
On-the-Fly Kernel Updates for High-Performance Computing
Clusters

Kristis Makris1, Kyung Dong Ryu2

1Arizona State University 2IBM T.J. Watson Research Center
Dept. of Computer Science and Engineering 1101 Kitchawan Rd

Tempe, AZ 85287 USA Yorktown Heights, NY 10598 USA
kristis.makris@asu.edu kryu@us.ibm.com

Abstract

High-performance computing clusters running long-
lived tasks currently cannot have kernel software up-
dates applied to them without causing system down-
time. These clusters miss opportunities for increased
performance via specialized kernel support, cannot ben-
efit from new kernel features, and continue to operate
with kernel security holes unpatched, at least until the
next scheduled maintenance date. We developed a sys-
tem enabling dynamic kernel updates in parallel com-
puting clusters to address these problems. Our system,
DynAMOS, is founded on execution flow high-jacking
through function cloning. It enables commodity oper-
ating systems popularly used in clusters gain adaptive
and mutative capabilities.

To demonstrate the efficacy of our system, we illus-
trate our experience in dynamically updating and ex-
tending a Linux cluster. We introduce adaptive mem-
ory paging for efficient gang-scheduling, extend the ker-
nel’s process scheduler to support unobtrusive fine-grain
cycle stealing, apply public security fixes, and inject
performance monitoring functionality to a selection of
kernel functions. Our benchmarks show that the over-
head imposed by DynAMOS is mostly in the range of
1-8% for common Linux kernel functions.

1 Introduction

Updating the operating system kernel in a high-
performance cluster requires downtime to accomplish.
In pay-per-use, time-sharing clusters this translates to
revenue loss, and in clusters occupied by long-lived par-
allel tasks the downtime disrupts the running appli-
cations. Dynamic kernel updates is a good solution

for saving these downtime costs. Kernel security holes
could be patched using a dynamic updating mechanism
without delay, at least until the next regular mainte-
nance time. There also exist opportunities for improv-
ing performance by applying during runtime special-
ized kernel extensions. For example, adaptive mem-
ory paging for efficient gang-scheduling in clusters[9]
can reduce the job-switching time by 90%. In con-
cert, unobtrusive fine-grain cycle stealing in distributed
systems[8] can improve the throughput of foreign jobs
on clusters by 60%. These features require relatively
simple kernel patches but require a kernel recompila-
tion to apply. They cannot benefit a non-stop cluster
without a mechanism of applying these improvements
in a live running kernel.

In support of dynamic kernel updates, two ap-
proaches prevail: (i) design of adaptable, hot-
swappable operating systems from scratch, and (ii)
dynamic code instrumentation. Applying the princi-
ples of special operating systems facilitating updates,
such as K42[2], VINO[10] and Synthetix [4], in Linux
or other operating systems is a complex and costly
task. It requires significant changes in the way ap-
plications and the operating system itself are built.
Software updating systems based on dynamic code
instrumentation[12, 7] are restricted to basic block code
interposition. They do not facilitate complete proce-
dure replacement, basic block bypass, and autonomous
kernel adaptability which is needed in cluster systems.

DynAMOS is designed to enable dynamic kernel up-
dates in parallel computing clusters, yet without kernel
source code modifications. It can update kernel compo-
nents that are continuously running, such as the sched-
uler and kernel threads, and can reverse its updates. It
is founded on a new code patching technique termed
function cloning. The unit of modification in this tech-

1-4244-0054-6/06/$20.00 ©2006 IEEE

nique is a function instead of a basic block, permitting
changes to kernel functionality to be developed in the
original high-level language the kernel source is written
in.

Section 2 describes required features for dynamic
kernel updates of high-performance computing clus-
ters, and Section 3 classifies the types of dynamic kernel
updates. Section 4 outlines our methodology. Section
5 illustrates applications of DynAMOS in dynamically
updating the Linux kernel, and Section 6 reports the
overhead of the system. Section 7 discusses related
work, and Section 8 presents on-going work to extend
the current prototype. Section 9 concludes this paper.

2 Parallel Computing Needs

In building a system offering dynamic kernel up-
dates, one must account for the key operating needs
of a high-performance, pay-per-use cluster. A cluster
should remain highly available. Updates should be ap-
plied safely and unobtrusively, with no disruption of
service to running applications, and no computer sys-
tem restart. Security holes should be patched promptly
and each node cluster should be in its maximum pos-
sible use. Live process migration could limit the peak
attainable performance, and may be unsuitable in some
installations. For example a process with open commu-
nication ports cannot generally migrate.

