
A Framework for Developing Distributed Location Based Applications

Andrej Krevl, Mojca Ciglari

University of Ljubljana

Faculty of computer and information Science

Tržaška 25, Ljubljana 1000, Slovenia

{andrej.krevl | mojca.ciglaric}@fri.uni-lj.si

Abstract

Location based services and applications are buzzwords

nowadays, yet they have been around for quite some time

in a variety of applications. However these applications
are scarce because of the high costs associated with the

positioning equipment. This paper presents different

options for determining location of mobile devices such as
mobile phones and Pocket PCs. It describes positioning

possibilities using WiFi networks, GSM networks,
Bluetooth beacons and the GPS system. Furthermore, it

proposes a framework for developing distributed location

based applications. The paper specifies which components
comprise the framework, data structures that are used for

spatial data interchange and Web Services that are used

for communication between components. It also describes
a location aware application prototype built on top of the

proposed framework. It concludes that building

applications on top of the proposed framework is feasible
and discusses benefits and drawbacks of this approach.

1. Introduction

 Location based services are popular these days and if

you want the media to write about it, it has to be at least

location aware. Yet, location based applications are more

common then the media hype suggests. We can find them

in car and marine navigation systems, in military

applications and in several package tracking systems that

are used by companies like FedEx. If these applications

are common, why should we reinvent the wheel with

proposing a framework for developing distributed location

based applications? Applications we mentioned are mostly

proprietary software, which means that we cannot reuse

them in our own applications without paying license fees.

Furthermore they mostly rely on existing spatial databases

that are kept locally on devices that run these applications.

While local storage greatly increases application

performance, it is inappropriate for applications that need

up-to-date spatial data like road construction information.

Another problem with these spatial databases is that their

cost can rise up to thousands of dollars if coverage of a

larger area is required. Since maps and applications are

mostly developed by the same company, we may find it

tough to switch to a competitor’s product. Another

drawback of existing applications is their dependence on

the Global Positioning System (GPS) to learn their

location. Although GPS is the most common system for

positioning, most common devices like mobile phones do

not have an appropriate receiver. Lastly, the fore

mentioned systems rarely include the possibility of

inserting new spatial data to the database.

 The rest of this paper presents the framework

architecture that tries to overcome some of the problems

described previously with using open standards and

commonly used technologies. These make the framework

extensible and flexible so it can be used in a variety of

location aware applications. Modular design and standard

interfaces such as serial ports and Bluetooth enable us to

extend our mobile devices with components that read data

from various sensors and send the results to our

application servers for further processing.

 This paper proposes a framework for developing

location based distributed applications based on open

standards and with extended functionality compared to

existing location based products. Some weaknesses of

existing products are described in section 2. Section 3

discusses options for determining location of a mobile

device and section 4 describes the framework and the

prototype of the distributed application. Section 5 includes

a discussion of strong and weak points of the framework

and proposes further work on the subject.

 This paper will be of interest to anyone who wants to

get acquainted with location aware distributed applications

and to those that wish to implement location based

services in their information systems or research fields.

2. Related work

 Much work on location based applications has been

done by Intel Research Seattle. Their engineers developed

1-4244-0054-6/06/$20.00 ©2006 IEEE

software called Place Lab [1] which focuses on using

radio beacons other than GPS for location discovery. Place

Lab utilizes IEEE 802.11 (WiFi) access points, GSM

network base stations and Bluetooth devices to define its

location. Decoupling location based applications from

GPS receivers is an excellent idea, but it relies on existing

spatial databases, that hold radio beacon locations. This

information can be provided by organizations that use

WiFi networks on their campus or acquired by war-

driving. War-driving is a process of collecting radio

beacon locations by driving around cities equipped with

different wireless receivers and a GPS device. War-driving

logs are then filtered and inserted into beacon location

databases.

 German mobile network operator T-mobile has recently

offered a navigation service to its users [2]. They provide

software for road navigation. A user that wants to get to a

certain destination enters its address into the mobile

application. The mobile application contacts the

appropriate server which calculates the optimal route from

user's current location to the destination. The mobile

application then displays driving directions similarly to

conventional road navigation systems. A Bluetooth GPS

receiver is required for positioning.

 Place Lab's ability to determine location based on radio

beacons other than GPS and T-mobile's thin client and

server side processing approach bring are both great ideas

that should be incorporated in modern location aware

applications. On the other hand, both solutions lack the

ability to insert new spatial data on the fly, independent of

the current location.

3. Positioning

 People determine their location by objects that are in

their eye sight. These can be hills, distinct buildings in a

city or stars on the night sky. Despite the advances made

in computer vision research, computers remain unreliable

at detecting objects, so they have to rely on other means of

determining their location.

3.1. Global Positioning System

The most commonly used positioning system is GPS. It

comprises of 24 satellites orbiting around the Earth and

enables us to determine our location anywhere on our

planet with an accuracy of roughly 10 meters. To

determine their location, GPS receivers need to obtain

signals from at least four different satellites. Four satellites

define four spheres defined by the difference between time

of sending (from satellite) and time of reception (GPS

receiver). The intersection of these spheres presents our

current location.

