual tasks. The elements are ti ∈ N ac-
tivation period or minimal inter-arrival time, ci : P → N

worst case execution times (WCET), γi ⊆ T ×N×N mes-
sages (including their target, their size and their deadline)
the task is sending, and πi ⊆ P the ECUs the task is al-
lowed to be allocated on. Tasks from δi are not allowed
to be allocated together with τi (redundant tasks which are
used in fault tolerant systems), and di ∈ N is the deadline
of τi.
Task allocation is now defined by the following functions:
Π : T → P assigns each task in T to an ECU, Φ :
T × T → {0, 1} defines a priority ordering of tasks, and
Γ :

(T × N × N → 2K
)

assigns each message to a set of
communication media.
Given a certain allocation, scheduling analysis evaluates
whether all tasks can meet their timing constraints. For
each task its worst case response time is calculated. The
same is done for message transmissions, but for each com-
munication media the message uses. In the remainder of
this section it is outlined how the analysis is defined.

The scheduling analysis for priority ordered execution in
its simplest form can be expressed by the following well
known fixed point equation (cf. [2]):

rn+1
i = ci +

X
j∈hp(i)

‰
rn

i

tj

ı
cj (1)

where hp(i) is the set of tasks running on the same ECU
with higher priority, and ri is the worst case response time
of a task τi. The iteration either ends with some n if rn+1

i =
rn
i or if rn

i exceeds the given deadline.
An appropriate way to model message transmission is

to exploit the analogy between arbitration of a bus by mes-
sages and CPU arbitration of an ECU by tasks. In general,
we distinguish two types of bus systems: In priority driven
busses each message is assigned a priority. The bus proto-
col then grants the bus access to the ECU with the highest
requested priority. The CAN bus is a familiar priority bus.
In TDMA based bus systems the bandwidth is divided into
time slots. Each ECU is assigned a unique slot where it may
send messages exclusively. The token ring used in [5] and
the TTP are examples for TDMA busses.

In order to model message transmission, each message
is assigned a unique priority. Messages to be sent are stored
in a priority-ordered queue. A more comprehensive outline
of this mechanism is, for example, given in [3]. Using a
priority driven bus, the time needed for the transmission of
a message mi now can be calculated by

rn+1
mi

= ρmi + Imi with Imi =
X

mj∈hp(mi)

‰
rn+1

mi

tmj

ı
ρmj (2)



where ρmi is the time needed to transmit message mi over
the bus. The time tmj is inherited by the task sending the
message and therefore equals to the period of mj’s sender.

TDMA based communication media introduces an addi-
tional blocking factor because a message may have to wait
for the slot assigned to the ECU the message is sent from
before it can be transmitted. For more details see [3].

rn+1
mi

= ρmi + Imi +

‰
rn

mi

Λ

ı
(Λ − λ(S(Π(τi)))) (3)

where Λ is the length of a TDMA round and λ(S(Π(τi))) is
the length of the slot assigned to the ECU the sending task
is assigned to. The additional delay to the message in each
TDMA round represents the situation in which the own slot
just has past.

Based on the calculated response times for tasks and
messages, the feasibility of the schedule can be provided
by comparing them with their deadlines.

Using the same encoding scheme, many more temporal
properties like release jitter, blocking factors, etc., can be
represented. While this is done in our actual model we re-
frain from expanding on this due to lack of space.

3 Transformation of the allocation problem

In order to find (and optimize) a valid assignment of
tasks to ECUs, we generate an encoding of the effect of
the mappings Π and Φ on the response times. The encod-
ing is a set of arithmetic formulae over integers which are
connected by conjunction. In the following, all variables
of the formulae are denoted by using a typewriter font.
All other identifiers are constants that can be calculated at
transformation time.