With gang scheduled applications, the flexibility of
temporarily specializing the kernel of a group of the
cluster nodes with special paging algorithms can boost
the throughput. However, such customizations should
be reversible since the nodes can be allocated other
jobs. In addition, it should be possible for a cluster
administrator to provide criteria allowing the kernel to
adaptively determine which version of a subsystem (e.g.
memory paging) should be effective. Finally, a kernel
updating system should be designed generally enough
to run on inexpensive, commodity workstations that
dominate todays clusters. Both on fixed (e.g. Pow-
erPC) and variable (e.g. i386) instruction-length ar-
chitectures.

3 Classification of Dynamic Updates

In this section we categorize the types of kernel up-
dates. We characterize the updateable resources, iden-
tify the requirements for a safe update, and carefully
dissect the update types.

3.1 Updateable Resource Characteristics
and Requirements

Processes in an operating system like Linux are al-
ways sleeping midstream the scheduler, even though
the schedule routine itself is not always actively run-
ning. In essence, the kernel scheduler never quiesces.
It is never completely inactive. It is important to dis-
tinguish our definition of quiescence. Previous work
on K42[3] defined quiescence as the resource becoming
completely idle; no parts of the resource were in use at
all, even by sleeping processes.

Modifying the behavior of a system call, or apply-
ing a security fix could break existing applications that
rely on the older behavior and presence of the defect.
Thus some modifications could change the userspace
requirements. Other modifications, such as altering
kernel function signatures or updating the data types
of the supplied arguments (API changes) could change
the external requirements of a kernel subsystem. In an-
other example, the internal implementation of pipefs
in Linux could be modified to use a four page copy
buffer, instead of a one page buffer. All functions
participating in the implementation of this subsystem
would need to have their internal requirements changed
accordingly.

For some types of updates it is necessary to mon-
itor multiple instances of a resource and update only
specific ones. For example, we could choose to adap-
tively update the internal pipefs copy-buffer when
large amounts of data are passed through it. The up-
date should be applied only under the context of the
two processes communicating large data through the
pipe, requiring tracking of the state of each instance
of an open pipe. In other cases, data may need to be
migrated from one data structure type (e.g. array) to
another (e.g. hash table). The state of the resource
instance will need to be transferred.

A point could exist in time where each update could
be applied safely, but that is not necessarily a point at
which a resource is quiescent. For example, the page
swapper kernel thread kswapd in Linux never quiesces
(it never exits). However, there is a safe point at which
it can be updated, and that’s when the thread goes to
sleep. Here we must point out that safe update points
are sprinkled in a kernel in the form of semaphore calls.
But as will be discussed, safe update points need not al-
ways be present in the original resource for some types
of updates. In other words, not all resources need to
be guarded by semaphores in order to be updated.

3.2 Updating Types

Kernel updates can be classified according to the
complexity of applying an update. Some variable val-
ues can be updated without needing a safe update
point. For instance, setting a new maximum number
of open files limit in a read-only global variable. Other
variable values may need synchronized access and state
tracking. For example, updating the owner (uid) of an
inode requires acquiring the inode semaphore, includ-
ing state tracking to update only this particular inode.
Adding a new variable that is manipulated by a single
function would not require a safe update point. But
if the variable is used by a function group, the group
must be updated atomically at a safe point to guaran-
tee consistent use of the variable.

It is very easy to patch stand-alone functions that
contain security flaws, if their correction does not cause
side-effects in other parts of the kernel. Such functions
do not require a safe update point at all and could
be either quiescent or not. In some cases, updating
function signatures may not need a safe update point
either. The strategy there is to first load an updated,
yet inactive, function with the updated signature, and
then update the function’s callers to use the new signa-
ture. Complexity increases when a function group that
may introduce side-effects in other parts of the kernel
may need to be updated. More possibilities not cur-
rently handled may be permitted in the control flow,
such as returning a new value that was previously not
expected by the function’s callers. Such updates must
be executed atomically at a safe point.

