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Abstract

We present a translation of a generic stochastic process

algebra model into a form suitable for stochastic simula-

tion. By systematically generating rate equations from a

process description, we can use tools developed for chem-

ical and biochemical reaction analysis to provide time-

series output for models with state spaces of O(1010000)
and beyond. We apply these techniques to a significant case

study: that of a secure electronic voting protocol.

1 Introduction

A fundamental problem with traditional analysis of stochas-

tic process algebra models is that they rely on the explicit

representation of the global state space. Whether attempt-

ing steady-state, transient or passage-time analysis of such

models, the so-called state space explosion problem limits

the practical size and complexity of any model being stud-

ied.

One possible way round this problem is to represent the dis-

crete state space of a model by a continuous approxima-

tion [18, 2]. This entails reducing the state of a stochastic

process algebra model to a canonical form and then using a

set of coupled rate equations to model the number of com-

ponents or agents that are in a particular state at a time, t.

In traditional discrete-state transient analysis of a stochas-

tic model, we are able to assign a probability to being in a

particular state at a given time, t. Here, we use a stochas-

tic simulator to provide trace executions of the underlying

rate equations and use multiple traces to provide confidence

intervals for being in a given state.

In this paper, we present a formal transformation from the

stochastic process algebra, PEPA [16], to an equivalent rate

equation description. We use an electronic voting system

case study to show that a state-space of many times the size

of an explicit state-space technique can be analysed.

1.1 Background: Stochastic simulation

The foremost techniques in present-day use for simulat-

ing biological and biochemical reactions involving signif-

icant numbers of molecules interacting in a volume are

derived from Gillespie’s Stochastic Simulation Algorithm

(SSA) [10]. The significant achievement in Gillespie’s work

is to ground the derivation of his algorithm in the theory of

statistical thermodynamics. This leads to an exact proce-

dure for numerically simulating the dynamic evolution of a

chemically reacting system. The method is accurate even

at low copy numbers of reactants, where the assumption of

continuity and the use of the law of mass action used in

ordinary differential equation (ODE)-based analysis breaks

down. Further, the SSA method converges, as the num-

ber of reactants increases, to the solution computed by the

ODEs [26] so that the methods are in agreement in the limit,

but SSA gives a more realistic representation when some

reactants are present only in low numbers.

Gillespie’s exact algorithm models systems in which there
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are M possible reactions represented by the indexed fam-

ily Rµ (1 ≤ µ ≤ M). It builds on a reaction probability

density function P (τ, µ | X) such that P (τ, µ | X)dτ is the

probability that given the state X at time t, the next reaction

in the volume will occur in the infinitesimal time interval

(t + τ, t + τ + dτ) and be an Rµ reaction. Starting from an

initial state, SSA randomly picks the time and type of the

next reaction to occur, updates the global state to record the

fact that this reaction has happened, and then repeats.

The primary drawback of this method is that it rests on only

one reaction happening in the given interval and thus the

time step for the next reaction may need to be very small

(driving up the cost of the simulation). The method was

improved upon by Gibson and Bruck [9]. The strong points

of Gibson’s approach are the use of only one random num-

ber (Gillespie uses two) and taking time proportional to the

logarithm of number of reactions. An approximate accel-

eration procedure called “τ -leaping” was later developed

by Gillespie and Petzold [11]. The “implicit τ -leaping”

method [23] was developed to attack the orthogonal prob-

lem of stiffness, common in multi-scale modelling, where

different time-scales are appropriate for reactions. Recent

advances in the field include the development of slow-scale

SSA which produces a dramatic speed-up relative to SSA by

prioritising rare events [4].

An excellent recent survey paper on stochastic simulation

methods and their relation to differential-equation based

analysis of reaction kinetics is [26].

2 PEPA

PEPA [16] is a parsimonious stochastic process algebra that

can describe compositional stochastic models. These mod-

els consist of components whose actions incorporate ran-

dom exponential delays.

The syntax of a PEPA component, P , is represented by:

P ::= (a, λ).P P + P P ��
S

P P/L A
(1)

Prefix, (a, λ).P : This represents a process which does an

action, a , and then becomes a new process, P . The

time taken to perform a is described by an exponen-

tially distributed random variable with parameter λ.

