
Efficient Hardware Algorithms for n Choose k Counters

Yasuaki Ito Koji Nakano Youhei Yamagishi
�

Graduate School of Engineering
Hiroshima University

Abstract

An “n choose k” counter (
� � � � 	 �

counter for short) is a
counter which lists all

�
-bit numbers with

� � � 	 �
0’s and	

1’s. The “n choose k” counter has applications to solving
combinatorial optimization problems and image process-
ing. The main contribution of this work is to present an ef-
ficient hardware implementation of the

� � � � 	 �
counter. In

some applications,
� � � � 	 �

counters are used only for small	
. The second contribution is to show more efficient im-

plementations that support
� � � � 	 �

counters only for small	
. We evaluate the performance of our new implementa-

tion and known implementations in terms of the number of
used slices and the clock frequency for the Xilinx VirtexII
family FPGA XC2V3000-4. Although the theoretical anal-
ysis shows that our implementation is not the best, it runs
in higher clock frequency using fewer number of slices than
the other implementations.

1 Introduction

An FPGA (Field Programmable Gate Array) is a pro-
grammable VLSI in which a hardware design can be em-
bedded quickly. Typical FPGAs consist of an array of pro-
grammable logic elements, distributed memory blocks, and
programmable interconnections between them. The logic
block usually contains either a four-input logic function or
a multiplexer and several flip-flops. The distributed mem-
ory block is usually a dual-port RAM on which a word of
data for possibly distinct addresses can be read/written at
the same time. Design tools are available to the users to
embed their hardware logic designs into the FPGAs. Our
goal is to use FPGAs to accelerate useful computations.
In particular, it is very challenging to develop FPGA-based
solutions that are faster and more efficient than traditional
software solutions.

Let
� � � � 	 �

denote a set of all
�

-bit binary numbers that

�
Currently with Paltek Corporation, Japan.

has
� � � 	 �

0’s and
	

1’s. For example,
� � � � � �

is
� �

� �
� �
� ()

(1)

An “n choose k” counter (
� � � � 	 �

counter for short) is a
counter that lists all numbers in

� � � � 	 �
. It has shown

in [7] that several computations including combinatorial op-
timization and image processing can be accelerated using� � � � 	 �

counters. For example, suppose that we have a
function * , � � � � (- / � � � � �))) � 2 (

for some positive
integer

2
, and we need to find an

�
-bit binary number 4

such that * � 4 �
takes the minimum value over all possible5 - �

-bit binary numbers 7 . In other words, our task is to
compute

4 � 8 9 : ; = ?
7 A B D E F G H * � 7 �)

(2)

This task is a kind of combinatorial optimization, which has
many practical applications. A fast and efficient solution
for this task is to design an instance-specific solution us-
ing an FPGA as follows. We design a circuit that computes

* � 7 �
for any given

�
-bit binary numbers 7 . The output

7 of the
�

-bit counter is given to this circuit computing
* � 7 �

. A comparator is used to compare the current value
of * � 7 �

and the minimum value obtained so far. If the cur-
rent value * � 7 �

is smaller, then the current minimum * � 7 �
and 7 are updated. This hardware approach is promising if
there exists an efficient (i.e. compact and of small depth)
circuit computing * . An example of function * for which
this approach works efficiently is the MAX-SAT problem.
An input instance of the MAX-SAT problem is a set of

2
Boolean formulas * F

� * K �))) � * L of
�

Boolean variables.
MAX-SAT problem is a combinatorial optimization prob-
lem to find an assignment of Boolean variable values that
maximizes the number of satisfied formulas (or minimizes
the number of unsatisfied formulas). To solve the MAX-
SAT problem using the above approach, we define function

* , � � � � (- / � � � � �))) � 2 (
such that

* � 7 � � S � * U S * U � 7 �
is not satisfied

(S)
(3)

1

1-4244-0054-6/06/$20.00 ©2006 IEEE

It should be clear that, � in formula (2) for function � in
(3) is an optimal solution of the MAX-SAT problem. Also,
Boolean formulas can be implemented in the FPGA by a
combinational circuit in an obvious way. For example, an
AND binary operator in a Boolean formula can be imple-
mented using an AND gate with fan-in 2. Thus, the circuit
computing � � � � above can be implemented in the FPGA
very efficiently and the above approach works for the MAX-
SAT problem. This approach is an instance-specific solu-
tion [1, 6, 8], because the circuit embedded in the FPGA
depends on the input instance (i.e. � Boolean formulas) of
the problem.