For some updates, an internal state may need to be
transfered to the next version of a subsystem, for both
quiescent and non-quiescent subsystems. One exam-
ple would be modifying the O(n) Linux 2.4 scheduler
which uses a single process queue into an O(1) Linux
2.6 implementation which uses two process queues. Ex-
tending a data structure to support another field (data
type update) is another example where state-transfer
may be necessary. All functions that use old data type
will also need to be atomically updated to use the new
type. An alternative would be to maintain a parallel
data structure that holds the value of the field alone,
and updating the affected functions to track its value.

3.3 Updating Constraints

A safe update point is not mandated. Applying an
update guarantees that eventually the update will be in
effect in future kernel code paths. When a safe update
point is required but one may not be available, the
update can still be applied at a safe point using two

techniques. The stack of all processes can be walked-
through confirming that none of them are still sleeping
in outdated code. Alternatively the update could pro-
ceed in multiple phases. An intermediate version of a
subsystem could first be created containing logic that
determines on kernel path awakening whether it is safe
to gradually update to a final, drastically different ver-
sion. Usage counters monitoring entrance and exit to
the intermediate version of the function can assist in
this determination.

State-tracking requires adaptive logic that will apply
an update in a specific context. For example, execute
the original version of a function for one process, but
an updated version for another process. The most chal-
lenging updates to apply are the ones requiring state-
transfer without presence of a safe update point.

4 DynAMOS

We developed a framework for applying dynamic
kernel updates that meet the requirements of parallel
computing outlined in Section 2. Our solution, Dy-
nAMOS, can safely, adaptively, and unobtrusively ap-
ply reversible updates, and its overall architecture and
key mechanisms are discussed in this section.

4.1 Architecture

DynAMOS was developed for a uniprocessor Linux
2.4 kernel. The architecture diagram in Figure 1
shows how a cluster could be patched. Kernel updates
are built following a special development process, and
transported from the cluster control station to the sys-
tem service of each node. This service is instructed to
apply or reverse updates during runtime.

Figure 2 depicts how the DynAMOS framework
functions in each cluster node. The kernel compo-
nent consists of a version manager, template trampo-
line code, template execution flow redirection handling
code, and additional template customization routines.
The user-level component consists of a command-line
tool to control the system, a disassembler, and a set
of scripts that assist in development of new function-
ality. Standard tools, such as the gcc compiler and ld
linker, are used in conjunction with the development
scripts and kernel source code, to produce new versions
of kernel functions. In addition, the original stock ker-
nel image, such as vmlinux in Linux, is consulted when
needed. New versions of kernel functions are inserted in
the operating system as a loadable module using stan-
dard commands, such as insmod in Linux, and enabled
with the command-line tool and system service.

Figure 1. DynAMOS cluster patch management.
Kernel updates are distributed from a control station
to the nodes of a cluster. A system service on each
node processes updating requests.

4.2 Execution Flow Redirection

To allow a new version of a function to become ac-
tive, a mechanism to divert execution flow away from
the original must be employed. This is accomplished by
installing a trampoline in the beginning of the original
function.

Figure 3 shows an example of a trampoline installed
in the schedule Linux function in the i386 architec-
ture. The 6-byte trampoline overwrites the 5-byte mov
instruction and part of the subsequent and. Machine
code immediately after the trampoline no longer stands
as valid instructions, and execution flow should not
branch to that point in the future. The indirect target
of the trampoline jmp is the address of a redirection
handler. It is stored at 0xc18f3204, and is the new
memory address to which execution flow branches. Op-
erating system kernels that store their text segment in
read-only pages would require temporarily modifying
the page permissions when changing the trampoline
target address. Indirect addressing from memory elim-
inates this overhead.

During installation, the beginning of a function
onto which the trampoline is installed must be pro-
tected from execution. In a uniprocessor system this
is achieved by guarding the installation activity with a
spinlock acquired using the spin lock irqsave Linux
function. This function is responsible for disabling lo-

insmod

kernel

processed
function image

/dev/dynamos
interface

load/unload
functionality

userspace

gcc, ld, vmlinux,
kernel source,

disassembler

control−tool

object
file

new version
of a function

user scripts,

trampoline
template

template

handler
redirection

customization
routines

version manager

DynAMOS framework

Figure 2. DynAMOS architecture diagram. New
functions are prepared in userspace, loaded in the ker-
nel and registered with a version manager. Template
trampoline and redirection handler instruments are
applied to the new functions.

cal processor interrupts for the duration of the lock,
guaranteeing that interrupt handlers cannot interfere
with trampoline installation. After installation, the
processor I-cache is flushed to ensure the trampoline
will be immediately visible to the processor.