The rate parameter may also take the value �, which

makes the action passive in a cooperation (see below).

Choice, P1 + P2 : A race is entered into between com-

ponents P1 and P2 . If P1 evolves first then any

behaviour of P2 is discarded and vice-versa. This is

often called competitive choice.

Hiding, P/L: Actions in the set L that emanate from the

component P are rewritten as silent τ -actions (with

the same appropriate delays). The actions in L can no

longer be used in cooperation with other components.

Constant, X : It is convenient to be able to assign names

to patterns of behaviour associated with components.

Constants are components whose meaning is given by

a defining equation. The notation for this is X def= E .

The name X is in scope in the expression on the right

hand side meaning that, for example, X def= (a, r).X
performs a at rate r forever.

Cooperation, P1 ��
S

P2 : P1 and P2 run in parallel and

synchronise over the set of actions in the set S. If P1

is to evolve with an action a ∈ S, then it must first wait

for P2 to reach a point where it is also capable of pro-

ducing an a-action, and vice-versa. In a cooperation,

the two components then jointly produce an a-action

with a rate that reflects the slower of the two compo-

nents, R = r1
ra(P1)

r2
ra(P2)

min(ra(P1), ra(P2)). In a

passive cooperation, where P1 , say, can evolve with

an (a,�)-transition, the joint a-action inherits its rate

from the P2 component alone.

When two processes cooperate, PEPA uses a notion of

bounded capacity to cap the overall rate of cooperating

actions. Specifically, if the action-type a ∈ S then the

total observed rate of a when it is enabled in P1 ��
S

P2 can

never exceed min(ra(P1 ), ra(P2 )). The function ra(P) is

known as the apparent rate function and can be defined as:

ra(P) =
∑

P
(a,λi)−−−→

λi (2)

where λi ∈ IR+ ∪ {n� | n ∈ Q, n > 0}, n� is shorthand

for n×�. As described above, � represents a passive action

rate that will inherit the rate of the coaction from the cooper-

ating component. � requires the following arithmetic rules:

m� < n� : for m < n and m,n ∈ Q
r < n� : for all r ∈ IR, n ∈ Q

m� + n� = (m + n)� : m,n ∈ Q
m�
n� =

m

n
: m,n ∈ Q

Note that (r + n�) is undefined for all r ∈ IR in PEPA

therefore disallowing components which enable both active

and passive actions in the same action type at the same time,

e.g. (a, λ).P + (a,�).P ′.



3 Rate Equation Simulation Models

In this section, we introduce the concept of a rate equation

simulation model by showing how a client/server model

would be translated into a typical simulation language. A

simulation of PEPA model using rate equations is applica-

ble for models which display massive parallelism in one of

more component, for example:

A ��
L

A ��
L

· · · ��
L

A

for some component A where:

A
def= (a, λ).A′

A′ def= (b, µ).A

A rate equation simulation in this case would simulate the

number of components within the cooperation that were in

state A or state A′ at time, t.

Below is the PEPA description of a simple multi-client and

multi-server model that has the appropriate parallel struc-

ture which makes it amenable to this style of analysis:

Client def= (compute,�).Client1

Client1
def= (delay , µ).Client

Server def= (compute, λ).Server1

Server1
def= (recover , ν).Server

The system equation for the model is:

(Client || · · · || Client︸ ︷︷ ︸
N

) ��
{compute}

(Server || · · · || Server︸ ︷︷ ︸
M

)

This describes a Client that waits to place a compute action

on a server and then sees a delay before attempting another

server compute. The Server controls the rate of compute,

λ, in the interaction, before undergoing a recover phase.

Only after the recover can the Server service another

client, by enabling a compute action again.

The system equation describes how the system is composed

together. There are N parallel Client processes which

cooperate on the compute action with M parallel Server
components.