In some application, 	 � � � � counters are used only for
small � . For example, suppose that an input instance of the
MAX-SAT is given as a CNF(Conjunctive Normal Form)
and most of the literals in the input formula are negative.
For such instance of MAX-SAT, it is expected that the op-
timal solution has few 1 (or true) assignments. Hence, we
can omit the evaluation of the value of � � � � for input � that
has many 1’s. If this is the case, it is sufficient for 	 � � � �
counter to support only small � and it is possible to increase
the clock frequency and reduce the number of used slices.

The first contribution of this work is to present an ef-
ficient hardware implementation of 	 � � � � counters, that
we call bitonic shift implementation. The second contribu-
tion is to show more efficient implementations that supports

	 � � � � counters only for small � . We evaluate the perfor-
mance of our new implementation in terms of the number of
used slices and the clock frequency for the Xilinx VirtexII
family FPGA XC2V3000-4. Although our implementation
is not the best from the theoretical point of view, it runs in
higher clock frequency using fewer number of slices than
known implementations.

This paper is organized as follows. In Section 2, we show
basic ideas for efficient implementation of 	 � � � � counters.
Section 3 shows known implementations of 	 � � � � coun-
ters. Section 4 presents a new implementation of 	 � � � �
counters. In Section 5, we modify known implementa-
tions and our new implementation to list 	 � � � � numbers
only for small � . In Section 6, we evaluate the perfor-
mance of these implementations for Xilinx VirtexII FPGA,
XC2V3000-4. Section 7 offers concluding remarks.

2 Basic ideas for implementing � � � � � � coun-
ters

The main purpose of this section is to show basic ideas
for implementing 	 � � � � counters.

We can list all numbers in 	 � � � � using the following
five rules:

Rule 0: (initialization) Let the current number be � ! # % ' % .

Rule 1: If the current number is � � * ' � , � ' � . for some / 1
� , then the next number is � � * ' � , ' � � . .

Rule 2: If the current number is � � * ' � , � ' ' . for some / 1
' , then the next number is � � * ' � , ' � ' . .

Rule 3: If the current number is � � * ' � , � ' ' : � . for some
/ 1 ' and > 1 ' , then the next number is � � *

' � , ' � � . ' : .

Rule 4: (termination) If the current number is ' % � ! # % ,
then terminate the listing.

Note that, as used in regular expressions, � � * ' � , represents
any sequence over D � ' E of length zero or longer, and ' %
represents a sequence of consecutive � 1’s.

The key rules are Rules 1, 2, and 3. Let us see how the
next number is determined. Let F ! F ! # H I I I F H be the cur-
rent number. Further, let J (' L J L � N ')be the smallest
index of F such that F Q R H S � and F Q S ' . The next num-
ber can be obtained using the following two operations:

swap operation swap the values of F Q R H and F Q .

shift operation shift F Q # H F Q # U I I I F H to the right until
F H S ' .

In Rules 1 and 2, the swap operation is performed to find
the next number. Both the swap and the shift operations are
performed when Rule 3 is applied.

First, we show how we implement the swap operation
which is performed in Rules 1, 2, and 3. For this purpose,
we determine index J above. Let W . S F . R H X F . for every

/ (' L / L � N '). Further, let [. S W . \ W . # H \ I I I \ W H ,
for every / (^ L / L �). In other words, [H S F H and

[. S F . \ [. # H for every / (^ L / L � N '). Thus, everyf
. can be simply computed using the cascade of � N ^ OR

gates. Since z is the prefix OR of W , f can be obtained using
the parallel prefix circuit [2, 3], which has h � � � gates of
depth h � k m n � � . Let o H S

f
H , and p . S

f
. X

f
. # H for each

(^ L / L � N '). It should be clear that, o . S ' iff J S / .
We refer the reader to Table 1 for examples of F , W , f , and

o . The swap operation can be simply done by

F . s F . t � p . \ p . # H � � ' L / L � � (4)

where o ! S o v S � and t denotes the XOR operator.
Next, we will show how the shift operation is imple-

mented. Recall that the shift operation is performed for
Rule 3. Let w . S [. X F . for each / (' L / L � N ^).
Clearly, w is a sequence of bits to be shifted to the right. Letz