Let ai be the allocation variable for task τi. ai ranges
over [p0, . . . , pn] and determines, which ECU task τi is as-
signed to. Hence ai represents Π(τi). The optimization
procedure can assign arbitrary values to ai, but it has to
consider the placement constraints and the set of redundant
tasks. We formulate this by the following in-equations:0

@ ^
∀τi∈T

^
∀p∈P\πi

ai �= p

1
A∧

0
@ ^

∀τi∈T :δi �=∅

^
∀τj∈δi

ai �= aj

1
A (4)

In order to guarantee real-time constraints given by dead-
lines, we have to transform the response time analysis from
equation (1) into a set of in-equations. Firstly, depending on
the allocation of τi, the WCET wceti must be calculated.^

∀τi∈T

^
∀p∈P

(ai = p) → wceti = ci(p) (5)

Subsequently, the response time ri according to equation
(1) of a task τi can be modeled as^

∀τi∈T
ri = wceti +

X
∀τj∈T

pcj
i , (6)

where pcj
i describes the preemption costs induced by tasks

with higher priority. For each task τj that is assigned to
the ECU Π(τi) and that has a higher priority pj

i than τi

(pj
i = 1), the WCET multiplied by the number of preemp-

tions (caused by this task) determines the interference cost.
This can be expressed with the following set of equalities:

^
∀τi∈T

^
∀τj∈T \{τi}

(
pj

i ∧ (ai = aj)
)
→ pcj

i = Ij
i · wcetj (7)

^
∀τi∈T

^
∀τj∈T \{τi}

¬
(
pj

i ∧ (ai = aj)
)
→ pcj

i = 0 (8)

where Ij
i describes the number of preemptions of a task

τi by a task τj . This number depends on the priority pj
i

of the pair of tasks. It is known, that the deadline mono-
tonic approach is optimal if all deadlines are different. If
two task’s deadlines become equal, the optimization pro-
cess should choose a unique priority assignment. This is
done within the next two in-equations, where the priorities
are assigned according to the deadline of the tasks. Equality
of two deadlines enables an arbitrary, but consistent, assign-
ment of true or false to pj

i .
^

∀τi∈T

^
∀τj∈T \{τi}

pj
i ≥ 0 ∧ pj

i ≤ 1 ∧ pj
i + pi

j = 1 (9)

^
∀τi∈T

^
∀τj∈T \{τi}

`
(di > dj) → pj

i = 1
´

∧ `
(di < dj) → pj

i = 0
´ (10)

With the given priority and the given mapping Π(τi) we can
now solve the recurrence equation (1), which is modeled
in equation (6) using the number of preemptions Ij

i from
each task in equation (7) and (8). Ij

i is a substitution of
the ceiling function in (1) and we can derive the upper and
lower bound of Ij

i :⌈
ri

tj

⌉
=: Ij

i

def.��
=⇒ ri

tj
≤ I

j
i <

ri

tj
+ 1

If we assign a value to Ij
i , both bounds must hold. Hence

we can transform both bounds into linear in-equations (a)
and (b):

ri

tj
≤ Ij

i ⇔ ri ≤ Ij
i · tj (a)

Ij
i <

ri

tj
+ 1 ⇔ ri > (Ij

i − 1) · tj (b)

Because Ij
i is an integer variable and taking the definition

of the ceiling function into account, each assignment of Ij
i ,

that satisfies conditions (a) and (b) in the above equations,

equals the result of the term
⌈

ri

tj

⌉
. Furthermore, the struc-

ture of these conditions forces valid assignments to be a so-
lution of the recurrence equation. Now these conditions can
be translated into a set of inequalities for each task, where
we have to ensure that tasks which are assigned to different



ECUs don’t preempt each other. Avoidance of interference
due to lower priorities is eliminated in equation (8).