3.1 Rate equations

We are aiming to generate a set of rate equations represent-

ing the PEPA model. These will be input into a rate equa-

tion simulation tool e.g. [22], which is traditionally used

to simulate chemical and biological processes. Fortunately,

the tool gives us flexibility to migrate from the mass action

semantics of the standard chemical modelling paradigm to

a semantics which better matches that of PEPA. This issue

only affects the cooperative actions within a model, in the

client/server case it affects the overall rate of the compute
action.

The formal translation of a PEPA model to a rate equation

is covered in Section 4. Meanwhile, an informal procedure

for generating a rate equation simulation description goes

as follows:

Identify state-changing actions. We have three such

actions which modify the states of the components

Client and Server : delay , compute and recover .

These actions become the labels for the rate equations.

Identify source/target component states. For each

action, identify the source and target states of the

component that will be affected by that action occur-

ring. For instance, the delay action has a source state

Client1 and a target state Client . That is to say,

the occurrence of a delay action will decrease the

number of components in state Client1 and increase

the number in state Client .

Where there is an interaction, we will have multiple

source and possibly multiple target states. The source

states for compute are Client and Server , the targets

are Client1 and Server1. This means that components

in both Client and Server states must exist before the

reaction or interaction can take place. The result is

components of state Client1 and Server1 in the same

ratio.

Calculate reaction rate. For each action, we generate a

reaction rate based on the number of components

capable of performing that action. For instance for

the action delay , if there are n(Client1) components

in state Client1 then the overall observed rate of

action delay will be n(Client1)µ. Combining this

source/target state extraction with the rate calculations,

we get the equivalent rate equations of Fig. 1.

The explanation of θ(n(Client))n(Server)λ rate for the

compute action in Fig. 1 can be explained as follows.

Consider C clients utilising S servers to execute the

compute action. The overall rate of the synchronised

compute activity, as defined by the PEPA semantics in

terms of the apparent rate of compute, extracted from the

cooperating clients and servers, is given by:

min(C�, Sλ) =
{

Sλ : C > 0
0 : C = 0

= θ(C)Sλ (3)



Client + Server
θ(n(Client))n(Server)λ−−−−−−−→ Client1 + Server1

Client1

n(Client1)µ−−−−−−−→ Client

Server1

n(Server1)ν−−−−−−−→ Server

where θ(x) = 1 if x > 0, else 0.

Fig. 1. The multi-server/multi-client PEPA example as a set of rate equa-

tions.

// Initialisation of the number of components
Client = N;
Server = M;
Client_1 = 0;
Server_1 = 0;

// Rate equations
delay,

Client_1 -> Client, [ Client_1 * mu ];

recover,
Server_1 -> Server, [ Server_1 * nu ];

compute,
Client + Server -> Client_1 + Server_1,

[ theta(Client) * Server * lambda ];

Fig. 2. Dizzy file description of the multi-Client/multi-Server example

Hence we can use the θ(·) function on the number of

clients to get the simplified expression of the standard min-

formula. This captures the passive synchronisation in the

model.

In general, we would apply the standard apparent rate for-

mula, so in the active synchronisation case, we would use

a combined rate function of min(Cα, Sβ), for C clients

cooperating with S servers at rates α and β respectively.

3.2 Dizzy format

Having obtained our rate equations for the individual

actions of the PEPA model example, it is a straightforward

process to turn these into the Dizzy file. This transformation

is implemented in the PEPA Workbench [12]. The resulting

file is shown in Fig. 2. In the Dizzy format, all the rate

equations are labelled by the action name. The number of

components in a given state n(X) is given by X in the initial-

isation block and the rate description. The rate description,

itself, is given in square brackets [].

4 Rate equation translation semantics

In order to perform rate equation simulation of a PEPA

model, we need to look at a PEPA model in a slightly dif-

ferent but complementary way. Previously, a static system

equation would be specified and this would serve the dual

purpose of defining both the way in which the system was

composed and the start state of the system. Now that we are

considering systems of potentially millions of cooperating

components, it becomes more useful to consider an aggre-

gate and time-varying form of the same PEPA model.