3.2. GSM networks

 Mobile phones are gaining on their popularity and are

very commonly used in our everyday life. Most of these

mobile phones are connected to GSM networks. GSM

networks are cellular networks and every cell has its own

base station that that has a unique cell identifier. Since the

mobile phone always knows which cell it is connected to,

we could use this information to determine our location.

However, this solution has one major drawback - its

accuracy. While the distances between base stations in

urban regions are between 200 and 500 meters, they can

grow to a couple of kilometers in rural regions and that

greatly decreases positioning accuracy. Accuracy can be

increased by considering amount of time advance and

hand over time information, but this can only be obtained

from the mobile network operators who usually charge for

such services. Some of the operators are already offering

web services that can be used by location aware

applications. Unfortunately, there is no common API for

accessing location information on operator's servers,

which renders such services useless for wide spread

applications at this moment.

3.3. WiFi networks

 With WiFi networks gaining on their popularity, they

can provide a good means of determining our location,

especially in residential areas and in the vicinity of larger

organizations. Similarly to GSM networks, WiFi clients

connect to WiFi access points (base stations), which have

a unique identifier (SSID). To determine optimal transfer

rates, clients always measure the strength and quality of

access point's signal. These two parameters enable us to

determine our location. If we receive signals from

different access points, we can use triangulation to

determine our location with the accuracy of around 15

meters.

3.4. Bluetooth

 Another wireless technology that is quickly gaining on

its popularity is Bluetooth. There are many devices that

use Bluetooth to communicate, and their discovery can

help us determine our location. Since Bluetooth was

designed for Personal Area Networks (PAN) and is

typically short ranged it enables us to determine our

location very accurately. However, Bluetooth sources

require some additional filtering before we add them to

our spatial databases, because most Bluetooth enabled

devices are mobile phones and PDAs which do no have a

static location.

 Positioning based on WiFi, GSM or Bluetooth has one

important advantage over GPS. Besides determining our

location outside, in open areas, it can also help us with

determining our locations inside buildings. On the other

hand GPS performs excellently even in rural areas where

other radio beacons are very scarce.

4. Framework architecture

 The framework comprises of three layers (Figure 1):

the mobile device (location aware client), the application

server (broker) and the database server that holds spatial

data. This approach is used to maximize inter-operability

between different components, meaning that any

component can be replaced by a new one as long as their

APIs are compatible. On the other hand, three-layer

architecture enables us to store and process the spatial data

on the server side to overcome limitations of mobile

devices.

 Spatial data is stored in a relational database on the

database server. There might be performance

disadvantages to this, but interoperability and the variety

of available database management systems currently

outweigh developing a special geographical database

system. Spatial database contains locations of radio

beacons and locations of interesting objects or interesting

paths. Because of its simple design, the relational database

can be easily extended to hold any kind of location or

meta-data.

 The application server provides web services for

mobile clients and communicates with the database server.

Client communication is based on SOAP messages while

native communication is used when querying the database

server. This is against our goals to use only open

standards, but it doesn't represent a huge constraint since

we are using web services to wrap the proprietary

communication. Native database communication can be

easily replaced by ODBC or JDBC (dependant on the

server platform) however using a native database

communication protocol is recommended for best

performance.

 The mobile device obtains either geographical

coordinates or a list of radio beacons (base stations, access

points or Bluetooth devices) in its vicinity from one of the

wireless receivers. This data are encapsulated in a SOAP

envelope and sent to the appropriate web service on the

application server. A web service executes a query against

the spatial database and returns location information (if

any) to the mobile client. The mobile device displays

received location information over a map if one is

available from the web service. Location information

consists of interesting places and paths in the area around

our current location.

 Since mobile devices are cumbersome for text input

there is a web application running on the web server that

can be used for meta-data administration. However new

Figure 1: Framework architecture

location data can only be inserted via a mobile device.

4.1. Usage scenarios

 Figure 2 shows usage scenarios of a mobile application

that is supported by our framework. Locations are

interesting places that can be found in the proximity of our

current location. Location information is read from the

spatial database on the database server. The basic task of

the mobile application is to display these places in relation

to our current location. If a map of the currently displayed

area is available, places are drawn over the map for easier

orientation. This functionality can be found in almost all

location aware applications.

 A path is a set of places identified by the same meta-

data. It can be a street, a bicycle tour, a walk around the

city centre, directions how to get from point A to point B

etc. In addition to displaying places, the mobile

application also needs to be able to show paths that are in

the vicinity of our current location.

 In contrast to commonly available location aware

applications, our framework adds the ability for inserting

new places into the spatial database. Open source software

proved to be successful, why not apply the same principle

to spatial databases. Say you are just enjoying your meal

at a nice restaurant. You could insert the location of this

restaurant to the spatial database along with your

comments and let others know about it. Inserting a new

location (place) is simple, since it requires only the entry

of meta-data for the current location.

Figure 2: Use case diagram

 Paths can be entered in a similar manner. First the

meta-data is entered. Then, the current location is sampled

in regular time intervals and stored in the spatial database

as a part of the path. Sampling stops on users demand.