The interposition of a redirection handler permits
the execution flow to be monitored, and manually or
autonomously altered by invoking a user-defined adap-
tation handler that determines which version of a func-
tion should run next. As discussed in Section 3.3, state-
tracking requires adaptive logic applying an update in
a specific context. Simultaneously running in multiple
contexts older and newer versions of a function is not
a harmful operation, but a necessary feature. Figure 4
shows the complete mechanism used to divert execu-
tion flow. After function registration, a trampoline is
installed in the beginning of the original function v1.
When the function is called (1), execution branches to
the execution flow redirection handler (2). The handler
performs pre-call bookkeeping operations (e.g. main-

is 0xef4552a0

0xc011502c:
0xc0115031:
0xc0115033:
0xc0115034:

...

ef 45 52 a00xc18f3204:

address of handler

0xc011502c:
0xc0115032:
0xc0115034:

...

ff 25 04 32 8f c1 jmp *0xc18f3204

89 e5 mov %esp,%ebp

misinterpreted, invalid instructions

function image
after trampoline is added

before trampoline is added
original function image

b8 00 e0 ff ff mov $0xffffe000
21 e0 and %esp,%eax
55 push %ebp
89 e5 mov %esp,%ebp

schedule()

e0 55 loopne 0xc0115089

Figure 3. Trampoline code. A 6-byte jmp overwrites
the 5-byte mov instruction and part of the subsequent
and. The indirect target of the trampoline is the ad-
dress of the redirection handler.

tain use counters), and jumps to function v1 copy
(3), a clone of the original function. This function im-
age was modified to branch back to the redirection han-
dler (4), where additional post-call bookkeeping is car-
ried out. Execution eventually returns to the original
caller (5). The results of the execution of the original
function remain unaffected.

When the beginning of the original function is over-
written with a trampoline, the function can no longer
be directly invoked. Producing a complete copy of the
function (clone) and relocating it solves this problem.
Within the relocated code, relative branch instructions
have their offsets adjusted, by a disassembler included
in the framework, to point to their original targets. The
disassembler additionally identifies and replaces all re-
turn instructions in the relocated image with jumps,
branching back to the redirection handler.

Using the same redirection handler for all registered
functions can introduce an unacceptable bottleneck if
functionality that introduces locking is present in the
redirection handler (e.g. pre/post bookkeeping of use
counters). Hence, a new redirection handler is instanti-
ated per function, and is cloned from a template imple-
mentation using the technique described above. The
handler is customized to use values pertinent to the
function (e.g. memory address of a use counter).

The function cloning code insertion mechanism pro-
vides a more flexible way of execution flow high-jacking
geared towards adaptive execution. Instrumentation

...

...

original caller

function_v1

redirection handler

− jump to active function

− return to original caller

function_v1_copy

function_v2_copy

call function

jmp
...

...

trampoline

−jump back to handler

−jump back to handler

call

ret

jmp

jmp

jmp

1
3

4

5
2

− perform bookkeeping

− perform bookkeeping

Figure 4. Execution flow redirection mechanism. A
call to function v1 moves execution flow to the redi-
rection handler and reaches function v1 copy. The
function jumps back to the handler and from there
returns to the original caller.

code is no longer guarded by processor-state preserva-
tion logic, which would alter the stack. Function mon-
itoring is accomplished by coercing both the original
and alternate instruments to return back to the redi-
rection handler, via replacement of return instructions
with jumps. Basic blocks can be bypassed, and in-
struments are applied at a higher, function-level. The
expectation of existing systems that a kernel can be
considerably and intelligently modified without access
to source code can be overly taxing on developers.

Backward branches. A function could contain
backward branches to the beginning of its image, pos-
sibly pointing to the area consumed by the trampo-
line. The framework performs a check for backwards
branches. In practise, we have yet to encounter any.

Outbound branches. Linux 2.4 compiled with
gcc 2.95-4 produces semaphore code in an unusual way.
On a failure to acquire a semaphore, execution jumps
to a global table outside the function’s image. There
a call to down failed is issued, with a subsequent
jmp back to the function code. Clearly, the semaphore
acquire jump condition violates the assumption that
function code should not branch outside a function im-
age. If relocated, the jmp back to the function image
will divert execution flow from a relocated function to
its original. DynAMOS detects such outbound jumps
and relocates their call/jmp pairs at the end of the
function image, adjusting their relative offsets.