The situation is best demonstrated by the system below:

P || P || · · · || P︸ ︷︷ ︸
n

For large n, this system could be represented more suc-

cinctly by a vector which describes the number of compo-

nents in a given derivative state. That is to say, suppose P
has 2 other derivative states, P ′ and P ′′, in its component

description. A 3-tuple vector (v1, v2, v3) could be used to

represent there being v1 components in state P , v2 in state

P ′ and v3 in state P ′′ in the cooperation above. Clearly

v1 + v2 + v3 = n, the total number of components in the

cooperation. This has the effect of reducing the state space

representation to an aggregated form (described in [13])

which requires a vector representation of size D(P ), the

number of derivatives of P , rather than one of size n, in the

unaggregated form. We further make the variables vi func-

tions of t, to show how the system evolves over time and we

get the time-based system equation described below.

The start state of the system, at t = 0, is derivable from the

original static system equation.

4.1 Time-based System Equation

The concept of a time-based system equation for a PEPA

model was introduced in [3] and builds upon the numeri-

cal vector form concept from Hillston [18] to include extra

information about cooperation and abstraction sets. The

state of a PEPA model at time t can be represented by P (t),
which has the grammar:

P (t) ::=
P (t) ��

L
P (t) P (t)/L (N(S, t), . . . , N(S, t))L

where S is the derivative state of a sequential component.

The derivatives tuple (N(S1, t), . . . , N(SNs , t))L is used

to count the number of derivatives of S in the cooperation:

S ��
L

S ��
L

· · · ��
L

S



The derivatives tuple uses the function N(X, t) to repre-

sent the number of components that are in state X at time t
within the environment expressed by the overall PEPA sys-

tem formula, P (t). There are Ns = |D(S)| elements in

this tuple to represent the total number of derivative states

of component S.

4.2 Stoichiometry function

We define the stoichiometry function, F(·), to act over

a time-based system equation version of a PEPA model

to give a stoichiometric rate equation version of the same

model. This stoichiometric form of a model expresses the

number of components that need to be present in a system

for a particular action to evolve, and further specifies how

many resulting components are generated after evolution

and with what rate the evolution occurred.

F : SysT → D (4)

where SysT is the set of time-based system equations and

D is the power set of DZ.

DZ = {(a,
∑

ωiSi,
∑

ω′
iSi, r)

: a ∈ Act, ωi, ω
′
i ∈ IN0, Si ∈ S, r ∈ R}

S is the set of sequential components and derivatives in a

model. R is the set of time dependent rates. A member

of the above set (a,
∑

ωiSi,
∑

ω′
iSi, r) would represent a

single rate equation:

a : ω1S1 + · · · + ωnSn
r−→ ω′

1S1 + · · · + ω′
nSn

which means that one way for the system to evolve an a
action requires ωi copies of Si and produces ω′

i copies of

Si, for 1 ≤ i ≤ n, and does so at rate r. This would occur

in competition with other possible a evolutions (literally as

a competitive choice in PEPA terms).

We define F(·), the stoichiometry function of a PEPA

model, over each of the possible structures of its time-based

system equation as follows:

Pairwise cooperation: F(P1(t) ��
L

P2(t)) = N1 ∪ N2 ∪
C, where:

Ni = {(a,E1, E2, r)
: (a,E1, E2, r) ∈ F(Pi(t)), a �∈ L}
for i = 1, 2

C = {(a,E1 + F1, E2 + F2, min(r, s))
: (a,E1, E2, r) ∈ F(P1(t)),

(a, F1, F2, s) ∈ F(P2(t)), a ∈ L}

Action hiding: F(P (t)\L) = N ∪ H , where:

N = {(a,E1, E2, r)
: (a,E1, E2, r) ∈ F(P (t)), a �∈ L}

H = {(τ, E1, E2, r)
: (a,E1, E2, r) ∈ F(P (t)), a ∈ L}

Group cooperation:
F( (N(S1, t), . . . , N(Sn, t))L) = N ∪ C, where:

N = {(a, Si, Sj , N(Si, t) r)
: (a, Si, Sj , r) ∈ F(Si),

1 ≤ i ≤ n, a �∈ L}

C = {(a,
∑

i : ωi>0

ωiSi,
∑

i,j : ωi>0,σij>0

σijSj , Γ(	ω, σ))