^
∀τi∈T

^
∀τj∈T \{τi}

(ai = aj) → ((Ij
i · tj ≥ ri)

∧((Ij
i − 1) · tj < ri))

(11)

^
∀τi∈T

^
∀τj∈T \{τi}

(ai �= aj) → Ij
i = 0 (12)

Finally, for each task we have to check whether the response
time is less than or equal to the deadline of this task:

^
∀τi∈T

ri ≤ di (13)

As outlined in section 2, the calculation of response times
of messages is quite similar to the determination of response
times for tasks. Hence, we can abstain from expanding on
this here. However, if we investigate the formulae for the
response time of messages that are transmitted via TDMA-
based communication media, there is the need to introduce
a term for blocking caused by other slots (see equation 3).
This is encoded in the following way:∧
∀τi∈T :γi �=∅

∧
∀mj∈γi

blockmj = Imbmj ·
(
tlen− oslmj

)
,

where tlen is the length of the TDMA round, Imbmj

contains the number of preemptions by other messages and
oslmj is the length of the slot that Π(τi) is assigned to (if
τi is the sender of message mj). The interesting fact here is
that the optimization procedure must assign values to all of
these variables, thus we have to deal with non-linear (in)-
equations in the optimization procedure (We will discuss
the consequences in section 5).

4 Encoding for hierarchical architectures

Hierarchically organized architectures can be depicted as
a set of graphs, possibly with cycles. Each node represents
a communication medium and the arcs between nodes rep-
resent gateway ECUs that link media to each other. In the
following we allow arbitrary networks, but only with one
gateway between two media. Beside the generation of the
mapping Π there is also a need for generating the mapping
Γ during system construction. In order to determine the set
of used media for each message m we introduce a boolean
variable Kk

m that indicates the use of medium k by its truth
value. As we will see below, this pure used/not used in-
formation is not sufficient: Firstly, we have to ensure that
the used path is possible within the given topology. Sec-
ondly, successive message transmission on different media
induces different jitter behavior, which we have to consider
during schedulability analysis. Therefore, we have to know
in which order the media are used.

For this purpose we introduce the so-called set PH of
path closures. A path closure ph ∈ PH is a set of or-
dered sets of media ′′k1k2 . . . k′′

n, that contains all possible
sub-paths of a path starting on a certain medium. Figure 1
demonstrates this on a simple example.

p1

p2

p3

p4

p5

ph0 =
˘
““

¯

k1 = {p1, p2, p3}

k2 = {p2, p4}

k3 = {p3, p5}

ph1 =
˘
“k1“, “k1k2“

¯

ph2 =
˘
“k1“, “k1k3“

¯

ph3 =
˘
“k2“, “k2k1“, “k2k1k3“

¯

ph4 =
˘
“k3“, “k3k1“, “k3k1k2“

¯

Figure 1. Path closures on a hierachical topol-
ogy including the order of communication
media in each possible path.

Each path closure represents a possible path on the topology
and contains all sub-paths within these complete path. For
example, in figure 1 the path closure that starts with medium
k2 and all its possible sub-paths within the hierarchical sys-
tem topology are colored. While choosing one of these path
closures for a message transmission during optimization, on
the one hand we are able to check for the existence of the
path chosen by the K variables, and on the other hand we
have knowledge about the order of media within the chosen
path. The implementation of Γ is realized by introducing
path closure variables Pfm over the set of path closures.
After selecting one path closure for these variables, we have
to check the compatibility of the path closure to the values
of the Kk

m variables and the correctness of the allocation of
sender and receiver task:

∧
∀phl∈PH

∧
∀τi∈T :γi �=∅

∧
∀mj∈γi

(Pfmj = phl) →

∨
∀h∈phl

(∧
k∈h̄

¬Kk
mj

∧
∀1≤l≤|h|:kl=prl(h)

Kkl
mj

∧ v(h)

)

(14)

where h̄ = K\h and prj(h) returns the medium k of
the j-th position in a path h. Equation 14 checks the cor-
rect usage and non-usage Kk

mj
of all communication media

for each sub-path of the chosen path closure phl. Due to
the construction of the sub-paths within a path closure the
disjunction in equation 14 enables one and only one sub-
path, whereas all other sub-paths are excluded. v(h) checks
whether the sender task is assigned to an ECU at the first
medium and the target task is assigned to an ECU at the last
medium of the path h, but not on gateway ECUs between



media on the path:

v(h) :=

⎧⎪⎨
⎪⎩

Π(τi) ∈ kr ∧ Π(τj) ∈ kr if h = “kr“
Π(τi) ∈ kr1\(kr1 ∩ kr2)
∧ Π(τj) ∈ krn\(krn ∩ krn−1) else