! # U
z

! # { I I I
z

H be a sequence of bits that can be obtained
by repeating the shift of | ! # U | ! # { I I I | H until the rightmost
bit is 1. We refer the reader to Table 1 for examples of w and}
. Once

}
is obtained, we can perform the shift operation by

the following formula:

F . s � F . X [. � \
z

. � ' L / L � � (5)

Table 1. Examples of � , � , � , � , � , and �

� � 	
 � � � � � � �
� (current)

	 � � 	 � � � 	 	 	
� � � 	 	 � 	 	 	 	 	
� � � � � � 	 	 	 	 	

� � 	 	 	 � 	 	 	 	 	
� � � 	 	 	 � � 	 	 	

� � � 	 	 	 	 	 	 � �
� (next)

	 � � � 	 	 	 	 � �

where � � � � � � � � � � � � � � 	
for simplicity. We

assume that every bit of
� &

is 0 when all bits of � &
are 0.

Then, when Rules 1 or 2 are applied, � & � � & � 	
for all�

. Thus, from formulas (4) and (5) combined, regardless of
the applied rules, the next number � can be obtained by a
single formula as follows:

� & ()) � & ,) � & � / � & 1 1 2 � & 1 / � & 6
(6)

Now we can conclude a basic algorithm for listing all7) 9 ; = 1
numbers.

� � � � � A A A � (� � C � C
while � � � � �

do
foreach

�
in F � ; 9 G

do in parallel
� & (� & 2 � & I � � & (� & � 2 � &
� & ()) � & ,) � � & � / � � & 1 1 2 � & 1 / � &

(
� O � O 9

).

Note that if � � � � 	
then � � � � � � � S � A A A � � � 	

.
If this is the case, there exists no T such that � U I � 	
and � U � �

. In other words, � � � � � A A A � � � C 	 � � C and
Rule 4 (termination) should be applied.

As we have seen, � can be obtained by
9 � �

NOT gates
and

9 � �
AND gates. The prefix OR circuit, which can

be implemented using Z) 9 1
gates of depth Z) \ ^ ` 9 1

[2],
is used to compute z. Once z is obtained, � and � can be
computed using

9 � �
NOT gates and

9 � �
AND gates, each.

After that, if � is obtained, each � &
can be computed using

two OR gates, one AND gate, and one XOR gate. Thus,
a

7) 9 ; = 1
counter can be implemented using Z) 9 1

gates of
depth Z) \ ^ ` 9 1

excluding the circuit for computing � from
� . However, it is not easy to obtain � . In what follows, we
will show how we obtain � from � . For later reference, let

� � 	 d � e � g � e 	 g , where h � 9 � �
. Clearly, we need to

compute
� � 	 d � e � e .

3 Known implementations of j l m o q r coun-
ters

This section shows two known implementations [7] the
simple shift and the binary shift implementations that com-
pute t from s. The simple shift implementation runs in high
frequency for small

9
although it uses so many gates that it

does not fit in the FPGA for large
9

. The binary shift imple-
mentation uses much smaller number of gates, but it runs in
low frequency.

s u w � � � � �
 � � � � � � � � �
 � � �
 � � � � � � � �

The simple shift implementation uses all the shifted se-
quences of � . For each

�
and (

� O � O h " 	 O O h � �
),

let

� # $ %& � � & I
$ if

� & O h
� 	

if
� & (h 6

(7)

In other words, � # $ % is a sequence obtained by shifting � by
 bits to the right. Then, � can be obtained by

� & �) � #) % 2 � #) %& 1 /) � # % 2 � # %& 1 /
A A A /) � # d � % 2 � # d � %& 1 6

(8)

Let us confirm that
�

is correctly computed by formulas (7)
and (8). Recall that � � 	 d � e � g � e 	 g . Thus, � # $ %& � �
iff - & � O � & O - & /