: 	ω ∈ L(a), σ ∈ M′(a, 	ω), a ∈ L}

Γ(	ω, σ) = min
i
{λij : (·, Si, Sj , λij) ∈ F(Si),

ωi > 0, σij > 0}

L(a) = {	ω : 	ω ∈ INn
0 , 0 ≤ ωj ≤ N,

1 ≤ j ≤ n,
n∑

i=1

ωi =
∑

i : ra(Si)>0

ωi = N}

M′(a, 	ω) = {σ : σij = πij , 	πi ∈ M(a, ωi, Si),
1 ≤ i ≤ n}

M(a,m, X) = {	π : 	π ∈ INn
0 , 0 ≤ πj ≤ m,

1 ≤ j ≤ n,
n∑

i=1

πi =
∑

i : (a,X,Si,·)∈F(X)

πi = m}

Sequential component:
F(S) = {(a, S, S′, r) : S

(a,r)−−−→ S′}

5 Case study: secure electronic voting

Voting is the foundation of the democratic process. Elec-

tronic voting has many potential attractions in providing

(ideally) ease of use and a quick, reliable count. Mak-

ing electronic voting secure has been an active topic of

research for more than twenty years and many secure elec-

tronic voting schemes have been introduced since the incep-

tion of anonymous channels to separate voters and votes by

Chaum [5]. The most publicly visible form of secure voting



is the use of online systems for voting in political elections

which has been introduced in several countries. This form

of voting has several obvious requirements:

Only registered voters are allowed to vote; voters only vote

once; it should not be possible to find out who voted, or how

they voted

These factors mean that any voting scheme for use in this

scenario has to provide adequate authentication, vote man-

agement and so-called blinding mechanisms, while oper-

ating over a potentially insecure communication medium.

Fujioka et al [8], formalised these requirements as com-

pleteness (all votes counted correctly), soundness (a dis-

honest voter cannot disrupt the election), privacy (of votes),

unreuseability (cannot vote twice), eligibility (to vote), fair-

ness (of the vote), verifiability (of the result). In addition,

Iversen [20] introduced the requirement of receipt freeness;

many protocols issue receipts or tokens of some form to

prove to the voter that the system behaved as it should.

However, these receipts might be used by a dishonest voter

to prove that they voted in a certain way, thus facilitating

vote selling.

Many secure voting schemes rely in some way on encrypt-

ing data and even with fast processors encryption and

decryption adds an overhead to data processing. However,

the major overheads arise because of the additional commu-

nication that is required in order to ensure that the require-

ments of the secure vote are met. Secure voting schemes

will generally use some form of anonymous channel, digital

pseudonyms, blind signatures, trusted authorities and mul-

tiple key ciphers to separate the voter, the authority to vote,

the vote itself and the counting of the vote. Clearly there

is a substantial overhead in providing these measures and

therefore the performance of such a system is of obvious

practical interest.

5.1 A secure electronic voting algorithm

This case study considers a secure electronic voting scheme

proposed by Fujoika et al [8] which has been implemented

in at least two systems, SENSUS [7] and EVOX [15].

Unlike other electronic voting schemes, such as Prêt à

Voter [6], the scheme has been extended in [21] to incor-

porate multiple administrative domains to address some of

the scalability issues that arise with a centralised system.

The scheme consists of an arbitrary number of voters, one

or more administrators to issue authority to vote, and a

teller system to collect votes and to determine the result.

An anonymous channel is used to communicate the vote

between the voter and the collector/counter. The scheme is

outlined below:

Preparation: For a voter i: Choose the voting strategy.

Commit to the strategy using a bit commitment scheme

ci. Blind the committed ballot, bi. Sign the blinded bal-

lot svi. Send to the administrator the signed blinded ballot,

the blinded ballot and unique voter ID, ID i.

Administration: For an administrator: Receive message

from voter i. Check right to vote for voter i. Check voter

i has not voted already. Verify the signature; if valid sign

the blinded ballot, sai. Send sai to voter i. When the

administration period is over, publish a list containing every

{IDj , bj , svj}.