After determination of the used communication media, we
know have to cater for deadlines of messages. The idea
here is to generate local deadlines dk

mt
for a message mt =

(τt, ·, ∆mt) ∈ γi on each medium, s.t. the sum of all dead-
lines, and of the incurring cost (servmt) which raise from
crossing gateway ECUs, equals the message’s deadline:

∧
∀τi∈T :γi �=∅

∧
∀mt∈γi

(∑
k∈K

dk
mt

+ servmt ≤ ∆mt

)
,

If a medium is not used, the deadline is forced to become 0:∧
∀τi∈T :γi �=∅

∧
∀mt∈γi

∧
∀k∈K

(¬Kk
mt

→ dk
mt

= 0
)

On each medium we now can perform schedulability anal-
ysis, but we have to consider the jitter of messages. The
valuation of the jitter of a message on a certain medium
ki depends on the usage of all media kj in front of ki in the
chosen path. Hence, the knowledge about the order of usage
of media ki within a path is essential for analysis purposes,
and we provide this order by using path closures. The jitter
can be calculated by the following formula:∧

∀h∈PH

∧
∀τi∈T :γi �=∅

∧
∀mj∈γi

(Pfmj = h) →

∧
k∈h̃

⎛
⎝Jk

mt
= Jmt +

pos(k,p̃)−1∑
j=1

(
dprj(h̃)

mt
− βprj(h̃)(mt)

)⎞
⎠ ,

where Jk
mt

is the jitter of message mt on medium k, Jmt is
the release jitter of mt, h̃ is the longest path of a path clo-
sure h, pos(k, h) is the position of medium k in the path h,
and βk(mt) is the best case transmission time of a message
mt on medium k. For each used medium k the jitter Jk

mt
is

here defined by the sum of the difference of the worst case
response time and the best case transmission time of all pre-
decessor media of k, whereby the worst case response time

is safely approximated by using the deadline dprj(h̃)
mt of the

message on the medium prj(h̃).
Finally, we are able to construct the response time anal-

ysis of messages as outlined in section 2 using the approach
presented in section 3, but including jitter (cf. [2]). If
rk

m ≤ dk
m holds for all used media k on a chosen path h,

we have proven that sending the message m on path h is
feasible.

Once we have done this modeling for tasks and mes-
sages, we can add an optimization function, for example

minimizing utilization. For utilization optimization, for ex-
ample, an in-equation is added which encodes that the dif-
ference to the average utilization is below some limit.

5 A SAT–based approach to integer opti-
mization

The encoding sketched in the previous section reduces
the problem of finding an optimal allocation of tasks to
an optimization problem over the integers. The constraints
of this optimization problem are given as a Boolean com-
bination φ of linear and non-linear integer equations and
in-equations, while optimality amounts to minimizing the
value of some integer variable i occurring in φ subject
to these constraints. This does in principle constitute a
standard integer optimization problem, yet the formulae
φ obtained from above encoding feature a peculiar struc-
ture which calls for extremely powerful optimization pro-
cedures:
- they are massively disjunctive, representing the plethora

of choices entailed in the scheduling problem, and
- besides large linear (in)-equation systems over the inte-

gers, they do also contain a non-trivial number of non-
linear integer constraints.

These formulae are thus hardly amenable to conventional
numeric optimization procedures, which forced us to em-
ploy a reduction to propositional satisfiability solving (SAT)
which is possible due to the bounded range of all integer
variables entailed. We pursue a two-step approach to per-
form this reduction:
1. we encode arithmetic constraints over the integers by
propositional formulae, enabling us to use a SAT checker to
determine satisfying valuations for arbitrary Boolean com-
binations thereof, and
2. employ binary search for finding an optimal valuation.
Taking advantage of the recent advances in SAT [11, 12, 13]
which have enhanced the size of tractable SAT problems by
orders of magnitude within just a few years, such a reduc-
tion is able to tackle large instances of our scheduling prob-
lems.