4.3 Symbol Resolution

Most of the Linux kernel symbols are not exported
for code that is dynamically loaded into the kernel.
But to compile alternate versions of core kernel func-
tions that do not provide a published interface, in
other words non-exported symbols, the absolute mem-
ory addresses of such functions must be known. The
userspace ld linker is invoked to consult the original
kernel image (with -R vmlinux), dereferencing sym-
bols that would have otherwise remained undefined.

4.4 Remote Control

We developed a node-resident service that coordi-
nates registration and activation of kernel updates in
the nodes of a cluster. This service accepts as input
a loadable module providing the updated code, and a
script describing the update. To ease management of a
DynAMOS-enabled cluster, a separate client tool can
remotely monitor and control this service.

5 Applications

In this section we illustrate our experience mutat-
ing the Linux kernel. We applied two security patches
provided by the Openwall project, customized the pro-
cess scheduler to support fine-grain cycle stealing as
required by the Linger-Longer system, and introduced
adaptive memory paging for efficient gang-scheduling.

5.1 Openwall Security Patches

The Openwall project distributes a patch against
Linux 2.4.22 that introduces various kernel hardening
changes. One of these changes is designed to disallow
writing into named pipes not owned by the current user
in directories with the sticky bit (+t) set, unless the
owner is the same as that of the directory. It involves
modifying the open namei function, which is part of
the underlying implementation of the open system call.
After activating our enhanced version with DynAMOS,
we verified that writes into untrusted named pipes were
successfully restricted by the kernel.

We applied another change designed to disallow fol-
lowing symbolic links not owned by the current user.
This fix involved interjecting a call to a function per-
forming security checks in the functions open namei,
and vfs link. It also required inserting the same call
into the inline routine do follow link, forcing us to
provide a second version of function link path walk,
which included calls to the inline routine. After updat-
ing, we verified that attempts to access symbolic links

created by other users were successfully denied by the
kernel. These were examples of updating quiescent sin-
gle function implementations that changed the internal
and userspace requirements.

5.2 Linger-Longer

The Linger-Longer system provides a custom
scheduling policy that exploits the fine-grained avail-
ability of workstations in a network environment to run
sequential and parallel jobs. It introduces a new guest
priority in Linux 2.2.19 to prevent guest processes from
running when runnable host processes are active. We
used DynAMOS to update during runtime the sched-
uler with the Linger-Longer policy in a 4-node test
cluster. We confirmed that guest processes were not
receiving CPU time when host processes were active,
as defined in the updated scheduling policy. This was
an example of updating a non-quiescent single function
implementation that changed its internal requirements.

5.3 Adaptive Memory Paging for Efficient
Gang-Scheduling

We acquired a patch to the Linux 2.2.19 kernel that
introduces various adaptive memory paging policies for
efficient gang-scheduling, such as selective page-out ag-
gressive page-out, and adaptive page-in. Adaptive pag-
ing is implemented via modifications in kswapd (page
swapper thread), swap out (selects the task with max-
imal swap count), rw swap page base (reads or writes
a swap page), swapin readahead (reads a block of en-
tries from the swap area), and filemap nopage (han-
dles a missing entry from the page cache). We dynam-
ically activated this work in the kernel of a 4-node test
cluster. Experiments with the NAS NPB2 benchmarks
confirmed that these new adaptive paging mechanisms
were effective, reducing the job switching time.

Dynamically replacing the kswapd kernel thread pre-
sented an unforeseen problem. Kernel threads nor-
mally sleep in an infinite loop, and are awakened by
other parts of the kernel to act. They are entered
only once, and never exit. Our execution flow redi-
rection mechanism was ineffective since the function
entry-point was never executed again.

Like all kernel threads, kswapd goes to sleep by
calling interruptible sleep on. We dynamically ac-
tivated an interruptible sleep on v2 that forced
kswapd to exit. We then awoke kswapd once to give
it a chance to call interruptible sleep on v2. After
exiting, the new version of kswapd v2 was launched.
To disable this work we forced kswapd v2 to exit and
re-launched the original kswapd. This was an example

of updating a non-quiescent subsystem that had a safe
update point but did not require state tracking.