Voting: For a voter i: Unblind sai to give the ballot signed

by the Administrator, bai. Check signature. Send {ci, bai}
to the Counter through an anonymous channel.

Collecting: For a teller: Receive message from voter

i. Check Administrators signature on bai; if valid add

{N, ci, bai} to a list, where N is a unique reference number.

When the collecting period is over, publish a list containing

every {N, ci, bai}.

Opening: For a voter i: Checks that the vote appears on

the list published by the Counter; if not appeal. Send the bit

commitment key ki to the Counter through an anonymous

channel.

Counting: For a teller: Use ki to retrieve the voting strat-

egy. Check the strategy is valid. When all votes are counted,

publish the final result.

It is clear from this description that voting according to this

scheme has to follow a prescribed sequence of events. It is

reasonable to assume that an election will consist of a great

many voters, generally thousands or perhaps hundreds of

thousands in any given administrative domain, and millions

in the election as a whole. At any given time there will be

many voters wishing to cast their votes electronically and

so the system has to be able to respond to multiple simulta-

neous requests at every stage of the process without hinder-

ing the voter by introducing unreasonable delays. As such,

an analysis of this scheme should be able to determine the

scalability (with respect to voters) of a given configuration

of administrators and tellers.

An election occurs over a fixed time frame, typically of the

order of 12 hours, during which all votes must be cast and

following which counting will occur. From a performance

perspective we can therefore deduce that the time taken to

count the votes can be treated as a separate optimisation

problem from the earlier phases. Furthermore it is imper-

ative that the administration phase does not cause a bottle-

neck which might delay voters to such an extent as they

are unable to cast their vote or lose interest or trust in the

system. Therefore the throughput of voters in the adminis-



tration phase is of key practical interest.

5.2 PEPA model

In this section, we present a simulation model of the voting

protocol expressed in PEPA. There are a number of signifi-

cant differences from the model of [24].

We model only one round of the election because we

are conducting a course-of-values time series simulation

instead of performing a steady-state computation. In [24]

the voting process is made to cycle in order that the model

defines an ergodic Markov chain. Here we have compo-

nents which conduct their designated activities and then ter-

minate. We use the definition of a terminated process in

PEPA (denoted by Stop) from [25].

Thus the termination state of this model is an untidy one,

as determined by the end point of the election: some vot-

ers may not ever register, some might not confirm that their

votes were correctly recorded, and so forth. This con-

trasts with the requirement for tidy termination in order that

the system is irreducible or strongly-connected (required

in [24] for meaningful steady-state computation).

In contrast to [24] we use an inversion of control model to

have a control process determining the progress of the elec-

tion from one stage to the next. This leads to a simplification

of the descriptions of the voters, administrators, collectors

and counters in the model. Choices are removed from the

definitions of these components and moved into the control

process at the meta-level.

Thus, the two PEPA models are not in a relationship such

as the bisimulation relation of strong equivalence [17] and

are instead only alternative models of the same system.

Preparation, voting and opening in the election

Electronic voting can be divided into a preparation phase

which is ended by contacting the administrator, voting

which ends by contacting the collecting officer, and check-

ing which may or may not lead to an appeal.

In the preparation phase the voter’s activities include choos-

ing the voting strategy and commiting to it using a bit com-

mitment protocol. Blinding is used to ensure anonymity of

ballots and digital signatures are used to ensure authentica-

tion.

The blinded, signed ballot is sent to an administrator for

checking, and returned verified. The voter unblinds this and

checks the signature. The last activity in the voting phase is

to send the ballot to the collecting officer.

Vote counting begins, and ends when the vote counters pub-

lish a list of votes. A voter might appeal at this stage if their

vote does not appear on the list.