. Since � #) % � � # % � A A A �
� # g � % � 	

, � # g % � � # g I % � A A A � � # g I e � % � �
, and

� # g I e % � � # g I e I % � A A A � � # d � % � 	
, we have

� & �
� # g %& / � # g I %& / A A A / � # g I e � %& . Hence,

� & � �
iff F - &

� ; - & / � � & � G 3 F - & � ; - & / G
is not empty, that is� O � O /

. Therefore,
� � � S � A A A � � e � �

and
� e I �� e I S � A A A � � d � 	

, and thus t is computed correctly. Let
us evaluate the number of gates used to compute t. Since

� # d � & I %& � � # d � & I S %& � A A A � � # d � %& � 	
(

� 6 �
) always

holds,
� &

can be computed using h � � & �
AND gates and

h � �
OR gates. Thus, � can be computed using at most

h &) h � � 1 & A A A & � 7 d 8 d I :S 7 � ;S AND gates and

at most
) h � � 1 &) h � � 1 & A A A & � 7 d ;S 7 � ;S OR

gates. Since each � &
can be computed by a tree of h � �

OR gates with fan-in 2, the depth of the circuit is at most\ ^ ` h 7 \ ^ ` 9
.

s u > � � � ? � � � @ A � � � � � �
 � � �
 � � � � � � � �

The binary shift implementation computes the binary
representation of the number of 1’s in � and generates the
same number of 1’s by exponential shifting. For simplicity,
we assume that h � � D � �

for some integer � . Let
/

be the

number of 1’s in � and � � � � � �

 � � be the binary represen-
tation of � , that is � � � �
 � � � � � � � � �
 � � � � �

 � � �
 � � .
The binary representation � � � � � �

 � � can be computed
by the Muller-Preparata’s adder tree circuit[5]. Let � � �
(! # % # () be a sequence of length � � * , determined
by the following procedure.

for % . , to (do
if � � � ! then � � � . ! � 4 6 8 � � � � �
else � � � . � � � � � , � 4 6 8

If � � � , then � � � � , ’s are added to the sequence. Thus,
it is not difficulty to see that ; � � � � holds. Further, each

� � � can be computed from � � � � � using � � * , multiplexers
whose output is determined by � � . Thus, @ can be computed
using at most � � * , � � � * , �

 � � � * , D � E D � G
multiplexers. Also, it is easy to confirm that the depth of the
circuit is H J (L � H J P R S G L .

4 New implementations of U W X Y Z \ counters

Our new idea is to use the bitonic merging [3] for imple-
menting the] J G _ ` L counters. A sequence of bits is bitonic
if

(1) it has consecutive 0’s of length at least 0 followed by
consecutive 1’s of length at least 0, and

(2) it satisfies (1) by performing a cyclic shift.

For example, 00000111 is bitonic from (1). Thus, all
of sequences 00001110, 00011100, 00111000, 01110000,
11100000, 11000001, 10000011 are bitonic from (2). Also,
both 00000000 and 1111111 are bitonic from (1).

Let b � e � e �

 e f be a bitonic sequence of length E
Further, let g � j � j �

 j f m � and n � q � q � s s s q f m � be
two sequences of length E each defined as follows:

j t � e t v e t y f m � , # z # E | � (9)

q t � e t } e t y f m � , # z # E | � (10)

For example, if b � ! ! , , , ! ! ! , then g � ! ! ! ! and n �
, ! , , , . For sequences g as n thus obtained, we have the
following lemma:

Lemma 1 (1) The total number of 1’s in g and n is the
same as those in b .

(2) If b has at least E | � 1’s, then n has no 0’s. Similarly,
if b has at most E | � 1’s, then g has no 1’s.

(3) Both g and n are bitonic.

Proof: If e t � e t y f m � � , , then j t � q t � , . If one of
e t and e t y f m � is 0 and the other one is 1, then j t � ! and
q t � , . If e t � e t y f m � � ! , then j t � q t � ! . Hence (1)

� �

� � � � � � � �

� � � � � � � � � � � � � � � �

Figure 1. The tree structure of bitonic circuit

holds. If b has at least E | � 1’s then either e t or e t y f m � is
1 and thus, n has no 0’s. If b has at most E | � 1’s, then
either e t or e t y f m � is 0 and g has no 1’s. Therefore, (2)
holds. For any non-negative integer � , � , and � such that

� � � � � � E , let b � ! � , � ! � . If � � E | � then, n has
no 0’s and thus n is bitonic. Also, since g � ! � , � � f m � ! � ,

g is bitonic. If � D E | � then, g has no 1’s and thus g is
bitonic. Similarly, since n � ! � , � ! f m � � � � � if � � � #

E | � and n � , � y � � f m � ! f m � � � , f m � � � if � � � � E | � .
Thus, g is bitonic. Consequently (3) holds. Q.E.D.