5.1 Solving the arithmetic satisfiability problems

In order to discharge decision problems concerning satis-
fiability of arithmetic constraint systems φ over the integers,
we employ the following reduction to purely Boolean sat-
isfiability problems: First, helper-variables are introduced
to obtain an equi-satisfiable problem that only contains
“triplets”, i.e. is a Boolean combination of arithmetic equa-
tions and in-equations that comprise at most 3 variables, at
most one binary operator, and exactly one relational op-
erator. Thereafter, these arithmetic triplets are rewrote to
propositional logic by using a 2’s complement —and thus



logarithmic size— representation for integer variables and
a propositional axiomatization for the arithmetic operators
on that representation.

Rewriting to triplet form. The rewriting to triplet form
is basically similar to auxiliary variable introduction in the
compilation of arithmetic expressions; in detail, it resem-
bles the linear-time transformation of propositional formu-
lae to CNF suggested by Tseitin in [14]. I.e., the overall for-
mula φ is translated into the form [φ] ∧ T (φ), where [φ] is
a fresh propositional variable that represents the truth value
of φ and

T (φ � ψ) = ([φ � ψ] ⇔ ([ψ] � [ψ])) ∧ Θ(φ, ψ) (15)

for arbitrary Boolean junctors 	, with[φ] and
[ψ] again being fresh propositional variables and
Θ(x, y) = T (x) ∧ T (y). Likewise,

T (e1 ∼ e2) = ([e1 ∼ e2] ⇔ [e1] ∼ [e2]) ∧ Θ(e1, e2) (16)

T (e1 ⊗ e2) = ([e1 ⊗ e2] = [e1] ⊗ [e2]) ∧ Θ(e1, e2) (17)

T (v) = v if v is a variable (18)

where ∼ is an arbitrary relational operator, ⊗ is an arbi-
trary arithmetic operator, [e1 ∼ e2] is a fresh propositional
variable, [ei] and [e1⊗e2] are fresh arithmetic variables, for
which appropriate ranges are inferred from the ranges of the
subexpressions. Such a rewriting yields an equisatisfiable
formula where a satisfying assignment of the original for-
mula can be extracted from a satisfying assignment of the
triplet form by projection to the variables stemming from
the original formula.

Encoding as propositional satisfiability problem. Once
the triplet form is obtained, it remains to encode the arith-
metic triplets, i.e. those obtained on transformations (16)
and (17), by propositional logics. This amounts to replacing
the arithmetic variables by an appropriate (wrt. 2’s comple-
ment representation) number of propositional variables and
the operators by an axiomatization of their counterparts on
bit-vectors. For example, a triplet involving addition can be
transformed to

P(x + y = z) =
Vk

i=0 fa(zi, ci+1, xi, yi, ci)∧
¬c0 ∧ (zk+1 ⇔ ck+1) ,

where k is the number of bits used for representing the val-
ues of x and y, c0 to ck+1 are fresh propositional variables,
and a fulladder fa is defined by

fa(s, cout, x, y, cin) = (s ⇔ (x ∨̇ y ∨̇ cin)) ∧
(cout ⇔ (x + y + cin ≥ 2)) (19)

It remains to encode the propositional formulae obtained
from transformationP within the input language of a propo-
sitional SAT solver. To keep this encoding compact, we take
advantage of Pseudo-Boolean formulae (PB) [15] rather

than use an encoding by conjunctive normal form or by
expressions built from binary Boolean operators, as often
used in SAT solving. A PB formula is a conjunction of lin-
ear constraints over Boolean literals, i.e. similar to the con-
straint part of a 0-1 linear program, and allows to, e.g., en-
code the rightmost conjunct of (19) by (2cout+x+y+cin ≥
2) ∧ (2cout + x + y + cin ≥ 2), where v denotes the com-
plement of v. We solve the resultant PB formulae by the
Pseudo-Boolean constraint solver GOBLIN [8], which is
the core of the HySAT tool [16]. The resultant formula is
satisfiable iff the encoded integer-arithmetic constraint sys-
tem φ is; furthermore, any satisfying assignment is a 2’s
complement representation of φ’s triplet form s.t. a satis-
fying assignment of φ can be extracted by undoing the 2’s
complement encoding and projecting to φ’s genuine vari-
ables.