Voter0
def
= (choose, c1).Voter0 1

Voter0 1
def
= (bitcommit , b1).Voter0 2

Voter0 2
def
= (blind1, b2).Voter0 3

Voter0 3
def
= (blind2, b3).Voter0 4

Voter0 4
def
= (voter sign, s1).Voter0 5

Voter0 5
def
= (sendA, s2).Voter0 5b

Voter0 5b
def
= (sendV ,�).Voter1

Voter1
def
= (unblind1, u1).Voter1 1

Voter1 1
def
= (unblind2, u2).Voter1 2

Voter1 2
def
= (verify1, v2).Voter1 3

Voter1 3
def
= (verify2, v3).Voter1 4

Voter1 4
def
= (sendC , s6).Voter2

Voter2
def
= (checkFail , p × c4).Voter3

+ (checkSucc, (1 − p) × c4).Voter2b

Voter2b
def
= (sendCo, s7).Voter Fin

Voter3
def
= (appeal , a1).Voter2b

Voter Fin
def
= Stop

The role of the administrator

The adminstrator becomes active once the voter has regis-

tered, and takes them through to the point where they are

able to cast their vote. This involves checking and verifica-

tion of eligibility to vote, followed by digital signing of the

ballot. The administrator finally sends the blinded ballot

back to the voter.

Admin
def
= (sendA,�).Admin 2

Admin 2
def
= (check1, c2).Admin 3

Admin 3
def
= (check2, c3).Admin 4

Admin 4
def
= (verify , v1).Admin 5

Admin 5
def
= (admin sign1, s3).Admin 6

Admin 6
def
= (admin sign2, s4).Admin 7

Admin 7
def
= (sendV , s5).Admin Fin

Admin Fin
def
= Stop

Collection of the votes

Votes are received by a collecting officer. Their role is in

the voting phase to check that the ballot has been correctly

signed by an administrator. If this is verified then the col-

lecting officer adds the vote to a list, labelling this with a

unique reference number. This list will be published when

the collecting period is over.



Col 0
def
= (sendC ,�).Col 0a

Col 0a
def
= (collector verify1, v4).Col 0a1

Col 0a1
def
= (collector verify2, v5).Col 0a2

Col 0a2
def
= (add , a2).Col Fin

Col Fin
def
= Stop

Vote counting

The responsibility is placed with those counting votes to

check that the strategy chosen by the voter in the first stage

of the election process is a valid one and to make all cast

votes ready for the final election count which ends the elec-

tion.

Count 1
def
= (sendCo,�).Count 1a

Count 1a
def
= (check strategy , c5).Count Fin

Count Fin
def
= Stop

The election process

The Election process itself is of a different character to the

others in the model. The election itself is not an actor in the

electoral process: rather it exists at the level of a virtual pro-

cess controlling phases of the simulation, it could be con-

sidered as being part of the legal framework of the election.

There is a similarity both with the net structure in a PEPA

net [14] and with the stochastic probes [1] used to witness

events in a PEPA model, but the control process is differ-

ent from either in that it structures the voting process into

phases (preparation, voting, counting, and finished), allow-

ing selected activities in each phase, and prohibiting them

where they are inappropriate.

A stochastic probe observes performance-significant

events. A meta-level control process allows performance-

significant events and generates simulation-control events

(ending one phase, beginning another, and terminating the

simulation overall).

It would be possible to realise the same effect in an alter-

native way using PEPA extended with functional rates [19].

The election process would be a function over the global

state space of the model, allowing the appropriate actions

at the appropriate times and disallowing them otherwise.

We have chosen here to represent this function instead as

a PEPA component and observe that the θ function would

be a very suitable way in general to implement functional

rates.