Let � f denote the circuit that computes formulas (9) and
(10). Since both g and n are bitonic, we can recursively use
this circuit for each of g and n . The resulting circuit has
a binary tree structure as illustrated in Figure 1. It should
be clear that, From Lemma 1, this circuit computes ! � y � , �
from ! � , � ! � . We call this circuit bitonic circuit.
See Figure 2 for illustrating the bitonic circuit for E � � .

The bitonic circuit can be used to compute ; � ! f � � , �
from � � ! f � � � � , � ! � . Thus, we can obtain an imple-
mentation of] J G _ ` L counter using the bitonic circuit. We
call this implementation bitonic shift implementa-
tion. The bitonic circuit has 1 � f , 2 � f m � s, 4 � f m � s, s s s ,

E | � � � s. Since � f has E | � AND gates and E | � OR gates,
the bitonic circuit has , E � � E | � �

 � E | � � �

E P R S E gates of depth P R S E . Thus, the bitonic shift im-
plementation has E � P R S E � H J G P R S G L gates of depth

P R S E � H J P R S G L .
Table 2 summarizes theoretical analysis of the perfor-

mance of three implementations for] J G _ ` L counters. All
of the implementations has depth H J P R S G L . The binary
shift uses only H J G L gates, while the other implementa-
tions needs more than H J G L gates. From the theoretical
analysis, the binary shift is the best implementations. How-
ever, the constant factor hidden in big-O notation is very
large. The binary shift implementation has tree of adders
and three of selectors. Although both trees has H J G L gates
of depth H J P R S G L , the constant factor is not small. On the
other hands, constant factor in big-O notation in the simple
shift and the bitonic shift is small. To compute @ from � us-
ing AND and OR gates with fan-in 2, the simple shift uses
less than E � gates of depth P R S E . The bitonic shift uses

0 1110 0 0 0

0 0 0 0 01 1 1

0 0 0 0

0 0 0 0

01 1 1

1 10 1

Figure 2. The bitonic circuit for � � �

Table 2. Theoretical analysis of the perfor-
mance of implementations of � � �
 � � coun-
ters

implementations gates delay
simple shift � � � � � � � � � � � �
binary shift � � � � � � � � � � �
bitonic shift � � � � � � � � � � � � � � �

� � � � �
gates of depth � � � �

. Thus, it is possible that the
simple shift and the bitonic shift implementations outper-
forms the binary shift implementation for practically small
� .

5 " $ % ') counters for small '

The main purpose of this section is to design several im-
plementation of � � �
 � � counters for small � . More specif-
ically, for some small fixed � , we design counters that can
list � � �
 + � numbers (- / + / �). In some applications, this
restriction is possible. Since the counter does not have to list

� � �
 � � numbers for large � , we may reduce the hardware
resources and increase the clock frequency.

Let us modify the simple shift, the binary shift, and the
bitonic shift implementations to support � � �
 � � counters

for small � . For this purpose, we will modify circuits to
compute 3 � 6 7 9 ; - ; from > � 6 7 9 ; 9 B - ; 6 B , where

� �
� D F . Note that to implement a � � �
 � � counter, the sub-
circuits need to compute H from > for I � -
 F
 M M M � D - .

We first modify the simple shift implementation of a
� � �
 � � counter for small � . Since > and H has at most
� D - 1’s, H N � H N 9 Q � S S S � H U � 6 and H Q
 H �
 M M M
 H U 9 Q
can be either 0 or 1. Thus, it is sufficient to compute

H Q
 H �
 M M M
 H U 9 Q and we can omit the circuit to compute
H U
 H U Y Q
 M M M
 H N . Recall that each H Z (- / + / �) needs� D + ^ - AND gates and

� D + OR gates. Hence,� ^ � � D - � ^ S S S ^ � D � ^ F � � � � � � � � � � � �
AND gates and � � D - � ^ � � D F � ^ S S S ^ � D � ^ - �

� � � � � � � � � � � OR gates. It should be clear that the depth
of the circuit is still � � � � i � � � � .