6 Overhead

The DynAMOS kernel component itself has a very
small footprint of only 29KB. All microbenchmarks for
it were carried out on a 1.3GHz Intel Pentium M sys-
tem with 768MB of RAM, reporting a total of 2595.22
BogoMIPS, except where indicated otherwise.

Trampoline installation latency. We measured
the time to install the trampoline, which is the time
the processor remains locked. The overhead was less
than 1 nanosecond, and finer resolution could not be
achieved. To collect this measurement, DynAMOS dy-
namically replaced its own internal function that in-
stalls the trampoline with a duplicate version injected
with benchmarking instrumentation.

Runtime patching latency. A complete run-
time patching cycle involves loading a kernel module
in memory, processing all updated function images for
relocation, creating and customizing a redirection han-
dler and trampoline per function, and activating the
update. The adaptive memory paging work consumed
2.30 seconds, the Linger-Longer system used 0.68 sec-
onds, and from the Openwall patches the pipe hard-
ening fix needed 0.71 seconds and the symbolic link
hardening 1.08 seconds. The Linger-Longer and adap-
tive memory paging systems were measured on 2GHz
Intel Pentium 4 systems with 1GB of RAM, reporting
a total of 3971.48 BogoMIPS.

Redirection handler overhead. We measured
the time a function executed in its original form and
after registration with the framework. The overhead
was on average 2.02 clock cycles, evaluating to 0.002
microseconds.

Function execution. Execution of common func-
tions was timed in their original form and after regis-
tration with the framework. As shown in Table 1, the
overhead lies mostly in the range of 1-8%. The perfor-
mance penalty of the redirection cannot be amortized
by functions whose total execution time is less than
1 microsecond, such as sys brk and sys kill. While
the overhead of the redirection handler alone is only
0.002 microseconds, the final function overhead can
be much higher. To sustain the execution flow redirec-
tion overhead, judicious selection of functions that will
be replaced is required.

7 Related Work

Dominant cluster management solutions, such as
Rocks, Oscar, IBM Cluster Systems Management, and

Function Size Average Overhead
(bytes) execution (%)

time (µs)
do fork 1811 26.623 1.71
sys brk 247 0.295 43.48
do execve 487 79.473 1.33
sys open 127 5.759 8.04
sys read 235 3.537 1.67
sys write 235 9.407 2.00
do page fault 1127 2.092 5.82
sys kill 79 0.865 43.92

Table 1. The execution-flow redirection overhead lies
mostly in the range 1-8%. It is not correlated to func-
tion size, since the callees of some functions may as-
sume most of the function’s work.

Sun Cluster Software do not support dynamic kernel
updates.

K42[2] is an operating system explicitly designed to
support interposition and replacement of active ker-
nel code. Commodity operating systems must be re-
designed to adopt its hot-swappable capabilities. Ad-
ditionally, it proposes the harsh requirement of quies-
cence as a guarantee for a safe update, dictating all ker-
nel threads must be short-lived and non-blocking. Our
experiments replacing the non-quiescent kernel sched-
uler and kswapd kernel thread prove that this restric-
tion can be relaxed.

Hicks[5] proposed a user-level dynamic software up-
dating system based on an indirection facility. It re-
quires presence of a global dynamic symbol table in a
process image. Introducing this table in a commodity
operating system requires kernel source code modifica-
tions. DynAMOS effectively builds this table as needed
during run-time.

KernInst[12] is a dynamic instrumentation tool im-
plemented on fixed instruction-length architectures
(e.g. SPARC, PowerPC). At the time it was designed,
these architectures lacked a high-displacement branch
instruction and required a springboard technique to
reach far code patches. Function cloning does not over-
come this limitation, but newer editions of RISC pro-
cessors (e.g. POWER5) include such an instruction
and don’t require a springboard. GILK[7] is a dynamic
instrumentation tool for Linux 2.2 on the i386 variable
instruction-length architecture. It is not capable of in-
strumenting basic blocks that are one byte long, due
to lack of a one-byte i386 jump instruction. These two
systems handle machine code only in the micro-level of
basic blocks. Their insertion of multiple instruments in
a function imposes the respective redirection overhead

multiple times. They have not addressed function-level
updates, adaptive execution, or replacement of com-
plete kernel subsystems.