5.2 Binary search for optimal solutions

Using above decision procedure, satisfiability of the con-
straint system φ can be decided and, if applicable, a satisfy-
ing assignment σ can be determined alongside with a cor-
responding valuation σ(i) of the cost function i to be mini-
mized. Hence, we can define a computable function SOLVE

from integer constraint systems to IN ∪ {−1} s.t.

SOLVE(φ) :=
{

σ(i) for some σ with σ |= φ if φ is satisfiable,
−1 otherwise.

Assume w.l.o.g. that the integer variable i we are going to
minimize only takes values from IN. Then SOLVE yields
an upper estimate of the cost of the optimal solution s.t. an
optimal solution minimizing i can be obtained by applying
a binary search scheme on the range of i as follows:

BIN SEARCH(φ) :
L := 0
R := SOLVE(φ)
while (L < R) do

M := (L + R) div 2
K := SOLVE(φ ∧ i ≥ L ∧ i ≤ M)
if (K = −1) then L := M else R := K fi

done

After termination of BIN SEARCH, R either equals −1, in-
dicating unsatisfiability of φ, or contains the optimal value
of i. In the latter case, a corresponding task allocation can
be obtained by solving φ∧ i = o, where o is the optimum of
i, and extracting the placement and scheduling information
from the satisfying assignment.

6 Experimental results

In order to verify the applicability and scaling of our ap-
proach, we ran several applications that are typical in their
size for realistic task systems. The first example stems from



[5] and consists of 43 tasks, 12 task chains and some ad-
ditional requirements (restricted placement, redundancies,
memory consumption). The task set should be assigned
to an architecture consisting of 8 ECUs, connected by a
token-ring bus. [5] uses an optimization function, that min-
imizes the TDMA length of the token-ring (so called To-
ken Rotation Time TRT). They apply a simulated annealing
approach and report a result of 8.7msec for the smallest
found TRT. Table 1 summarizes the results we yield with
our SAT based approach and shows its complexity (number
of boolean variables and literals).

Table 1. Experimental results based on the
example given in [5].

Experiment Result Time Var. Lit.

[5] TRT = 8.55ms 48 min 175k 995k
[5] + CAN UCAN = 0.371 361 min 298k 1627k

This example is a very tight one, thus there exist not many
valid solutions. However, our optimal approach shows that
simulated annealing in this case did not find the optimal so-
lution, whereas SAT based methods are able to find the op-
timum (8.55msec) within an acceptable computation time
interval. We also apply our technique to a CAN bus instead
of the token-ring and are able to find an optimum. Here, the
optimization goal was to minimize the bus load UCAN . Due
to the much more complex calculation of response times
for messages in comparison to the simple token-ring pro-
tocol used in [5], the complexity of a model using CAN is
much higher (see table 1). The complexity is given in forms
of run-time, boolean variables and boolean literals of the
propositional formulae extracted from the problem instance.
The number of boolean variables reflects the state space
the satisfiability checker has to evaluate, whereas from the
number of boolean literals the number of constraints that
restrict possible solutions can be derived. Due to the high
dependability of most of the boolean variables from a small
set of primary decision variables (e.g., the encoding of the
ai variables), the SAT checker is able to yield good run-
times on quite huge state spaces.