We next modify the binary shift implementation. In
the binary shift implementation, the binary representation

I j I j 9 Q S S S I Q of I is computed by the Muller-Preparata’s
adder tree circuit. Since I / � D - , we need only � � � � � D - � -
bit binary representation. Thus, adders of the Muller-
Preparata’s adder tree circuit can be limited to � � � � � D - �
bits. However, the Muller-Preparata’s adder tree circuit still
has � � � � gates with depth � � � � � � � . Using the binary rep-
resentation, > � > � � � � U 9 Q

�
is computed by the following

procedure:

for �
 - to � � � � D - do
if I � � 6 then > � � �
 6 � � � > � � 9 Q

�
else > � � �
 > � � 9 Q

�
- � � �

Thus, from the � � � � � D - � -bit binary representation of I , >
can be computed using at most F Q D - ^ F � D - ^ S S S ^

F � � � U 9 Q D - i � multiplexers of depth � � � � � � � . So, the
Muller-Preparata’s adder circuit is dominant in the binary
shift implementation. Hence, it still has � � � � gates with
depth � � � � � � � .

Finally, we modify bitonic shift implementation. Sup-
pose that 6 � - � 6 � (� ^ � ^ � � �

) is given to the bitonic
circuit. If � is small, the output of the most of � Z (+ �

-
 F
 �
 M M M
 � ! F) has no 1’s. We can remove such � Z from
the bitonic circuit. We assume that � / � for some small

� always holds. Then, the left � 7 # � in Figure 1 can be re-
moved if � / � ! F . Similarly, if � / � ! � , only the right-
most � 7 # $ is necessary. In general, if � / � ! F Z , then the
rightmost � 7 # � & is necessary and the other � 7 # � & ’s in the
bitonic circuit can be removed.

Let � be the largest integer satisfying � (F � . The re-
sulting circuit has 1 � 7 , 1 � 7 # � , M M M , 1 � 7 # � � � , 2 � 7 # � s,
4 � 7 # � * � s, M M M , F � � � s. Hence the total number of gates is� ^ � ! F ^ � ! � ^ S S S ^ � ! F � 9 Q ^ F S � ! F � ^ � S � ! F � Y Q ^

S S S � ! F � S F i F � ^ � S � ! F � Y Q � � � � ^ � � � � � � .
Table 3 summarizes the theoretical analysis of the perfor-

mance. The bitonic shift implementation uses � � � � gates
if � � � � � � � � � � , that is, � � � � � ! � � � � � . Thus, the

Table 3. Theoretical analysis of the perfor-
mance of implementations of � � � � �
 coun-
ters for small �

implementations gates delay
simple shift � � � �
 � � � � � �

binary shift � � �
 � � � � � �

bitonic shift � � � � � � � � �
 � � � � � �

binary shift and the bitonic shift implementations use the
same number of gates if � � � � � � � � �
 . On the other
hand, as we are going to show later, the actual implementa-
tions to FPGAs show that the bitonic shift implementation
uses fewer hardware resources and runs in higher frequency.

6 Performance Evaluation

This section is devoted to show the performance evalua-
tion for for the Xilinx VirtexII family FPGA XC2V3000-4,
which has 14336 slices. A slice is a unit block of the Vir-
texII FPGA, which has two four-input function generators,
carry logic, multiplexers, and two storage elements [4]. We
have used Xilinx ISE logic design tool (Ver 7.1i) to ana-
lyze the timing and the number of slices used. We have
wrote the HDL source codes for � � � � �
 counter implemen-
tations in RTL (Register Transfer Level) of Verilog HDL.
We have used default parameter values, for example “Op-
timization goal = Speed” and “Optimization effort = Nor-
mal”, for logic synthesis using Xilinx ISE logic design tool.
Also, we gave no user constraints to synthesize our Verilog
HDL source codes.