Binary rewriters like ATOM[11] and EEL[6] can
statically manipulate function images but do not ad-
dress runtime-relocation issues or support dynamic
software updates.

8 Ongoing Work

We plan to integrate DynAMOS in popular clus-
ter management tools. Work to update a live kernel
with MOSIX[1], a process migration system for high-
performance Linux clusters, is currently underway. We
would also like to update a Linux kernel from one ver-
sion to the next given as input a patch file. The need
for a semi-automatic tool that can build a kernel mod-
ule containing updated functions is becoming apparent.
Finally, we are investigating techniques for safe updat-
ing of multiprocessor kernels.

9 Conclusion

We developed a system enabling dynamic kernel up-
dates in parallel computing clusters. Our methodology
employs a new technique of execution flow high-jacking
termed function cloning and permits safe, high-level
modifications. Execution can be switched adaptively
among multiple, possibly concurrently running, func-
tion versions. Updates can be applied during runtime
in an unmodified commodity kernel, including updates
of non-quiescent subsystems.

We presented our experience successfully mutating
the Linux kernel. We introduced adaptive memory
paging for efficient gang-scheduling, extended the ker-
nel’s process scheduler to support unobtrusive fine-
grain cycle stealing, and applied public security fixes.
Finally, we benchmarked a selection of kernel functions
observing an overhead mostly in the range of 1-8%.

References

[1] Barak A. and La’adan O. The MOSIX Multi-
computer Operating System for High Performance
Cluster Computing. Journal of Future Generation
Computer Systems, 13(4-5):361–372, March 1998.

[2] Jonathan Appavoo, Kevin Hui, Craig A. N.
Soules, Robert W. Wisniewski, Dilma Da Silva,
Orran Krieger, Marc Auslander, David Edelsohn,
Ben Gamsa, Gregory R. Ganger, Paul McKen-
ney, Michal Ostrowski, Bryan Rosenburg, Michael

Stumm, and Jimi Xenidis. Enabling autonomic
system software with hot-swapping. IBM Systems
Journal, 42(1):60–76, 2003.

[3] Andrew Baumann, Gernot Heiser, Jonathan Ap-
pavoo, Dilma Da Silva, Orran Krieger, and
Robert W. Wisniewski. Providing Dynamic Up-
date in an Operating System. In USENIX Sym-
posium on Operating Systems Design and Imple-
mentation. USENIX Association, April 2005.

[4] C. Cowan, T. Autrey, C. Krasic, C. Pu, and
J. Walpole. Fast concurrent dynamic linking for
an adaptive operating system, 1996.

[5] Michael Hicks, Jonathan T. Moore, and Scott Net-
tles. Dynamic software updating. In Proceedings
of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages
13–23. ACM, June 2001.

[6] J.R. Larus and E. Schnarr. EEL: Machine-
Independent Executable Editing. In ACM SIG-
PLAN 1995 Conference on Programming Lan-
guage Design and Implementation (PLDI). ACM
SIGPLAN, June 1995.

[7] David J. Pearce, Paul H. J. Kelly, Tony Field, and
Uli Harder. GILK: A Dynamic Instrumentation
Tool for the Linux Kernel. In Computer Perfor-
mance Evaluation / TOOLS, pages 220–226, 2002.

[8] Kyung Dong Ryu and Jeffrey K. Hollingsworth.
Linger-Longer: Fine-Grain Cycle Stealing for Net-
works of Workstations. In Supercomputing ’98,
November 1998.

[9] Kyung Dong Ryu, Nimish Pachapurkar, and
Liana L. Fong. Adaptive memory paging for ef-
ficient gang scheduling of parallel applications. In
IPDPS 2004, April 2004.

[10] M. I. Seltzer and C. Small. Self-monitoring and
self-adapting operating systems. Proceedings of
the Sixth workshop on Hot Topics in Operating
Systems, 1997.

[11] A. Srivastava and A. Eustace. ATOM: A Sys-
tem for Building Customized Program Analysis
Tools. In ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementa-
tion (PLDI). ACM SIGPLAN, June 1994.

[12] Ariel Tamches and Barton P. Miller. Fine-Grained
Dynamic Instrumentation of Commodity Operat-
ing System Kernels. In Third Symposium on Op-
erating System design and implementation, Febru-
ary 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