 Since spatial databases are bound to grow, displaying

all locations on the small screen of a mobile device at once

would be more confusing than helpful. Filtering can be

applied to location data, to show only locations of a

certain type (e.g. restaurants) or a certain type of paths

(e.g. bicycle tours).

4.2. Mobile application architecture

 The prototype navigation application that we have

developed implements all of the functionality described

earlier with use cases, but only uses GPS to determine the

current location. Nevertheless, figure 3 shows that the

application is fairly complex, considering it has to run on

limited devices. However, our tests have shown that

devices like Nokia Series 40 mobile phones have no

problem coping with our application.

 The center of the application is the MainControl class

that spawns different Display classes for user interaction.

Besides switching between displays it also holds current

location information that is obtained from GPSinterface
utility class. Location data is retrieved from the web

service MobileUserWebService, which is wrapped in

WSInterface utility class for easy use.

 The AddControl class is in charge of adding location

and paths. If we want to add a new location to the spatial

Figure 3: Mobile application architecture

database, we need to enter appropriate meta-data (name,

description and location type). The AddControl class will

obtain current location information from the MainControl

class, and then WSInterface will be contacted to send the

newly entered location information to the database.

Detailed sequence of interactions is shown on figure 4.

 Adding a new path is similar to adding a location up to

the point of entering meta-data. Afterwards the

AddControl class starts sampling current location data

from the MainControl class in regular time intervals.

Location data is sent to the spatial database via

WSInterface class where it is stored among other locations

that belong to the same path. Sampling is stopped by the

AddControl class on user demand. A detailed sequence of

interactions between classes is shown in figure 5.

 Utility class SensorInterface enables us to read from

sensors that use standard RS232 interface for

communication. Currently it only supports serial over

Bluetooth connections, but unfortunately our heart beat

sensor is still in the development phase, so we could not

test this part of the framework in our prototype. Since we

are using modular design and open standards, the

relational database can be easily extended with a table that

would hold sensor specific data. The same goes for adding

sensor related methods to web services and the mobile

application.

5. Discussion and further work

 This paper has shown that building location aware

distributed applications is feasible by using open standards

and technologies. Yes, there are existing location aware

applications, but there are no open, easily extensible,

frameworks, that can be used to easily develop location

aware applications. By using web services we can

integrate any client platform like J2ME or .Net compact

framework with any spatial database, be it Microsoft SQL

server, Oracle 10g or a third party specialized geographic

database. Even web services can be deployed on any of the

application servers available today.

 Of course, no framework includes every feature from

the ground up. That is why we would like to include Place

Lab's ability to determine user's location with the help of

radio beacons in the wild. Using WiFi access points, GSM

base stations and Bluetooth devices for positioning can

bring location aware applications to many new users, who

found GPS equipment too expensive in the past. On the

other hand, our software can also be easily upgraded to

use the up-coming Galileo project for positioning services.

 On all, the open spatial database is a concept that

should allow for rapid data growth. However, recent

Wikipedia incidents [6] have shown that data insertions

and modifications should be at least moderated. Limiting

write access with WS-Security [5] can be easily

implemented on the server side, but unfortunately more

effort has to be put in on at client side due to limitations of

mobile devices. Furthermore, the spatial data can quickly

outgrow the proposed solution with centralized data and

application servers. But since most of our queries are

dependant on location data in our vicinity, we can

distribute the data to different servers, each holding data

for locations in their vicinity. Luckily, the user could use

Universal Description, Discovery and Integration (UDDI)

to list and locate the appropriate spatial server according to

his location. In addition to data distribution, data

replication over several servers is possible, thus enhancing

service reliability.

 Another interesting addition to the framework is the

ability to connect different sensors to the mobile devices.

A heartbeat sensor would make a great doctor's accessory,

since she could be automatically warned of heartbeat

irregularities of her high risk patients. Sensor integration

and location awareness could spawn numerous

applications, utilizing ubiquitous computing to enhance

Figure 4: Adding a new location

and simplify our everyday life.

 There are still some minor performance issues with

transferring large datasets (raster maps) over relatively

slow GPRS networks. This can be solved either by using

much faster UMTS enabled mobile networks, or by

replacing raster (bitmap) maps with their vectorized

counterparts. We will also test the feasibility of creating

our own vectorized maps from path entries in the spatial

database.

Resources

[1] A. LaMarca, Y. Chawathe, S. Consolvo, et al, Place

Lab: Device Positioning Using Radio Beacons in the

Wild, Intel Research Seattle, 2003.

[2] T-Mobile, http://www.t-mobile.de/, December 2005.

[3] J. Schiller, A. Voisard, Location-Based Services,

Morgan Kaufmann Publishers, 2004.

[4] Wikipedia, http://www.wikipedia.org, January 2006
[5] WS-Security Specification, http://schemas.xmlsoap.org/,

April 2002.

[6] D. Terdiman, Growing pains for Wikipedia, C|Net,

http://news.com.com/, December 2005.

Figure 5: Adding a new path

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