The growth of the complexity with respect to increasing
task sets and increasing complexity of architectures is the
objective of further evaluations, that we summarize in table
2 (a) and (b).
In table 2 the results are shown for an increasing complex-
ity of architectures. The task set in this example consists
of 30 tasks with several task chains and additional require-
ments. The architectural growth is instantiated by an in-
creasing number of ECUs that are connected to a token-
ring bus. For up to 20 ECUs the computation times are
under one hour, which is very good at any rate for an opti-
mal allocation approach. Beyond this limit, the computation

Table 2. Evaluations for the complexity re-
lated to the architectural size

ECUs 8 16 25 32 45 64

Time [h] 0:13 0:18 1:30 2:10 4:30 13:00
Var. (103) 100 133 148 158 178 206
Lit. (103) 602 814 911 979 1117 1304

times suffer from increasing complexity. However, even for
industrial applications, the integration of architectures con-
sisting of more than 20 ECUs from scratch is quite rare.

Table 3. Evaluations for the complexity re-
lated to the size of task sets

Tasks 7 12 20 30 43

Time [h] 0:00:23 0:00:01 0:00:38 0:17 0:48
Var. (103) 5 14 34 88 174
Lit. (103) 22 74 191 492 995

Table 3 summarizes the effect of an increasing number of
tasks. Here, we partitioned the example of [5] in smaller
portions and applied the SAT based allocation approach.
The computation times suffer from an almost exponential
blow-up of the complexity. This is caused by the fact that
the number of formulae directly depends on the number of
tasks (in case of an architectural growth this is not the case).
However, for up to 50 tasks the computation time is accept-
able. Again, from an industrial point of view, task sets of
this dimension are sufficient, because typically only parts
of the complete system (so called functions or features) are
integrated at a time (incremental integration).

For evaluation of hierarchical architectures we extend
the architecture given in [5] by adding new communication
media of type token-ring or CAN and introduce new
ECUs that are used as gateway nodes. See figure 2 for an
overview of the architectures under evaluation.
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Figure 2. Hierarchical architectures

The results are reported in table 4, where the optimization
goal was to minimize the sum of the TRT of all media.
Gateway nodes in architecture A and B are not able to con-



Table 4. Results for the placement of the task
set from [5] on architecture A to C.

Experiment Result Runtime

Arch A + [5]
P

TRTi = 10.77ms 490min
Arch B + [5]

P
TRTi = 16.32ms 740min

Arch C + [5]
P

TRTi = 8.55ms 790min

tain tasks of the task set. Hence, all tasks that are distributed
over the border of sub-networks have to use two or three
busses. Therefore, the result of the sum of TRT is greater
than it was in the original system. On architecture C node
0 was used as gateway and the optimization yields the same
placement of tasks than it yields for the original problem in-
stance from [5]. We also exchange some of the busses with
a CAN bus instead of a token-ring and this also leads to
valid solutions. For example, exchanging the above media
of architecture C by a CAN bus yields an optimal solution
with TRT = 8.55ms on the lower bus in about 180 min-
utes runtime. These experiments show, that our approach is
not only able to produce optimal solutions for the task allo-
cation problem on simple architectures, but we have also a
support for heterogeneous hierarchical architectures.

7 Conclusion

We presented a SAT-based approach to the task alloca-
tion problem for distributed real-time systems of hierar-
chical architectures. In contrast to heuristic allocation ap-
proaches, which are known to behave well only if an ap-
plication specific parametrisation of the algorithm can be
found, our experiments show that we can achieve optimal
assignments for industrial-sized applications from scratch,
supporting accurate time predictions.

In particular, our approach is able to calculate task al-
locations for nearly arbitrary distributed, hierarchical net-
works, consisting of several different types of bus systems,
where messages are allowed to be sent across more than one
bus and induce additionally cost (e.g.) on gateway nodes.

A promising starting point for future work is to exploit
the fact that our binary-search based optimization procedure
entails the need to solve a sequence of SAT problems which
only differ with respect to the constraints needed to confine
the objective function to the respective search interval.

This enables the reuse of knowledge derived by the SAT
solver’s learning algorithm by simply copying the facts de-
rived from a preceeding SAT instance to the subsequent in-
stance, thus pruning the search space. First experiments
show, that this technique is able to speedup the optimiza-
tion procedure by a factor of 2 and more.
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