Elect Prep
def
= (choose,�).Elect Prep

+ (bitcommit ,�).Elect Prep

+ (blind1,�).Elect Prep

+ (blind2,�).Elect Prep

+ (voter sign,�).Elect Prep

+ (sendA,�).Elect Prep

+ (check1,�).Elect Prep

+ (check2,�).Elect Prep

+ (verify ,�).Elect Prep

+ (admin sign1,�).Elect Prep

+ (admin sign2,�).Elect Prep

+ (sendV ,�).Elect Prep

+ (publishA, er).Elect Voting

Elect Voting
def
= (unblind1,�).Elect Voting

+ (unblind2,�).Elect Voting

+ (verify1,�).Elect Voting

+ (verify2,�).Elect Voting

+ (sendC ,�).Elect Voting

+ (collector verify1,�).Elect Voting

+ (collector verify2,�).Elect Voting

+ (add ,�).Elect Voting

+ (publishC , er).Elect Count

Elect Count
def
= (checkFail ,�).Elect Count

+ (checkSucc,�).Elect Count

+ (sendCo,�).Elect Count

+ (appeal ,�).Elect Count

+ (check strategy ,�).Elect Count

+ (final publish, er).Elect Fin

Elect Fin
def
= Stop

The system as analysed was composed of the above sequen-

tial components in the following assembly:

Elect Prep ��
L Electoral Personae

Electoral Personae
def
= Voter0[N ] ��M Electoral App

Electoral App
def
= Col0[N ] || Count1[N ] || Admin[N ]

and:

N = 10, 000

L = {choose, bitcommit , blind1, blind2, voter sign,

sendA, sendV , unblind1, unblind2, verify1, verify2,

sendC , checkFail , checkSucc, sendCo, appeal ,

publishA, check1, check2, verify , admin sign1,

admin sign2, collector verify1, collector verify2,

add , publishC , check strategy ,final publish}
M = {sendA, sendV , sendC , sendCo, publishC}



5.3 Results

The models presented above are now converted to rate

equations using the techniques of Section 4, then analysed

numerically using data derived from an implementation of

the voting scheme. The data is based on using RSA with a

key length of 1024 bits, a maximum bit commitment length

of 50 bits, a random padding of 100 bytes per message and

a mix message block size of 110 bytes. By far the most

significant time delays in the scheme are the decryption of

the blinded votes and revelation messages. Other signifi-

cant delays are encountered in the communication involved

in sending the various messages and the overhead in sign-

ing the blinded messages. All other actions are very fast

by comparison. This has the effect of making the resultant

underlying continuous time Markov chain very stiff. Exper-

iments with the implementation showed that the system is

particularly sensitive to the padding length and mix message

block lengths as these impact the slowest operations.
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Figs. 3 to 5 show information extracted from simulations of

the voting model. In each case, the numbers of derivatives

of a component (possible successor states of a component)

are shown against time. So as not to over-clutter the dia-

grams, we have only shown qualitatively distinct derivative

traces.
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In Fig. 3, we present a selection of simulations for different

derivatives of the Administrator component. The first com-

ponent plot is of the number of Administrator components

which have not seen a transition sendA out of the Adminis-

trator state. There is a slight delay while the Administrators

wait to synchronise with the first sendA actions from the

population of Voters, but thereafter the decline in number is

almost exponential. The derivatives Admin2 and Admin7

are transient states of the component and so the populations

here almost approach 0. The last state and also the absorb-

ing state of the component is Admin Fin , which ends up

with the bulk of the population in this trace.

The simulations of the Voter component are shown in

Figs. 4. It shows the smooth evolution of Voter to deriva-

tive Voter1. There is a close relationship between Elect and

Voter that can be seen more closely in Fig. 5 and involves

the later stages of the Voter lifecycle.

Fig. 5 shows the inherent synchronisation between Voter
and Elect derivatives in the same simulation. Clearly, the

termination of the Voter1 and Voter2 phases is attributed

to the time-out for that phase of the election as dictated by

the Elect component, in its state change to Elect Voting
and Elect Count respectively. The end of the final Election

phase is not seen by the Voter as it concerns the completion

of counting the votes.

6 Conclusion

In this paper, we have significantly extended the contribu-

tion of [2] by providing a formal translation of a generic

PEPA model into a stochastic simulation model. Using the

stoichiometric function F(·) and a novel representation of a

PEPA system equation from [3], we can generate rate equa-

tions for the PEPA models which can be simulated using

tools such as Dizzy.



With these new techniques, we have carried out simula-

tions on a significant case study of electronic voting pro-

tocol from [24, 2]. The representation of the voting system

as a simulation has enabled us to analyse a state space of

O(1010000) states; far beyond the capability of traditional

explicit state-space representation techniques.
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