Figure 3 shows the clock frequency and the number of
used slices for � � $ � & (� * , � (/ � & , $ � , 1 (� 1 & , � and & 3 , /
estimated based on the net list obtained by XST logic syn-
thesis tool, which is a part of Xilinx ISE logic design tool.
For � 5 1 & , , the simple shift implementation does not fit
in the XC2V3000-4. The simple shift and the bitonic shift
implementation runs in almost the same frequency for all �
(� 8 , 1 (). The binary shift implementation runs in lower
frequency than the others. Recall that the binary shift imple-
mentation has two circuits: (1) the Muller-Preparata’s adder
tree circuit to compute the number of 1’s and (2) the multi-
plexer tree to generate consecutive 1’s. Although both cir-
cuits has � � � � � �
 depth, the adder-tree is complicated and
has large depth. Hence, as long as the Muller-Preparata’s
adder tree is used, the clock frequency of the binary shift
implementation cannot be better than the other two imple-
mentation.

As shown in Figure 3, the bitonic and the binary shift
implementations use almost the same number of slices in

the FPGA. On the other hand, the simple shift uses much
more slices and does not fit in the FPGA for � 5 1 & , .
Consequently, from the practical point of view, the bitonic
shift implementation runs higher frequency and uses fewer
slices, and thus it is the best among the tree.

Figure 4 shows the performance of the implementations
that lists � � � � �
 numbers for small � . Since each imple-
mentation has a sub-circuit that computes < from = with at
most 8 1’s, it can support � � � � �
 counters for � 8 $ � & �B

. Also, Figure 5 shows the performance of the implemen-
tations that lists � � � � �
 numbers for � 8 & D . In either case,
for large � such that � 5 & , $, the bitonic shift implementa-
tion works in the highest frequencies. Further, in both cases
of � 8 B

and � 8 & D , the bitonic shift implementation uses
fewest slices among the three. Therefore, the bitonic shift
implementation is the best implementation.

7 Conclusions

The main contribution of this work is to present an ef-
ficient implementation of � � � � �
 counters. We also pre-
sented implementations that supports � � � � �
 counters for
small � . The performance of the implementations are eval-
uated in terms of the number of used slices and the clock
frequency for the Xilinx VirtexII FPGA XC2V3000-4. The
results show that our new implementation called bitonic im-
plementation is the best implementation from the practical
point of view.

References

[1] J. L. Bordim, Y. Ito, and K. Nakano. Accelerating the
CKY parsing using FPGAs. IEICE Transactions on In-
formation and Systems, E86-D(5):803–810, May 2003.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Intro-
duction to Algorithms. MIT Press, 1990.

[3] A. Gibbons and W. Rytter. Efficient Parallel Algo-
rithms. Cambridge University Press, 1988.

[4] Xilinx Inc. Virtex-II Platform FPGAs: Complete Data
Sheet, 2003.

[5] D. E. Muller and F. P. Preparata. Bounds to complexi-
tyies of network for sorting and for switching. J. ACM,
22:195–201, 1975.

[6] K. Nakano and E. Takamichi. An image retrieval sys-
tem using FPGAs. IEICE Transactions on Information
and Systems, E86-D(5):811–818, May 2003.

[7] K. Nakano and Y. Yamagishi. Hardware n choose
k counters with applications to the partial exhaustive
search. IEICE Trans. on Information & Systems, 2005.

150

100

50

 10 100 1000

MHz

n

bitonic
simple
binary

10000

1000

100

10

1
 10 100 1000

Slices

n

bitonic
simple
binary

Figure 3. The performance of implementations of � � � � �
 counters

150

100

50

 10 100 1000

MHz

n

bitonic
simple
binary

10000

1000

100

10

1
 10 100 1000

Slices

n

bitonic
simple
binary

Figure 4. The performance of implementations of � � � � �
 counters for � � �

150

100

50

 10 100 1000

MHz

n

bitonic
simple
binary

10000

1000

100

10

1
 10 100 1000

Slices

n

bitonic
simple
binary

Figure 5. The performance of implementations of � � � � �
 counters for � � � �

[8] P. Zhong, P. Ashar, S. Malik, and M. Martonosi. Us-
ing reconfigurable computing techniques to acceler-
ate problems in the CAD domain: A case study with
boolean satisfiability. In Design Automation Confer-
ence, pages 194–199, 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

